• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Qin Jiankun, Bai Tian, Shao Yali, Zhao Xin, Li Shuai, Hu Yingcheng. Fabrication and characterization of multilayer transparent wood of different species[J]. Journal of Beijing Forestry University, 2018, 40(7): 113-120. DOI: 10.13332/j.1000-1522.20180137
Citation: Qin Jiankun, Bai Tian, Shao Yali, Zhao Xin, Li Shuai, Hu Yingcheng. Fabrication and characterization of multilayer transparent wood of different species[J]. Journal of Beijing Forestry University, 2018, 40(7): 113-120. DOI: 10.13332/j.1000-1522.20180137

Fabrication and characterization of multilayer transparent wood of different species

More Information
  • Received Date: April 18, 2018
  • Revised Date: May 15, 2018
  • Published Date: June 30, 2018
  • ObjectiveMultilayer transparent wood is laminated transparent woods (the same direction or cross direction) under vacuum. This will greatly reduce the anisotropy of transparent wood.
    MethodThis study explored the process of making three kinds of tree species with different densities: balsa (0.21 g/cm3), paulownia (0.33 g/cm3) and basswood (0.49 g/cm3), and tested their transmittance and tensile properties. In order to produce a centimeter thick transparent wood, the lamination method was adopted. The mechanical properties and transmission of single layer and multilayer transparent wood with the same thickness were compared.
    ResultComparing their similarities and differences, balsa wood has the smallest density and contains more space inside, which is easier to remove lignin and impregnate resin. There were many extractive in paulownia (8.9%), hence it needs to be impregnated in sodium hydroxide (NaOH) to removal extractive and open the blocked pits. The density of basswood was 0.49 g/cm3, which caused lignin difficult to remove, but its tensile property was good. Besides the influence of tree species, the thickness had a great influence on transparent wood. The thicker the wood was, the greater the difficulty of removing lignin was. The properties of transparent wood combined with the same direction were closer to the original transparent wood. However, the transmission of transparent wood combined with the cross direction was lower than original transparent wood. But the difference between transverse and longitudinal stretch had been narrowed.
    ConclusionOur study widens the selection of transparent wood species and makes it possible for transparent wood with high thickness and low cost.
  • [1]
    管宁. "透明木材"[J].国际木业, 2017, 47(5): 17. doi: 10.3969/j.issn.1671-4911.2017.05.008

    Guan N. Wooden glass for windows and solar panels[J]. International Wood Industry, 2017, 47(5): 17. doi: 10.3969/j.issn.1671-4911.2017.05.008
    [2]
    吴燕, 吴佳敏, 唐彩云, 等.透明木材的制备方法: CN106243391A[P]. 2016-12-21.

    Wu Y, Wu J M, Tang C Y, et al. Production method of transparent timber: CN106243391A[P]. 2016-12-21.
    [3]
    Fink S. Transparent wood: a new approach in the functional study of wood structure[J]. Holzforschung, 1992, 46(5): 403-408. doi: 10.1515/hfsg.1992.46.5.403
    [4]
    Yu Z Y, Yao Y J, Yao J N, et al. Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications[J]. Journal of Materials Chemistry A, 2017, 5(13): 5963-6330. doi: 10.1039/C7TA90066J
    [5]
    Zhu M W, Li T, Davis C S, et al. Transparent and haze wood composites for highly efficient broadband light management in solar cells[J]. Nano Energy, 2016, 26: 332-339. doi: 10.1016/j.nanoen.2016.05.020
    [6]
    李坚, 甘文涛, 高丽坤, 等.一种荧光透明磁性木材的制备方法: CN106313221A[P]. 2017-01-11.

    Li J, Gan W T, Gao L K, et al. Manufacturing method for fluorescent transparent magnetic wood: CN106313221A[P]. 2017-01-11.
    [7]
    Li Y Y, Yu S, Veinot J G C, et al. Luminescent transparent wood[J]. Advanced Optical Materials, 2017, 5(1): 1600834. doi: 10.1002/adom.201600834
    [8]
    Gan W T, Xiao S L, Gao L K, et al. Luminescent and transparent wood composites fabricated by poly (methyl methacrylate) and γ-Fe2O3@YVO4:Eu3+ nanoparticle impregnation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 3855-3862. doi: 10.1021/acssuschemeng.6b02985
    [9]
    Li Y Y, Fu Q L, Rojas R, et al. Lignin-retaining transparent wood[J]. Chemsuschem, 2017, 10(17): 3445-3451. doi: 10.1002/cssc.201701089
    [10]
    Yaddanapudi H S, Hickerson N, Saini S, et al. Fabrication and characterization of transparent wood for next generation smart building applications[J]. Vacuum, 2017, 146: 649-654. doi: 10.1016/j.vacuum.2017.01.016
    [11]
    Zhu M W, Song J W, Li T, et al. Highly anisotropic, highly transparent wood composites[J]. Advanced Materials, 2016, 28(26): 5181-5187. doi: 10.1002/adma.201600427
    [12]
    Li Y Y, Yang X, Fu Q L, et al. Towards centimeter thick transparent wood through interface manipulation[J]. Journal of Materials Chemistry A, 2018, 6(3): 1094-1101.
    [13]
    方露, 常亮, 郭文静, 等. HDPE胶合板与脲醛树脂胶合板的性能对比[J].北京林业大学学报, 2014, 36(2): 125-128. http://j.bjfu.edu.cn/article/id/9992

    Fang L, Chang L, Guo W J, et al. Performance comparison of HDPE plywood with UF resin plywood[J]. Journal of Beijing Forestry University, 2014, 36(2): 125-128. http://j.bjfu.edu.cn/article/id/9992
    [14]
    Yokoyama T, Kadla J F, Chang H M. Microanalytical method for the characterization of fiber components and morphology of woody plants[J]. Journal of Agricultural and Food Chemistry, 2002, 50(5): 1040-1044. doi: 10.1021/jf011173q
    [15]
    Gan W T, Gao L K, Xiao S L, et al. Transparent magnetic wood composites based on immobilizing Fe3O4 nanoparticles into a delignified wood template[J]. Journal of Materials Science, 2017, 52(6): 3321-3329. doi: 10.1007/s10853-016-0619-8
    [16]
    袁金霞, 卫威, 黄显南, 等.两种桐木原料及制浆性能研究[J].中国造纸, 2016, 35(7): 83-85. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZZ201607023.htm

    Yuan J X, Wei W, Huang X N, et al. Fiber morphology and KP pulping of two paulownia woods[J]. China Pulp & Paper, 2016, 35(7): 83-85. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZZ201607023.htm
    [17]
    周益同, 张小丽, 张力平.木质素的结构及其改性现状[J].现代化工, 2010, 30(S2): 63-66. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG2010S2019.htm

    Zhou Y T, Zhang X L, Zhang L P. The structure of lignin and its modification status[J]. Modern Chemical Industry, 2010, 30(S2): 63-66. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG2010S2019.htm
    [18]
    Dolk M, Yan J F, Mccarthy J L. Lignin 25. kinetics of delignification of western hemlock in flow-through reactors under alkaline conditions[J]. Holzforschung, 1989, 43(2): 91-98. doi: 10.1515/hfsg.1989.43.2.91
    [19]
    吴博士, 张逊, 杨俊, 等.亚氯酸盐预处理杉木细胞壁木质素溶解机理研究[J].林产化学与工业, 2017, 37(3): 38-44. doi: 10.3969/j.issn.0253-2417.2017.03.005

    Wu B S, Zhang X, Yang J, et al. Dissolution mechanism of lignin in Chinese-fir cell walls during chlorite pretreatment[J]. Chemistry and Industry of Forest Products, 2017, 37(3): 38-44. doi: 10.3969/j.issn.0253-2417.2017.03.005
    [20]
    李立, 白雪涛.紫外线辐射对人类皮肤健康的影响[J].国外医学卫生学分册, 2008, 35(4): 198-202. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYX200804002.htm

    Li L, Bai X T. Effects of ultraviolet radiation on human skin health[J]. Journal of Environmental Hygiene, 2008, 35(4): 198-202. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYX200804002.htm
    [21]
    陈玉和, 黄文豪, 常德龙, 等.氢氧化钠预处理对木材漂白促进作用的研究[J].林产化学与工业, 2000, 20(1): 52-56. doi: 10.3321/j.issn:0253-2417.2000.01.010

    Chen Y H, Huang W H, Chang D L, et al. Study on promoting effects of NaOH pretreatment on wood bleaching[J]. Chemistry and Industry of Forest Products, 2000, 20(1): 52-56. doi: 10.3321/j.issn:0253-2417.2000.01.010
    [22]
    李坚, 葛明裕.氢氧化钠溶液预处理提高胶结强度机理的研究[J].东北林业大学学报, 1990, 18(1): 80-87. http://www.cnki.com.cn/Article/CJFDTotal-DBLY199001010.htm

    Li J, Ge M Y. Mechanism of improving gluing strength in making plyood by the pre-treatment with sodium hydrate a tqueous solution[J]. Journal of Northeast Forestry University, 1990, 18(1): 80-87. http://www.cnki.com.cn/Article/CJFDTotal-DBLY199001010.htm
  • Related Articles

    [1]Zhao Yabing, Peng Daoli, Guo Famiao, Wang Yin, Huang Jingxian. Estimating forest growing stock volume based on feature selection and machine learning[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240328
    [2]Guo Jialun, Zhong Haomin, Zhao Junbo, Chen Yao. Deresination rate prediction of Masson pine wood based on support vector regression (SVR)[J]. Journal of Beijing Forestry University, 2025, 47(3): 151-161. DOI: 10.12171/j.1000-1522.20240359
    [3]Zhou Lai, Cheng Xiaofang, Zhang Mengtao. Model construction of Larix principis-rupprechtii canopy volume and surface area based on BP neural network[J]. Journal of Beijing Forestry University, 2024, 46(8): 94-100. DOI: 10.12171/j.1000-1522.20230166
    [4]Feng Xinyan, Jia Xin, Huang Jinze, Gao Shengjie, Yuan Min, Liu Tiantian, Jin Chuan. Application of ANN-BiLSTM model to long-term gap-filling of carbon flux data in temperate desert shrub[J]. Journal of Beijing Forestry University, 2023, 45(9): 62-72. DOI: 10.12171/j.1000-1522.20220510
    [5]Zhang Hanyue, Feng Zhongke, Huang Guosheng, Yang Xueqing, Feng Zemin. Research on the growth rate model of Populus spp. considering environmental factors[J]. Journal of Beijing Forestry University, 2022, 44(11): 50-59. DOI: 10.12171/j.1000-1522.20210201
    [6]Zhang Mengku, Jiang Lichun. Prediction of bark thickness for Larix gmelinii based on machine learning[J]. Journal of Beijing Forestry University, 2022, 44(6): 54-62. DOI: 10.12171/j.1000-1522.20210097
    [7]Zhao Jing, Chen Ran, Hao Huichao, Shao Zhuang. Application progress and prospect of machine learning technology in landscape architecture[J]. Journal of Beijing Forestry University, 2021, 43(11): 137-156. DOI: 10.12171/j.1000-1522.20200313
    [8]Lei Xiangdong. Applications of machine learning algorithms in forest growth and yield prediction[J]. Journal of Beijing Forestry University, 2019, 41(12): 23-36. DOI: 10.12171/j.1000-1522.20190356
    [9]ZHANG Wen-yi, JING Tian-zhong, YAN Shan-chun. Studies on prediction models of Dendrolimus superans occurrence area based on machine learning[J]. Journal of Beijing Forestry University, 2017, 39(1): 85-93. DOI: 10.13332/j.1000-1522.20160205
    [10]LIN Zhuo, WU Cheng-zhen, HONG Wei, HONG Tao. Yield model of Cunninghamia lanceolata plantation based on back propagation neural network and support vector machine.[J]. Journal of Beijing Forestry University, 2015, 37(1): 42-54. DOI: 10.13332/j.cnki.jbfu.2015.01.008
  • Cited by

    Periodical cited type(7)

    1. 孙欣,尹紫良,赵琬婧,张治军,王清波,蔡体久,孙晓新. 灌木扩张压力下三江平原沼泽植物群落多样性变化及其土壤控制因子. 应用生态学报. 2024(04): 1016-1024 .
    2. 李元,杨海鑫,齐昊宇,喻其林,郭东罡,张全喜. 运城盐湖湿地土壤重金属污染特征与风险评价. 生态毒理学报. 2024(03): 396-406 .
    3. 管祥楠,董士伟,刘玉,张欣欣,潘瑜春,卢闯. 土壤重金属含量变化的影响因素多目标识别方法. 环境科学. 2024(08): 4791-4801 .
    4. 高明华. 长寿湖国家湿地公园退耕地土壤细菌群落多样性研究. 呼伦贝尔学院学报. 2023(03): 85-91 .
    5. 裘奕斐,王静,徐敏. 江苏滨海县近岸海域海水、沉积物和生物体重金属分布及健康风险评价. 南京师大学报(自然科学版). 2021(01): 71-78 .
    6. 李琦,赵琬婧,王瑜,原卉,王清波,刘成林,李海兴,孙晓新. 三江平原沼泽湿地典型湿地植物对重金属的富集效应. 湿地科学与管理. 2021(02): 9-13 .
    7. 刘德浩,廖文莉,陈智涛,阳艳萍,吴宝宏,舒夏竺,邓仿东. 潼湖湿地土壤重金属污染现状及生态风险评价. 林业与环境科学. 2021(05): 61-68 .

    Other cited types(0)

Catalog

    Article views (2785) PDF downloads (98) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return