• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Shan, ZHA Tian-shan, JIA Xin, WU Ya-juan, BAI Yu-jie, FENG Wei. Temporal variation and controlling factors of canopy conductance in Artemisia ordosica community[J]. Journal of Beijing Forestry University, 2017, 39(3): 65-73. DOI: 10.13332/j.1000-1522.20160409
Citation: WANG Shan, ZHA Tian-shan, JIA Xin, WU Ya-juan, BAI Yu-jie, FENG Wei. Temporal variation and controlling factors of canopy conductance in Artemisia ordosica community[J]. Journal of Beijing Forestry University, 2017, 39(3): 65-73. DOI: 10.13332/j.1000-1522.20160409

Temporal variation and controlling factors of canopy conductance in Artemisia ordosica community

More Information
  • Received Date: December 13, 2016
  • Revised Date: January 29, 2017
  • Published Date: February 28, 2017
  • Canopy conductance (gc) is an important factor influencing plant transpiration and photosynthesis, and it is sensitive to environmental factors. Evapotranspiration and environmental factors of a shrub ecosystem, which was dominated by Artemisia ordosica in northwestern China, were continuously measured using eddy covariance technique in growing season (May-October) in 2015. Meteorological variables including air temperature (Ta), relative humidity (RH), photosynthetic active radiation (PAR), soil volumetric water content (VWC), and precipitation (PP) were also measured. gc was calculated using the inverted Penman-Monteith equation. Diurnal pattern in gc revealed a clear seasonal trend, with gc peaking 2 hours earlier in summer (from May to August) than autumn(from September to October)(10:00, 3-4 hours and 1-2 hours before VPD and PAR). During growing season, gc increased positively with vapor pressure deficit (VPD) and PAR, respectively, saturating at 1.5 kPa and 1 200 μmol/(m2·s), then decreasing with these variables when greater than their respective threshold.The gc values had positive relationship with soil volumetric water content at 30 cm depth (VWC_30) under high VWC_30 (≥0.16 m3/m3) during the whole growing season. gc was more responsive to PAR and VPD when VWC_30 was high. It was concluded that VWC played a critical role in regulating canopy conductance in desert ecosystems. Our results could potentially provide important baseline information towards hydrological model creation of arid and semi-arid ecosystems.
  • [1]
    BERRY J A, BEERLING D J, FRANKS P J. Stomata: key players in the earth system, past and present[J]. Current Opinion in Plant Biology, 2010, 13(3): 232-239. doi: 10.1016/j.pbi.2010.04.013
    [2]
    PATALI D E, OREN R. Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest[J]. Advances in Water Resources, 2003, 26(12): 1267-1278. doi: 10.1016/j.advwatres.2003.08.001
    [3]
    CHANG X, ZHAP W, LIU H, et al. Qinghai spruce (Picea crassifolia) forest transpiration and canopy conductance in the upper Heihe River Basin of arid northwestern China[J]. Agricultural and Forest Meteorology, 2014, 198-199: 209-220. doi: 10.1016/j.agrformet.2014.08.015
    [4]
    BAI Y, ZHU G, SU Y, et al. Hysteresis loops between canopy conductance of grapevines and meteorological variables in an oasis ecosystem[J]. Agricultural and Forest Meteorology, 2015, 214-215: 319-327. doi: 10.1016/j.agrformet.2015.08.267
    [5]
    IGARASHI Y, KUMAGAI T, YOSHIFUJI N, et al. Environmental control of canopy stomatal conductance in a tropical deciduous forest in northern Thailand[J]. Agricultural and Forest Meteorology, 2015, 202(15): 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8fc545f18730dcc6a4603d23817f77d5
    [6]
    朱绪超, 袁国富, 邵明安, 等.塔里木河下游河岸柽柳林冠层导度变化特征及模拟[J].生态学报, 2016, 36(17): 5459-5466. http://d.old.wanfangdata.com.cn/Periodical/stxb201617019

    ZHU X C, YUAN G F, SHAO M A, et al. Variation and predictive simulation of canopy conductance of a Tamarix spp. stand in the lower Tarim River Basin[J]. Acta Ecologica Sinica, 2016, 36(17): 5459-5466. http://d.old.wanfangdata.com.cn/Periodical/stxb201617019
    [7]
    李峥, 牛丽华, 袁凤辉, 等.辽西农林复合系统中杨树冠层导度特征[J].应用生态学报, 2012, 23(11): 2975-2982. http://d.old.wanfangdata.com.cn/Periodical/yystxb201211007

    LI Z, NIU L H, YUAN F H, et al. Canopy conductance characteristics of poplar in agroforestry system in west Liaoning Province of Northeast China[J]. Chinese Journal of Applied Ecology, 2012, 23(11): 2975-2982. http://d.old.wanfangdata.com.cn/Periodical/yystxb201211007
    [8]
    HERBST M, ROSIER P T, MORECROFT M D, et al. Comparative measurements of transpiration and canopy conductance in two mixed deciduous woodlands differing in structure and species composition[J]. Tree Physiology, 2008, 28(6): 959-970. doi: 10.1093/treephys/28.6.959
    [9]
    KUMAGAI T, TATEISHI M, SHIMIZU T, et al. Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed[J]. Agricultural and Forest Meteorology, 2008, 148(10): 1444-1455. doi: 10.1016/j.agrformet.2008.04.010
    [10]
    AHLSTRÖM A, RAUPACH M R, SCHURGERS G, et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink[J]. Science, 2015, 348: 895-899. doi: 10.1126/science.aaa1668
    [11]
    WANG B, ZHA T S, JIA X, et al. Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem[J]. Biogeosciences Discussions, 2013, 10(6): 9213-9242. doi: 10.5194/bgd-10-9213-2013
    [12]
    QIAN D, ZHA T, JIA X, et al. Adaptive water-conserving strategies in Hedysarum mongolicum endemic to a desert shrubland ecosystem[J]. Environmental Earth Sciences, 2015, 74(7): 6039-6046. doi: 10.1007/s12665-015-4627-9
    [13]
    李思静, 查天山, 秦树高, 等.油蒿(Artemisia ordosica)茎流动态及其环境控制因子[J].生态学杂志, 2014, 33(1): 112-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201401017

    LI S J, ZHA T S, QIN S G, et al. Temporal patterns and environmental controls of sap flow in Artemisia ordosica[J]. Chinese Journal of Ecology, 2014, 33(1): 112-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201401017
    [14]
    XIE J, ZHA T, JIA X, et al. Irregular precipitation events in control of seasonal variations in CO2 exchange in a cold desert-shrub ecosystem in northwest China[J]. Journal of Arid Environments, 2015, 120: 33-41. doi: 10.1016/j.jaridenv.2015.04.009
    [15]
    JIA X, ZHA T S, WU B, et al. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J]. Biogeosciences Discussions, 2014, 11(3): 4679-4693. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003573274
    [16]
    钱多.毛乌素沙地混交灌木林蒸腾耗水与水量平衡特征[D].北京: 北京林业大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10022-1016145142.htm

    QIAN D. Transpiration characteristics and water balance of a mixed shrubland in Mu Us Desert[D]. Beijing: Beijing forestry university, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10022-1016145142.htm
    [17]
    王辉, 贺康宁, 徐特, 等.柴达木地区沙棘冠层导度特征及模拟[J].北京林业大学学报, 2015, 37(8): 1-7. doi: 10.13332/j.1000-1522.20140457

    WANG H, HE K N, XU T, et al. Characteristics and simulation of the canopy conductance of Hippophae rhamnoides in Qaidam Region of northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(8): 1-7. doi: 10.13332/j.1000-1522.20140457
    [18]
    COWAN I R. Stomatal behaviour and environment[J]. Advances in Botanical Research, 1978, 4: 117-228. doi: 10.1016/S0065-2296(08)60370-5
    [19]
    黄辉, 于贵瑞, 孙晓敏, 等.华北平原冬小麦冠层导度的环境响应及模拟[J].生态学报, 2007, 27(12): 5209-5221. doi: 10.3321/j.issn:1000-0933.2007.12.031

    HUANG H, YU G R, SUN X M, et al. The environmental responses and simulation of canopy conductance in a winter wheat field of North China Plain[J]. Acta Ecologica Sinica, 2007, 27(12): 5209-5221. doi: 10.3321/j.issn:1000-0933.2007.12.031
    [20]
    李媛, 查天山, 贾昕, 等.半干旱区典型沙生植物油蒿(Artemisia ordosica)的光合特性[J].生态学杂志, 2015, 34(1): 86-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201501012

    LI Y, ZHA T S, JIA X, et al. Photosynthetic characteristics of typical desert plant Artemisia ordosica in semi-arid region[J]. Chinese Journal of Ecology, 2015, 34(1): 86-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201501012
    [21]
    赵平.整树水力导度协同冠层气孔导度调节森林蒸腾[J].生态学报, 2011, 31(4): 1164-1173. http://d.old.wanfangdata.com.cn/Periodical/stxb201104030

    ZHAO P. On the coordinated regulation of forest transpiration by hydraulic conductance and canopy stomatal conductance[J]. Acta Ecologica Sinica, 2011, 31(4): 1164-1173. http://d.old.wanfangdata.com.cn/Periodical/stxb201104030
    [22]
    NAITHANI K J, EWEIS B E, PENDALL E. Sap flux-scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem[J]. Journal of Hydrology, 2012, 464-465: 176-185. doi: 10.1016/j.jhydrol.2012.07.008
    [23]
    ZHA T S, LI C, KELLOMÄKeI S, et al. Controls of evapotranspiration and CO2 fluxes from scots pine by surface conductance and abiotic factors[J/OL]. PloS One, 2013, 8(7): e69027[2016-08-14]. DOI: 10.1371/journal.pone.0069027.
  • Cited by

    Periodical cited type(10)

    1. 邹玉珍,曾庆伟,武红敢,郑仁高. 变色立木卫星影像样本特征分析及应用. 中国森林病虫. 2023(03): 1-8 .
    2. 焦全军,郑焰锋,黄文江,张兵,张鹤译,史宜梦,吴发云,付安民. 陆地生态系统碳监测卫星松材线虫病变色木识别指数研究. 林业资源管理. 2023(04): 123-131 .
    3. 曾庆伟,武红敢,张静,杨雅菲. 碳卫星在变色立木遥感监测中的应用潜力分析. 卫星应用. 2023(11): 20-25 .
    4. 李炜浩,张硕,刘梓航,苏旻,高浩然,刘善军. 基于光谱指数法的本溪市域红叶提取方法研究. 测绘与空间地理信息. 2022(04): 47-50 .
    5. 戴丽,周席华,罗治建,武红敢,陈亮. 湖北松材线虫病卫星遥感监管技术初探. 湖北林业科技. 2022(04): 60-64 .
    6. 孙红,曾庆伟. “高分七号”数据在松材线虫病松树样木监测中的应用. 林业科技通讯. 2022(09): 27-29 .
    7. 陶欢,李存军,程成,蒋丽雅,胡海棠. 松材线虫病变色松树遥感监测研究进展. 林业科学研究. 2020(03): 172-183 .
    8. 陶欢,李存军,谢春春,周静平,淮贺举,蒋丽雅,李凤涛. 基于HSV阈值法的无人机影像变色松树识别. 南京林业大学学报(自然科学版). 2019(03): 99-106 .
    9. 武红敢,牟晓伟,杨清钰,王成波. 无人机遥感技术在重庆市沙坪坝区松材线虫病监测中的应用. 林业资源管理. 2019(02): 109-115 .
    10. 武红敢,王成波,常原飞. 变色立木的无人机遥感监测技术. 中国森林病虫. 2019(04): 29-32+37 .

    Other cited types(4)

Catalog

    Article views (2189) PDF downloads (42) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return