• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Hou Junfeng, Yi Songlin, Zhou Yongdong, Pan Bin, Zhou Fan. Effects of platen temperature on moisture state in poplar lumber during hot-press drying[J]. Journal of Beijing Forestry University, 2018, 40(6): 111-116. DOI: 10.13332/j.1000-1522.20180097
Citation: Hou Junfeng, Yi Songlin, Zhou Yongdong, Pan Bin, Zhou Fan. Effects of platen temperature on moisture state in poplar lumber during hot-press drying[J]. Journal of Beijing Forestry University, 2018, 40(6): 111-116. DOI: 10.13332/j.1000-1522.20180097

Effects of platen temperature on moisture state in poplar lumber during hot-press drying

More Information
  • Received Date: March 28, 2018
  • Revised Date: April 16, 2018
  • Published Date: May 31, 2018
  • ObjectiveIn order to provide basis for analyzing hot-press drying mechanism, the temperature and pressure in poplar lumber (Populus tomentosa) were monitored during hot-press drying, and the effects of platen temperature on temperature, pressure and moisture state in the core layer of poplar lumber were further investigated.
    MethodTemperature and pressure in the core layer of poplar lumber were measured with the integrated probe and real-time recorded with a data logger at the same time in hot-press drying, and the effects of platen temperature on moisture state were further analyzed in accordance with the comparison of measured pressure and saturated pressure (theoretical pressure) of vapor calculated with measured temperature in poplar lumber.
    ResultWith the increase of platen temperature from 120 to 140℃, the peak value of pressure increased from 146.4 to 213.1kPa, whereas that of temperature increased from 102.8 to 123.7℃. The temperature and pressure reached peak values at the same time, and the time to peak values decreased from 17.5 to 11.6min. The moisture in the core layer of poplar lumber with moisture content (MC) beyond fiber saturation point (FSP) was unsaturated water under overpressure condition with the platen temperatures of 120℃ and 130℃, the final MC (48.55% and 49.88%) of core layer was greater than FSP. The heat was transferred from platens to the core layer and resulted in the vaporization of free water in poplar lumber when the platen temperature increased to 140℃. State of the steam in core layer of poplar lumber changed from the saturation state to superheated state with the further increase of steam temperature, and the final core MC (27.70%) was lower than FSP.
    ConclusionIt was concluded that the higher the platen temperature was, the higher the peak temperature and pressure reached, and the shorter the duration time for keeping peak pressure was in hot-press drying. When the poplar lumber's MC was greater than FSP, the moisture state in poplar lumber may be liquid state (unsaturated water under overpressure condition), saturated steam or superheated steam states depends on different platen temperature levels in hot-press drying.
  • [1]
    Schrepfer V, Schweingruber F H. Anatomical structures in reshaped press-dried wood[J]. Holzforschung, 1998, 52(6): 615-622. doi: 10.1515/hfsg.1998.52.6.615
    [2]
    刘志军, 李颜军.高温热压干燥对紫椴小径材材性的影响[J].林产工业, 2002, 29(4): 16-18. doi: 10.3969/j.issn.1001-5299.2002.04.005

    Liu Z J, Li Y J. Effect of platen drying process on properties of Amur linden smallwood[J]. China Forest Products Industry, 2002, 29(4): 16-18. doi: 10.3969/j.issn.1001-5299.2002.04.005
    [3]
    汪佑宏, 顾炼百, 王传贵, 等.木材热压干燥及表面强化研究综述[J].林业科技开发, 2005, 19(3): 13-15. doi: 10.3969/j.issn.1000-8101.2005.03.004

    Wang Y H, Gu L B, Wang C G, et al. A review on press drying and surface strengthening of lumber[J]. China Forestry Science and Technology, 2005, 19(3): 13-15. doi: 10.3969/j.issn.1000-8101.2005.03.004
    [4]
    焦德贤, 金成道, 张亚锋.木板热压干燥应力研究[J].木材加工机械, 2005, 16(6): 23-24, 34. doi: 10.3969/j.issn.1001-036X.2005.06.007

    Jiao D X, Jin C D, Zhang Y F. Study on the stress of lumber in the process of hot press drying[J]. Wood Processing Machinery, 2005, 16(6): 23-24, 34. doi: 10.3969/j.issn.1001-036X.2005.06.007
    [5]
    Unsal O, Canada Z, Korkut S. Wettability and roughness characteristics of modified wood boards using a hot-press[J]. Industrial Crops and Products, 2011, 34(3): 1455-1457. doi: 10.1016/j.indcrop.2011.04.024
    [6]
    邬飞宇, 李丽丽, 王喜明.樟子松材干燥密实炭化一体化技术的优化[J].东北林业大学学报, 2015, 43(4): 82-86. doi: 10.3969/j.issn.1000-5382.2015.04.018

    Wu F Y, Li L L, Wang X X. Trinity technology optimization of drying, densifying and charring of Pinus sylvestris[J]. Journal of Northeast Forestry University, 2015, 43(4): 82-86. doi: 10.3969/j.issn.1000-5382.2015.04.018
    [7]
    Bramhall G. Mathematical model for lumber drying (Ⅰ): principles involved[J]. Wood Science, 1979, 12(1): 14-21. http://agris.fao.org/agris-search/search.do?recordID=US7934509
    [8]
    Bramhall G. Mathematical model for lumber drying (Ⅱ): the model[J]. Wood Science, 1979, 12(1): 22-31. http://agris.fao.org/openagris/search.do?recordID=US19800540536
    [9]
    Hunter A J, Sutherland J W. The evaporation of water from wood at high temperatures[J]. Wood Science and Technology, 1997, 31(2): 73-76. doi: 10.1007/BF00705922
    [10]
    周永东, 傅峰, 李贤军, 等.微波处理对桉木应力及微观构造的影响[J].北京林业大学学报, 2009, 31(2): 146-150. doi: 10.3321/j.issn:1000-1522.2009.02.024

    Zhou Y D, Fu F, Li X J, et al. Effects of microwave treatment on residue growth stress and microstructure of Eucalyptus urophylla[J]. Journal of Beijing Forestry University, 2009, 31(2): 146-150. doi: 10.3321/j.issn:1000-1522.2009.02.024
    [11]
    何正斌, 郭月红, 伊松林, 等.木材超声波-真空协同干燥的动力学研究[J].北京林业大学学报, 2012, 34(2): 133-136. http://j.bjfu.edu.cn/article/id/9741

    He Z B, Guo Y H, Yi S L, et al. Preliminary study of wood ultrasound-vacuum combined drying dynamics[J]. Journal of Beijing Forestry University, 2012, 34(2): 133-136. http://j.bjfu.edu.cn/article/id/9741
    [12]
    汪佑宏.马尾松速生材热压干燥及表面强化[D].南京: 南京林业大学, 2003.

    Wang Y H. Press drying and surface strengthening of fast-growing Pinus massoniana lumber[D]. Nanjing: Nanjing Forestry University, 2003.
    [13]
    Tang Y F, Pearson R G, Hart C A, et al. A numerical model for heat transfer and moisture evaporation processes in hot-press drying: an integral approach[J]. Wood and Fiber Science, 1994, 26(1): 78-90. http://cn.bing.com/academic/profile?id=8d68167b1aa38a7eec01d89d2e729a28&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    汪佑宏, 顾炼百, 王传贵, 等.马尾松锯材在热压干燥过程中的传热规律[J].南京林业大学学报(自然科学版), 2005, 29(4): 33-36. doi: 10.3969/j.issn.1000-2006.2005.04.008

    Wang Y H, Gu L B, Wang C G, et al. Regularity of heat transfer during press drying of Pinus massoniana lumber[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2005, 29(4): 33-36. doi: 10.3969/j.issn.1000-2006.2005.04.008
    [15]
    赵喜龙.人工林杨树木材皱缩恢复工艺与机理研究[D].呼和浩特: 内蒙古农业大学, 2013.

    Zhao X L. Study on the collapse recovery technology and mechanism of poplar plantation[D]. Hohhot: Inner Mongolia Agricultural University, 2013.
    [16]
    严家騄, 王永青.工程热力学[M]. 2版.北京:中国电力出版社, 2014: 181-182.

    Yan J L, Wang Y Q. Engineering thermodynamics[M]. 2nd ed. Beijing: China Electric Power Press, 2014: 181-182.
    [17]
    苗平, 王晓敏, 魏思文, 等. 3种预处理方法改善杨木渗透性的对比研究[J].安徽农业大学学报, 2012, 39(4): 489-492. http://d.old.wanfangdata.com.cn/Periodical/ahnydxxb201204002

    Miao P, Wang X M, Wei S W, et al. Effects of three pretreatment methods on improving the permeability of poplar wood[J]. Journal of Anhui Agricultural University, 2012, 39(4): 489-492. http://d.old.wanfangdata.com.cn/Periodical/ahnydxxb201204002
    [18]
    鲍永泽, 周永东.柳杉锯材过热蒸汽干燥与常规干燥的比较[J].林业科学, 2017, 53(1): 88-93. http://d.old.wanfangdata.com.cn/Periodical/lykx201701011

    Bao Y Z, Zhou Y D. Comparation between superheated steam drying and conventional drying of Chinese cedar lumber[J]. Scientia Silvae Sinicae, 2017, 53(1): 88-93. http://d.old.wanfangdata.com.cn/Periodical/lykx201701011
    [19]
    李贤军.木材真空-微波干燥特性的研究[D].北京: 北京林业大学, 2005.

    Li X J. Research on characteristics of wood microwave-vacuum drying[D]. Beijing: Beijing Forestry University, 2005.
    [20]
    Pang S. Some considerations in simulation of superheated steam drying of softwood lumber[J]. Drying Technology, 1997, 15(2): 651-670. doi: 10.1080/07373939708917252
    [21]
    Haque M N. Analysis of heat and mass transfer during high-temperature drying of Pinus radiate[J]. Drying Technology, 2007, 25(2): 379-389. doi: 10.1080/07373930601184551
    [22]
    Wisniak J. Historical development of the vapor pressure equation from dalton to antoine[J]. Journal of Phase Equilibria, 2001, 22: 622. doi: 10.1007/s11669-001-0026-x
  • Related Articles

    [1]Zhong Xiang, Zhang Shaojun, Ma Erni. Variation in pore size distribution of wood cell wall under different moisture states[J]. Journal of Beijing Forestry University, 2021, 43(11): 128-136. DOI: 10.12171/j.1000-1522.20210260
    [2]Liu Ruihong, Hui Gangying, Zhang Ganggang, Liu Wenzhen, Zhang Gongqiao, Hu Yanbo, Yang Aiming. Evaluating stand growth state by potential density of stocking[J]. Journal of Beijing Forestry University, 2019, 41(8): 13-18. DOI: 10.13332/j.1000-1522.20180340
    [3]HUI Gang-ying, ZHAO Zhong-hua, ZHANG Gong-qiao. Priority of management measures for natural forests based on the stand state[J]. Journal of Beijing Forestry University, 2016, 38(1): 1-10. DOI: 10.13332/j.1000--1522.20150358
    [4]ZHOU Zhang-yi, WU Da, YU Si-jia, FU Huai-jun3, SONG Qiang, SHEN Ying-bai. Relationship between Melanophila acuminata outbreak and moisture content as well as tree temperature of Pinus tabulaeformis.[J]. Journal of Beijing Forestry University, 2009, 31(3): 71-76.
    [5]YANG Qi-hong, CHEN Li-hua, ZHANG Fu, ZHANG Chao-bo. Responses of soil moisture variations to rainfall and vegetation.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 88-94.
    [6]ZHANG Bi-guang. Critical dehumidified state during dehumidification drying[J]. Journal of Beijing Forestry University, 2007, 29(6): 181-184. DOI: 10.13332/j.1000-1522.2007.06.039
    [7]LIU Zhi-jun, ZHANG Bi-guang, HE Hong-kui. Variation property of steam pressure and temperature in wood during microwave drying[J]. Journal of Beijing Forestry University, 2006, 28(6): 124-127.
    [8]MA Er-ni, ZHAO Guang-jie. Hygroexpansion of wood: From equilibrious state to non-equilibrious state[J]. Journal of Beijing Forestry University, 2006, 28(5): 133-138.
    [9]LI Xian-jun, WU Qing-li, JIANG Wei, ZHANG Bi-guang. Mechanism of moisture movement in wood during microwave-vacuum drying[J]. Journal of Beijing Forestry University, 2006, 28(3): 150-153.
    [10]LI Xian-jun, ZHANG Bi-guang, LI Wen-jun, LI Yan-jun. Nonisothermal moisture movement in wood[J]. Journal of Beijing Forestry University, 2005, 27(2): 96-100.
  • Cited by

    Periodical cited type(7)

    1. 花军,杨舒. 热压板温度场数值模拟分析及结构参数优化. 林产工业. 2025(03): 44-51 .
    2. 田心池,于文吉,马红霞,林秋琴,薛勃,杨春梅. 重组竹制备过程中温度场变化规律与预测模型. 林业工程学报. 2023(01): 38-45 .
    3. 田心池,马红霞,薛勃,赖宇星,杨春梅,于文吉. 含水率对不同密度竹基纤维复合材料热压传热的影响. 木材科学与技术. 2022(05): 50-55+77 .
    4. 赵喜龙,王喜明,贺勤,王磊,邵伟. 人工林杨木皱缩恢复工艺参数优化研究. 林产工业. 2022(10): 19-22 .
    5. 赵喜龙. 人工林杨树木材皱缩恢复工艺与性能研究. 内蒙古农业大学学报(自然科学版). 2021(02): 59-62 .
    6. 杜洪双,唐朝发. 热压干燥对刨切单板背部裂隙的影响. 林产工业. 2020(07): 6-8+23 .
    7. 周永东,侯俊峰. 热压干燥中高含水率杨木锯材内水分状态及迁移机制. 林业科学. 2020(09): 104-111 .

    Other cited types(8)

Catalog

    Article views (3382) PDF downloads (13) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return