• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yan Xiao, Wei Chi, Zhang Dong-mei, Jia Gui-xia. Inheritance stability and drought stress test for P5CS-F129A transgenic lily[J]. Journal of Beijing Forestry University, 2018, 40(2): 98-105. DOI: 10.13332/j.1000-1522.20170379
Citation: Yan Xiao, Wei Chi, Zhang Dong-mei, Jia Gui-xia. Inheritance stability and drought stress test for P5CS-F129A transgenic lily[J]. Journal of Beijing Forestry University, 2018, 40(2): 98-105. DOI: 10.13332/j.1000-1522.20170379

Inheritance stability and drought stress test for P5CS-F129A transgenic lily

More Information
  • Received Date: October 23, 2017
  • Revised Date: November 30, 2017
  • Published Date: January 31, 2018
  • ObjectiveLilium spp. is one of the main commercial flowers in the world which possesses both high ornamental and economic value. However, the current leading cultivars of Lilium Oriental hybrid are lack of drought and saline-alkaline tolerance thus it is crucial to improve the above properties.
    MethodBased on four-year subculture and one-year greenhouse culture, the stability of the target gene and changes of the phenotypes and physiological indices were tested for the single copy transformation line L89 and double copy line L31 with the P5CS-F129A gene of Lilium Oriental hybrid 'Sorbonne'. The Southern blot and cDNA detection showed stable inheritance of the target gene.
    ResultThe results of drought stress treatments demonstrated that the leaves of both transgenic lines contained higher proline content than the common 'Sorbonne', of which L31 contained the highest proline level. Though the relative leaf ion leakage of both transgenic lines and the common 'Sorbonne' rose in the drought stress process, the transgenic lines showed lower relative leaf ion leakage than the common 'Sorbonne'. After the second watering, the relative leaf ion leakage of both transgenic lines recovered to normal level, while the common 'Sorbonne' didn't. In the aspect of phenotype, both L89 and L31 grew well after the second watering, showing no obvious damage on growth, while the common 'Sorbonne' showed severe leaf etiolation and growth retardation.
    ConclusionThe above research indicated that the P5CS-F129A transgenic gene lines possessed stronger drought tolerance which would be significant to the cultivation of new cultivars of stress-tolerant lily.
  • [1]
    北京林业大学园林系花卉教研组.花卉学[M].北京:中国林业出版社, 1988.

    Flower Teaching and Research Group of Landscape Department, Beijing Forestry University. Flower science[M].Beijing:China Forestry Publishing House, 1988.
    [2]
    熊丽, 王祥宁, 张艺萍, 等.百合种球国产化的回顾及发展商榷[J].西南农业学报, 2008, 21(3):859-862. doi: 10.3969/j.issn.1001-4829.2008.03.068

    Xiong L, Wang X N, Zhang Y P, et al.Review and development discussion on domestic production of Lilium bulbs[J]. Southwest China Journal of Agricultural Science, 2008, 21(3):859-862. doi: 10.3969/j.issn.1001-4829.2008.03.068
    [3]
    高霞.三类观赏百合组织培养技术的研究[M].北京:农业出版社, 1991.

    Gao X. Study on tissue culture technique of 3 fancy Lilium scale[M].Beijing:Agriculture Press, 1991.
    [4]
    段德玉, 刘小京, 李存桢, 等.N素营养对NaCl胁迫下盐地碱蓬幼苗生长及渗透调节物质变化的影响[J].草业学报, 2005, 14(1):63-68. doi: 10.3321/j.issn:1004-5759.2005.01.012

    Duan D Y, Liu X J, Li C Z, et al. The effects of nitrogen on the growth and solutes of halophyte Suaeda salsa seedlings under the stress of NaCl[J]. Acta Pratacultural Science, 2005, 14(1):63-68. doi: 10.3321/j.issn:1004-5759.2005.01.012
    [5]
    谢振宇, 杨光穗.牧草耐盐性研究进展[J].草业科学, 2003, 20(8):11-17. doi: 10.3969/j.issn.1001-0629.2003.08.004

    Xie Z Y, Yang G S. Advances in salt tolerance of pasture[J]. Pratacultural Science, 2003, 20(8):11-17. doi: 10.3969/j.issn.1001-0629.2003.08.004
    [6]
    吕芝香, 王正刚.盐胁迫下小麦苗叶片吡咯-5-羧酸还原酶活性和游离脯氨酸积累[J].植物生理学报, 1993, 19(2):1111-1114.

    Lü Z X, Wang Z G.Pyrroline-5-Carboxy late reductase activity and free proline aeeumulation in leaves of wheat seedlings under salt stress[J]. Journal of Plant Physiology and Molecular Biology, 1993, 19(2):1111-1114.
    [7]
    Delauney A J, Verma D P S.Proline biosynthesis and osmoregulation in plants[J].Plant J, 1993, 4:215-223. doi: 10.1046/j.1365-313X.1993.04020215.x
    [8]
    Hervieu F, Le Dily F, Billard J P, et al.Effects of water-stress on proline content and ornithine aminotransferase activity of radish cotyledons [J].Phytochemistry, 1994, 37:1227-1231. doi: 10.1016/S0031-9422(00)90389-3
    [9]
    Zhang C S, Lu Q, Verma D P S.Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of praline biosynthesis in plants [J].The Joural of Biological Chemistry, 1995, 270(35):20491-20496. doi: 10.1074/jbc.270.35.20491
    [10]
    Kavi Kishor P B, Sangam S, Amrutha R N, et al.Regulation of proline biosynthesis, degradation, uptake and transport in high erplants: its implications in plant growth and abiotic stress tolerance [J].Current Science, 2005, 88(3):424-438.
    [11]
    Verbruggen N, Hermans C. Proline accumulation in plants:a review[J].Amino Acid, 2008, 35(4):753-759. doi: 10.1007/s00726-008-0061-6
    [12]
    程继东.抗旱、耐盐基因P5CS转化向日葵自交系[D].呼和浩特: 内蒙古农业大学, 2007.

    Cheng J D. Drought and salt-alkali resistance gene P5CS transformation of sunflower inbred lines[D].Huhhot: Inner Mongolia Agriculture University, 2007.
    [13]
    Hu C A, Delauney A J, Verma D P.A bifunctional enzyme(Δ1-pyrroline-5-carboxylate synthetase)catalyzes the first two steps in proline biosynthesis in plants[C/OL]//Proceedings of the National Academy of Sciences of USA, 1992, 89(19): 9354-9358. [2017-06-06]. http://www.pnas.org/content/89/19/9354.full.pdf.
    [14]
    Hong Z L, Lakkineni K, Zhang G Z H, et al.Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology, 2000, 122:1129-1136. doi: 10.1104/pp.122.4.1129
    [15]
    Fagard M, Vaucheret H.(Trans) gene silencing in plants:how many mechanisms?[J].Annual Review of Plant Biology, 2000, 51(1):167-194. doi: 10.1146/annurev.arplant.51.1.167
    [16]
    Li J, Brunner A M, Meilan R, et al.Stability of transgenes in trees:expression of two reporter genes in poplar over three field seasons[J].Tree Physiology, 2009, 29(2):299-312. http://www.cabdirect.org/abstracts/20093169012.html
    [17]
    Li S, Du Y P, Wu Z Y, et al. Excision of a selectable marker in transgenic Lilium (Sorbonne) using the Cre/loxP DNA excision system [J].Canadian Journal of Plant Science, 2013, 93 (5): 903-912. doi: 10.4141/cjps2013-037
    [18]
    陈建勋, 王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社, 2006:64-66.

    Cheng J X, Wang X F. Experimental gide for plant physiology[M].Guangzhou:South China University of technology Press, 2006:64-66.
    [19]
    Bates L, Waldren R, Teare I.Rapid determination of free proline for water-stress studies[J].Plant and Soil, 1973, 39(1):205-207. doi: 10.1007/BF00018060
    [20]
    Matzke M, Mette M, Matzke A.Transgene silencing by the host genome defense:implications for the evolution of epigenetic control mechanisms in plants and vertebrates[J].Plant Molecular Biology, 2000, 43(2-3):401-415.
    [21]
    Broer I.Stress inactivation of foreign genes in transgenic plants[J].Field Crops Research, 1996, 45(1):19-25. http://www.researchgate.net/publication/222972567_Stress_inactivation_of_foreign_genes_in_transgenic_plants
    [22]
    Kamo K.Long term, transgene expression in Lilium longiflorum 'Nellie White'grown outdoors and in the greenhouse[J].Scientia Horticulturae, 2014, 167:158-163. doi: 10.1016/j.scienta.2013.12.011
    [23]
    郝曜山, 孙毅, 杜建中, 等.转双价抗虫基因BmkIT-Chitinase玉米株系的获得[J].分子植物育种, 2012, 10(2):147-154. doi: 10.3969/mpb.010.000147

    Hao Y X, Sun Y, Du J Z, et al. Acquirement of transgenic maize lines with binary insect resistant BmkIT-Chitinase[J]. Molecular Plant Breeding, 2012, 10(2):147-154. doi: 10.3969/mpb.010.000147
    [24]
    徐春波, 米福贵, 王勇.转基因冰草植株耐盐性研究[J].草地学报, 2006, 14(1):20-23. http://d.old.wanfangdata.com.cn/Periodical/cdxb200601005

    Xu C B, Mi F G, Wang Y.Research on salt-tolerance of transgenic Agropyron cristatum [J]. Acta Agrestia Sinica, 2006, 14(1):20-23. http://d.old.wanfangdata.com.cn/Periodical/cdxb200601005
    [25]
    Zhu B, Su J, Chang M, et al.Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice[J].Plant Science, 1998, 139:41-48. doi: 10.1016/S0168-9452(98)00175-7
    [26]
    Dibax R, Deschamps C, Filho J C B, et al. Organo genesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene[J]. Biologia Plantarum, 2010, 54(1):6-12. doi: 10.1007/s10535-010-0002-6
    [27]
    Maggio A, Miyazaki S, Veronese P, et al.Does proline accumulation play an active role in stress-induced growth reduction?[J]. The Plant Journal, 2002, 31(6):699-712. doi: 10.1046/j.1365-313X.2002.01389.x
    [28]
    Sharma S, Verslues P E. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential[J]. Plant Physiology, 2011, 157(1):292-304. doi: 10.1104/pp.111.183210
    [29]
    Verslues P E, Sharma S. Proline metabolism and its implications for plant-environment interaction[J/OL]. Arabidopsis Book, 2010, 8: e0140.[2017-08-08]. http://paperuri(a37d9173ada20cef3068db73cdecb467).
  • Related Articles

    [1]Feng Xiao, Tian Ling, Yin Qun, Jia Zhongkui. Response of growth and physiological characteristics of three Magnolia spp. seedlings to drought stress[J]. Journal of Beijing Forestry University, 2024, 46(9): 57-67. DOI: 10.12171/j.1000-1522.20230312
    [2]Yan Jiahui, Zhou Chengcheng, Niu Shihui, Li Wei. Identification of SAUR gene family in Pinus tabuliformis and analysis on its expression patterns under drought stress[J]. Journal of Beijing Forestry University, 2024, 46(8): 57-67. DOI: 10.12171/j.1000-1522.20230333
    [3]Liang Qinglan, Han Youji, Qiao Yanhui, Xie Kongan, Li Shuangyun, Dong Yufeng, Li Shanwen, Zhang Shengxiang. Effects of drought stress on the growth and physiological characteristics of Sect. Aigeiros clones[J]. Journal of Beijing Forestry University, 2023, 45(10): 81-89. DOI: 10.12171/j.1000-1522.20220266
    [4]Liu Li, Zhang Li, Cai Jing, Zhao Han, Cheng Yongqin, Jiang Zaimin. Hydraulic characteristics and embolism repair of Populus alba × P. glandulosa after drought stress and rehydration[J]. Journal of Beijing Forestry University, 2021, 43(7): 22-30. DOI: 10.12171/j.1000-1522.20200165
    [5]Liu Junling, Liang Kehao, Miao Yahui, Hu Anni, Sun Yongjiang, Zhang Lingyun. Characteristics of PwUSP1 in Picea wilsonii and its response to drought and salt stress[J]. Journal of Beijing Forestry University, 2020, 42(10): 62-70. DOI: 10.12171/j.1000-1522.20200063
    [6]Li Jinhang, Zhu Jiyou, Catherine Mhae B. Jandug, Zhao Kai, Xu Chengyang. Relationship between leaf functional trait variation of Cotinus coggygria seedling and location geographical-climatic factors under drought stress[J]. Journal of Beijing Forestry University, 2020, 42(2): 68-78. DOI: 10.12171/j.1000-1522.20190079
    [7]YANG Chuan-bao, YAO Jun-xiu, LI Shan-wen, NI Hui-jing, LIU Yuan-qian, ZHANG You-hui, LI Ji-hong. Growth and physiological responses to drought stress and comprehensive evaluation on drought tolerance in Leuce clones at nursery stage[J]. Journal of Beijing Forestry University, 2016, 38(5): 58-66. DOI: 10.13332/j.1000-1522.20150503
    [8]LI Jin-hang, QI Xiu-hui, XU Cheng-yang, WANG Yi-mei. Short-term responses of root morphology to drought stress of Cotinus coggygria seedlings from four varied locations in northern China.[J]. Journal of Beijing Forestry University, 2014, 36(1): 48-54.
    [9]QIN Bing-xing, YAO Li-ping, ZHOU Zhi-qiang, ZHANG Yu-hong. Influence of drought stress on plant physiology and berberine content of leaves in Phellodendron amurense seedlings[J]. Journal of Beijing Forestry University, 2012, 34(3): 26-30.
    [10]YANG Yu-zhen, ZHANG Yun-xia, PENG Fang-ren. Effects of drought stress on photosynthetic characteristics in Toona sinensis seedlings from different provenances.[J]. Journal of Beijing Forestry University, 2011, 33(1): 44-48.
  • Cited by

    Periodical cited type(6)

    1. 杨翠苹,段俊枝,燕照玲,卓文飞. 植物抗旱功能基因研究进展. 现代农业科技. 2024(06): 157-161+172 .
    2. 阎俊卉,刘立,谢天,赵子贤,赵家惠,文锦芬. 百合LiP5CS、LiGDH和LiOAT基因克隆及表达分析. 分子植物育种. 2022(06): 1776-1787 .
    3. 王焕,郑日如,曹声海,张通,史若明,王彩云,罗靖. 月季花瓣特异表达启动子的筛选和鉴定. 园艺学报. 2020(04): 686-698 .
    4. 方洁,潘俊杰,程科军,吕群丹. 百合分子生物学研究进展. 现代农业科技. 2020(12): 69-73+76 .
    5. 马旭,张铭芳,肖伟,陈绪清,张秀海,董然. 百合遗传转化及纳米磁珠法研究进展. 分子植物育种. 2020(14): 4657-4664 .
    6. 张冬梅,罗玉兰,张浪. 适生物种支撑崇明世界级花岛建设——“崇明花岛”上海市科委重点研发项目研究进展. 园林. 2019(03): 2-6 .

    Other cited types(7)

Catalog

    Article views (2069) PDF downloads (36) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return