• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
LEI Heng-jiu, SU Shu-chai, MA Lü-yi, MA Zhong.. Cloning and functional analysis of ChaCBF1, a CBF/DREB1-like transcriptional factor from Corylus heterophylla × C. avellana.[J]. Journal of Beijing Forestry University, 2016, 38(10): 69-79. DOI: 10.13332/j.1000-1522.20150528
Citation: LEI Heng-jiu, SU Shu-chai, MA Lü-yi, MA Zhong.. Cloning and functional analysis of ChaCBF1, a CBF/DREB1-like transcriptional factor from Corylus heterophylla × C. avellana.[J]. Journal of Beijing Forestry University, 2016, 38(10): 69-79. DOI: 10.13332/j.1000-1522.20150528

Cloning and functional analysis of ChaCBF1, a CBF/DREB1-like transcriptional factor from Corylus heterophylla × C. avellana.

More Information
  • Received Date: January 07, 2016
  • Published Date: October 28, 2016
  • To investigate the molecular mechanisms of cold-resistance of Corylus plants, a CBF/DREB1-like transcription factor gene, designated as ChaCBF1 with the GenBank accession number of KT757373, was cloned using homology-based cloning and reverse transcription-PCR (RT-PCR) from hybrid hazelnut ‘Dawei’ (C. heterophylla × C.avellana). The open reading frame of ChaCBF1 was 666 bp, encoding a protein of 221 amino acids, with a molecular mass of 26.4 kDa and a theoretical isoelectric point of 5.88. The amino acids sequence alignment showed that the ChaCBF1 protein contained a highly conserved AP2/ERF domain. In addition, ChaCBF1 also contained PKK/RPAGRxKFxETRHP and DSAWR motifs, which are signature sequences of CBF proteins. The recombinant plasmid p1302-ChaCBF1-GFP was transiently expressed into onion epidermal cells by particle bombardment method via a gene gun,and subcellular localization analysis revealed that ChaCBF1 protein mainly localized into the nucleus of onion epidermal cells. The expression patterns of ChaCBF1 under various abiotic stress conditions were determined using quantitative real-time PCR. The results showed that the expression of ChaCBF1 was strongly and constantly induced by low temperature, and also in response to drought, salt and ABA signals. To elucidate the function of ChaCBF1, the fusion construct p1301bar-ChaCBF1 was introduced into wild type Arabidopsis by Agrobacterium-mediated transformation using the floral-dip method. The results revealed that the transgenic Arabidopsis overexpressing ChaCBF1 enhanced tolerance to freezing treatment, and had significantly higher survival rates than wild-type plants. The expression of cold-regulated genes RD29A and COR47 were significantly upregulated and the contents of free proline and soluble sugars were also increased in transgenic plants under normal or low temperature conditions, and resulted in increased tolerance to cold. These results indicated that ChaCBF1 functions as a transcription factor and play crucial roles in cold-response pathway of hybrid hazelnut.
  • [1]
    ZHENG W J. Records of Chinese trees[M]. Beijing:China Forestry Publishing House, 1998.
    [1]
    郑万钧.中国树木志[M]. 北京:中国林业出版社, 1998.
    [2]
    CHEN X,WANG G X,LIANG L S, et al. Cloning and temporal-spatial expression of a CBF homolog associated with cold acclimation from Corylus heterophylla[J]. Scientia Silvae Sinicae,2012,48(1):167-172.
    [2]
    陈新,王贵禧,梁丽松,等.平榛冷适应相关基因CBF的克隆及时空表达特性分析[J]. 林业科学,2012, 48(1):167-172.
    [3]
    李凤光,娄汉平,高丹,等.平欧杂交榛引种初报[J]. 北方园艺,2009, 33(4):91-92.
    [3]
    LI F G, LOU H P, GAO D, et al. Preliminary study on introducing of hybrid hazel[J]. Northern Horticulture, 2009, 33(4):91-92.
    [4]
    李春牛,董凤祥,王贵禧,等.平欧杂交榛抗抽条能力及抽条临界含水量研究[J]. 林业科学研究,2010,23(3):330-335.
    [4]
    LI C N,DONG F X,WANG G X, et al. Study on the tolerance and critical water capacity of shoot shriveling in hybrid hazelnuts[J]. Forest Research,2010,23(3):330-335.
    [5]
    赵爽,苏淑钗,张兵,等.河北省平泉县平欧杂交榛越冬性研究[J]. 中南林业科技大学学报,2015,35(4):33-39.
    [5]
    ZHAO S,SU S C,ZHANG B, et al. Study on over-wintering survival rate of Corylus heterophylla × C.avellana in Pingquan, Hebei Province[J]. Journal of Central South University of Forestry Technology, 2015,35(4):33-39.
    [6]
    陈新,王贵禧,徐丽,等.榛子甜菜碱醛脱氢酶基因BADH的克隆及在越冬过程中的表达特性分析[J]. 山东农业科学,2013,45(5):6-12.
    [6]
    CHEN X,WANG G X,XU L,et al. Cloning and expression analysis of betaine aldehyde dehydrogenase BADH gene from hzaelnut(Corylus heterophylla Fisch.) during overwintering period[J]. Shandong Agricultural Sciences,2013,45(5):6-12.
    [7]
    QIN F,SHINOZAKI K,YAMAGUCHI-SHINOZAKI K. Achievements and challenges in understanding plant abiotic stress responses and tolerance[J]. Plant Cell Physiology,2011,52(9):1569-1582.
    [7]
    SONG C N,QIAN J L,FANG J G,et al. Cloning, subcellular localization and expression analysis of SPL9 and SPL13 genes from Poncirus trifoliata[J]. Scientia Agricultura Sinica,2010,43(10):2105-2114.
    [8]
    ZHAO S J,SHI G A,DONG X C. Techniques of plant physiological experiment[M]. Beijing:Agricultural Scientific and Technical Press of China, 2002.
    [8]
    STOCKINGER E J,GILMOUR S J,THOMASHOW M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceeding of the National Academy of Sciences of the United States of America,1997,94(3):1035-1040.
    [9]
    PAN X W,LI Y C,LI X X. Differential regulatory mechanism of CBF regulon between Nipponbare(japonica) and 93-11(Indica) during cold acclimation[J]. Chinese Journal of Rice Science,2012,26(5):521-528.
    [9]
    LIU Q,KASUGA M,SAKUMA Y,et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. The Plant Cell,1998,10(8):1391-1406.
    [10]
    WEI J Y,ZHAO J,ZHAO S Q. Activation and regulation on the cold response pathway of ICE1-CBF in plants[J]. Biotechnology Bulletin,2015,31(6):8-12.
    [10]
    SAKUMA Y,LIU Q,DUBOUZET J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression[J]. Biochemical Biophysical Research Communications,2002, 290(3):998-1009.
    [11]
    DUBOUZET J G,SAKUMA Y,ITO Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression[J]. The Plant Journal,2003,33(4):751-763.
    [12]
    QIN F,SAKUMA Y,LI J, et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L.[J]. Plant Cell Physiology, 2004,45(8):1042-1052.
    [13]
    YANG W,LIU X D,CHI X J,et al. Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways[J]. Planta,2011,233(2):219-229.
    [14]
    KITASHIBA H,ISHIZAKA T,ISUZUGAWA K, et al. Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance[J]. Journal of Plant Physiology,2004,161(10):1171-1176.
    [15]
    NAVARRO M,AYAX C,MARTINEZ Y, et al. Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development[J]. Plant Biotechnology Journal, 2011,9(1):50-63.
    [16]
    WELLING A,PALVA E T. Involvement of CBF transcription factors in winter hardiness in birch[J]. Plant Physiology, 2008,147(3):1199-1211.
    [17]
    WANG Z L,LIU J,GUO H Y, et al. Characterization of two highly similar CBF/DREB1-like genes, PhCBF4a and PhCBF4b, in Populus hopeiensis[J]. Plant Physiology and Biochemistry,2014,83:107-116.
    [18]
    BENEDICT C,SKINNER J S,MENG R, et al. The CBF1-dependent low temperature signaling pathway, regulon and increase in freeze tolerance are conserved in Populus spp.[J]. Plant, Cell Environment, 2006,29(7):1259-1272.
    [19]
    CHENG H,CAI H B,FU H T, et al. Functional characterization of Hevea brasiliensis CRT/DRE binding factor1 gene revealed regulation potential in the CBF pathway of tropical perennial tree[J/OL]. PLoS One,2015,10(9):e0137634. [2015-12-12]. http:∥dx.doi.org/ 10.1371/journal.pone.0137634. DOI: 10.1371/journal.pone.0137634.
    [20]
    MORRAN S,EINI O,PYVOVARENKO T, et al. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors[J]. Plant Biotechnology Journal,2011,9(2):230-249.
    [21]
    CHANG S,PURYEAR J,CAIRNEY J. A simple and efficient method for isolating RNA from pine trees[J]. Plant Molecular Biology Reporter,1993,11(2):113-116.
    [22]
    宋长年,钱剑林,房经贵,等. 枳SPL9和SPL13全长cDNA克隆、亚细胞定位和表达分析[J]. 中国农业科学,2010,43(10):2105-2114.
    [23]
    LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods,2001, 25(4):402-408.
    [24]
    CLOUGH S J,BENT A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. The Plant Journal,1998,16(6):735-743.
    [25]
    BATES L S,WALDREN R P,TEARE I D. Rapid determination of free proline for water-stress studies[J]. Plant and Soil,1973,39(1):205-207.
    [26]
    赵世杰,史国安,董新纯.植物生理学实验指导[M]. 北京:中国农业科学技术出版社, 2002.
    [27]
    JAGLO K R,KLEFF S,AMUNDSEN K L, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species[J]. Plant Physiology,2001,127(3):910-917.
    [28]
    XIONG Y W,FEI S Z. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass(Lolium perenne L.)[J]. Planta,2006,224(4):878-888.
    [29]
    LI D F,ZHANG Y Q,HU X N,et al. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses[J]. BMC Plant Biology,2011,11:109.
    [30]
    CONG L,CHAI T Y,ZHANG Y X. Characterization of the novel gene BjDREB1B encoding a DRE-binding transcription factor from Brassica juncea L.[J]. Biochemistry Biophysical Research Communications,2008,371(4):702-706.
    [31]
    TONG Z,HONG B,YANG Y J, et al. Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis[J]. Plant Molecular Biology,2009,71(1):115-129.
    [32]
    OAKENFULL R J,BAXTER R,KINGHT M R. A C-repeat binding factor transcriptional activator(CBF/DREB1) from European bilberry(Vaccinium myrtillus) induces freezing tolerance when expressed in Arabidopsis thaliana[J/OL]. PLoS One, 2013,8(1):e54119. [2015-12-13]. http:∥dx.doi.org/ 10.1371/journal.pone.0054119. DOI: 10.1371/journal.pone.0054119.
    [33]
    VOGEL J T,ZARKA D G,VAN BUSKIRK H A, et al. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis[J]. The Plant Journal,2005,41(2):195-211.
    [34]
    ISHITANI M,MAJUMDER A L,BORNHOUSER A ,et al. Coordinate transcriptional induction of myo-inositol metabolism during environmental stress[J]. The Plant Journal,1996,9(4):537-548.
    [35]
    WANNER L A,JUNTTILA O. Cold-induced freezing tolerance in Arabidopsis[J]. Plant Physiology,1999,120(2):391-399.
    [36]
    TAJI T,OHSUMI C,IUCHI S, et al. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana[J]. The Plant Journal,2002,29(4):417-426.
    [37]
    NOMURA M,MURAMOTO Y,YASUDA S, et al. The accumulation of glycinebetaine during cold acclimation in early and late cultivars of barley[J]. Euphytica,1995,83(3):247-250.
    [38]
    ITO Y,KATSURA K,MARUYAMA K, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]. Plant Cell Physiology,2006,47(1):141-153.
    [39]
    潘孝武,黎用朝,李小湘.CBF调节子在水稻品种日本晴和93-11低温驯化过程中的差异调控机制[J]. 中国水稻科学,2012,26(5):521-528.
    [40]
    ZHANG X,FOWLER S G,CHENG H, et al. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis[J]. The Plant Journal,2004,39(6):905-919.
    [41]
    魏俊燕,赵佳,赵仕琪. 植物ICE1-CBF冷反应通路的激活与调控研究进展[J]. 生物技术通报, 2015,31(6):8-12.
  • Related Articles

    [1]Peng Bolin, Yang Hua, Xie Rong. Effects of thinning on stand diameter structural heterogeneity and growth dominance in spruce-fir forests of Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 34-42. DOI: 10.12171/j.1000-1522.20200401
    [2]Jia Weiwei, Luo Tianze, Li Fengri. Branch density model for Pinus koraiensis plantation based on thinning effects[J]. Journal of Beijing Forestry University, 2021, 43(2): 10-21. DOI: 10.12171/j.1000-1522.20200057
    [3]Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133
    [4]Jiang Kaibin, Du Chengju, Li Sainan, Huang Shaowei, Liu Tianyi. Genetic evaluation on growth and branching traits of 4-year-old half-sib families of loblolly pine[J]. Journal of Beijing Forestry University, 2020, 42(9): 1-10. DOI: 10.12171/j.1000-1522.20190456
    [5]Ye Zi-qi, Deng Ru-jun, Wang Yu-chen, Wang Jian-ming, Li Jing-wen, Zhang Fan-bing, Chen Jie. Branching patterns of clonal root of Populus euphratica and its associations with soil factors[J]. Journal of Beijing Forestry University, 2018, 40(2): 31-39. DOI: 10.13332/j.1000-1522.20170426
    [6]Wang Shuo, Dong Li-hu, Li Feng-ri. Branch survival models of planted Larix olgensis tree[J]. Journal of Beijing Forestry University, 2018, 40(1): 57-66. DOI: 10.13332/j.1000-1522.20170203
    [7]JIANG Li-chun, PAN Ying, LI Yao-xiang. Model systems of branch characteristics and crown profile simulation for Larix gmelinii[J]. Journal of Beijing Forestry University, 2016, 38(6): 1-7. DOI: 10.13332/j.1000-1522.20150339
    [8]WANG Shu-juan, XIE Bao-yuan. Modeling analysis of the bending modulus of elasticity for branches in the period of dormancy[J]. Journal of Beijing Forestry University, 2014, 36(6): 130-134. DOI: 10.13332/j.cnki.jbfu.2014.06.024
    [9]KAN Jiang-ming, LI Wen-bin, SUN Ren-shan. Computer vision based method of automatic measurement of trunk and branch diameters of standing trees[J]. Journal of Beijing Forestry University, 2007, 29(4): 5-9. DOI: 10.13332/j.1000-1522.2007.04.002
    [10]LI Wen-bin, KAN Jiang-ming, SUN Ren-shan. An automatic identifying method of intersections between trunks and branches of standing trees[J]. Journal of Beijing Forestry University, 2007, 29(4): 1-4. DOI: 10.13332/j.1000-1522.2007.04.001
  • Cited by

    Periodical cited type(40)

    1. 张金博,杨圆圆,徐柏松,曹颖,赫亮,冯健. 红松半同胞家系生长性状变异及优良家系和单株的筛选. 东北林业大学学报. 2024(02): 9-12+20 .
    2. 李学波. 遮阴处理对4个种源核桃楸幼苗光合特性的影响. 吉林林业科技. 2024(01): 1-6+12 .
    3. 陆斐,刘刚,陈晓波,柏景珊,郭郁娇,魏伟,王刚. 露水河沙松优良家系与优良单株初选. 北华大学学报(自然科学版). 2024(05): 589-596 .
    4. 尚福强,高源,马晓雨,李连强,张利民,张丽艳,张杰,冯健. 红松优树半同胞家系的遗传变异及优良家系和单株选择. 东北林业大学学报. 2024(10): 1-6 .
    5. 王佳兴,闫平玉,孙佰飞,刘劲宏,冯可乐,张含国. 长白落叶松自由授粉家系生长变异及优良家系早期选择. 南京林业大学学报(自然科学版). 2024(05): 81-89 .
    6. 熊欢欢,张海啸,李艳霞. 果用红松优良无性系选择研究. 林业科技. 2024(06): 38-42+71 .
    7. 赵林峰,高建亮,彭劲松,姜小文. 3种类型杉木林分生长、密度和材质的综合评价. 安徽农业大学学报. 2023(01): 29-35 .
    8. 于海洋,辛菁锴,王晓梅,宋巍巍,张艳明,张林,杨雨春,毕成程. 红松亲本无性系生长性状变异选择研究. 防护林科技. 2023(04): 63-67 .
    9. 于海洋,庞忠义,殷春红,丁昌俊,王福森,张金旺,金培林,付志祥,曲冠证,赵曦阳. 100个杨树无性系生长及材性变异研究. 西北林学院学报. 2023(04): 134-142+155 .
    10. 郑如德,钱国财,潘昕,汤行昊,范辉华. 木荷优树自由授粉家系生长性状分析与早期选择. 防护林科技. 2023(05): 17-22 .
    11. 周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 .
    12. 尹一卜,李吉祥,郭樱杰,芦子廷,肖英,刘华领,詹亚光,曾凡锁. 白蜡属种间杂交子代木质素含量变异及FmPAL核苷酸多态性关联分析. 植物研究. 2022(02): 191-199 .
    13. 魏嘉彤,陈思琪,芦贤博,张非凡,潘振海,柳妍如,葛丽丽,赵曦阳. 基于生长与木材性状的红松优良种源评价选择. 北京林业大学学报. 2022(03): 12-23 . 本站查看
    14. 赵林峰,高建亮. 杉木速生无性系生长与形质性状的遗传变异与良种选择. 中南林业科技大学学报. 2022(03): 8-15 .
    15. 贾庆彬,刘庚,赵佳丽,李奎友,孙文生. 红松半同胞家系生长性状变异分析与优良家系选择. 南京林业大学学报(自然科学版). 2022(04): 109-116 .
    16. 罗芊芊,肖德卿,徐洪辉,王建华,刘志明,陈雅,万文娟,邓章文. 马尾松无性系生长和形质性状变异分析和优选. 东北林业大学学报. 2022(09): 40-44 .
    17. 欧阳天林,朱柯帆,邱建勋,刘武阳,邱全生,肖德卿,王云鹏,周志春. 木荷种子园自由授粉家系生长遗传变异及初选. 中南林业科技大学学报. 2022(09): 17-23 .
    18. 王芳,陆志民,王君,张世凯,李峪曦,李绍臣,张建秋,杨雨春. 低温胁迫下红松与西伯利亚红松光合与气孔特性. 植物研究. 2021(02): 205-212 .
    19. 刘晓婷,魏嘉彤,吴培莉,吴琳,徐清山,房衍林,杨斌,赵曦阳. 吉林省天然红松居群表型变异分析及多样性研究. 北京林业大学学报. 2021(04): 25-34 . 本站查看
    20. 李岩,朱嘉瑶,王喜和,孙权,李玉磊,吴蕴洋,李德尧,李平扬,于海洋,赵曦阳. 红松优树无性系及其子代的生长评价与选择研究. 北京林业大学学报. 2021(10): 38-46 . 本站查看
    21. 乔滨杰,王德秋,高海燕,李召珉,葛丽丽,丁文雅,赵曦阳. 干旱胁迫下杨树无性系苗期光合与气孔形态变异研究. 植物研究. 2020(02): 177-188 .
    22. 李嘉琪,韩喜东,马盈慧,李月季,王立祥,韩喜田,刘志,李海民,赵曦阳. 樟子松无性系生长性状与结实量变异研究. 植物研究. 2020(02): 217-223 .
    23. 王芳,陆志民,王元兴,杨雨春. 233个红松优树半同胞家系的生长性状变异研究. 吉林林业科技. 2020(02): 1-4+24 .
    24. 刘晓婷,李嘉琪,李峪曦,赵男,胡佰策,高海燕,李召珉,葛丽丽,丁文雅,赵曦阳. 红松半同胞家系变异分析及优良家系选择. 分子植物育种. 2020(13): 4473-4482 .
    25. 蒋路平,王景源,张鹏,梁德洋,张秦徽,王碧莹,裴晓娜,赵曦阳. 170个红松无性系生长及结实性状变异及选择. 林业科学研究. 2019(01): 58-64 .
    26. 郭文丽,李义良,赵奋成,铁军,廖仿炎,钟岁英,林昌明,叶威方. 湿加松无性系表型遗传多样性研究. 植物研究. 2019(02): 259-266 .
    27. 王璧莹,赵曦阳,王洪武,姜国云,沈光,王连奎,李焱龙,林健,王忠良. 依据生长性状对红松半同胞家系的评价选择. 东北林业大学学报. 2019(04): 8-11+20 .
    28. 潘艳艳,许贵友,董利虎,王成录,梁德洋,赵曦阳. 日本落叶松全同胞家系苗期生长性状遗传变异. 南京林业大学学报(自然科学版). 2019(02): 14-22 .
    29. 王芳,王元兴,王成录,张伟娜,刘卫胜,陆志民,杨雨春. 红松优树半同胞子代家系生长、结实及抗病虫能力的变异特征. 应用生态学报. 2019(05): 1679-1686 .
    30. 张秦徽,王洪武,姜国云,沈光,王连奎,李焱龙,王雷,王立祥,李月季,李蕊,赵曦阳. 红松半同胞家系变异分析及选择研究. 植物研究. 2019(04): 557-567 .
    31. 刘雨林,张兰,王元兴,任炳忠,王寅亮. 长白山红松林针叶次生代谢产物研究. 安徽农学通报. 2019(20): 28-31 .
    32. 张秦徽,李蕊,王璧莹,Kombi Kaviriri David,裴晓娜,王忠良,梁德洋,张鹏,赵曦阳. 红松开花结实研究进展. 分子植物育种. 2019(04): 1364-1372 .
    33. 李光森. 红松多无性系群体的种实性状变异研究. 农业开发与装备. 2018(06): 110 .
    34. 姜国云,蒋路平,宋双林,王井源,王淇,王连福,张鹏,赵曦阳. 红松半同胞家系遗传变异分析及果材兼用优良家系选择. 植物研究. 2018(05): 775-784 .
    35. 潘艳艳,梁德洋,郭婧,王芳,王福维,李树春,赵曦阳. 日本落叶松不同种源及家系生长性状变异分析. 北京林业大学学报. 2018(11): 19-27 . 本站查看
    36. 隋立龙,王芳,赵泉湖,王太坤,姜鑫,王君,陆志民,杨雨春. 不同林分红松生长与结实性状比较研究. 植物研究. 2018(06): 886-893 .
    37. 刘德栋. 我国红松良种选育研究进展. 防护林科技. 2017(03): 96-99+116 .
    38. 廖怀建,邓疆,杜婷,石雷,周成理. 引进种源印度黄檀优株选择及优良无性系选择与评价. 林业科学研究. 2017(06): 916-920 .
    39. Shaopeng Yin,Zhenhai Xiao,Guohui Zhao,Xin Zhao,Xiaoyang Sun,Ying Zhang,Fuwei Wang,Shuchun Li,Xiyang Zhao,Guan-Zheng Qu. Variation analyses of growth and wood properties of Larix olgensis clones in China. Journal of Forestry Research. 2017(04): 687-697 .
    40. 张鑫鑫,夏辉,赵昕,张莹,李光岩,张磊,孙晓阳,韩冬荟,赵曦阳. 长白落叶松种子园亲本生长与结实性状综合评价. 植物研究. 2017(06): 933-940 .

    Other cited types(22)

Catalog

    Article views (1962) PDF downloads (52) Cited by(62)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return