• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Aiyin, Zhang Xiaoli. Land surface temperature retrieved from Landsat-8 and comparison with MODIS temperature product[J]. Journal of Beijing Forestry University, 2019, 41(3): 1-13. DOI: 10.13332/j.1000-1522.20180234
Citation: Zhang Aiyin, Zhang Xiaoli. Land surface temperature retrieved from Landsat-8 and comparison with MODIS temperature product[J]. Journal of Beijing Forestry University, 2019, 41(3): 1-13. DOI: 10.13332/j.1000-1522.20180234

Land surface temperature retrieved from Landsat-8 and comparison with MODIS temperature product

More Information
  • Received Date: July 18, 2018
  • Revised Date: November 26, 2018
  • Available Online: March 27, 2019
  • Published Date: February 28, 2019
  • ObjectiveLand surface temperature (LST) is a key parameter for analyzing and simulating land surface processes from local to global scales, which plays an important role in the processes of energy exchange between land surface and atmosphere. As the latest achievement of the series of Landsat missions, Landsat-8 has two thermal infrared channels compared with previous Landsat version, and has higher spatial resolution compared with other sensors such as AVHRR or MODIS, it has greater advantages when it comes to the use of land surface temperature retrieval. This paper uses three different algorithms including the improved mono-window algorithms proposed by Wang (2015), the improved single channel algorithm proposed by Cristóbal (2018) and the split window algorithm proposed by Jiménez-Muñoz (2014), respectively to retrieve land surface temperature from Landsat-8 data in Beijing region, and chose MODIS LST product for cross validation in order to assess the accuracy and applicability of Landsat-8 used for LST retrieval, and provide a reference for the subsequent study of Landsat-8 LST retrieval.
    MethodThis paper determines and estimates 3 important parameters used for LST retrieval: atmospheric effective temperature, land surface emissivity, and water vapor contents. Sensitivity and differential analysis were conducted after getting the LST result by 3 algorithms. Comparative analysis methods between the retrieval result and MOD11A1 product with the closest satellite passing time to Landsat-8 include the comparison of average temperature between retrieval result and MODIS temperature product by different administrative regions and different ground features, as well as choosing the center region of Miyun Reservoir, which has lower scale effect and little temperature variation to compare the temperature difference between the above two.
    ResultThe general average temperature difference between the three algorithms was less than 1K, and the temperature difference between the improved single channel algorithm proposed by Cristóbal (2018) and the other two algorithms was the smallest, and the temperature difference between the improved mono-window algorithms proposed by Wang (2015) and the other two algorithms was the largest. The result of Landsat-8 LST retrieval was generally higher than MODIS temperature product, the mean temperature difference was 1.3 K. By selecting the center area of Miyun Reservoir to compare the results between Landsat-8 LST retrieval and the temperature products, the total average difference between the three algorithm results and the MODIS temperature products was 1.373 K.
    ConclusionThe retrieval results have an overall satisfying accuracy, among which, the split window algorithm proposed by Jiménez-Muñoz (2014) has the best sensitivity analysis result, and has the closest result to MODIS temperature product. The results of Landsat-8 retrieval are consistent with the distribution of MODIS temperature products in the overall LST distribution, but Landsat-8 can better distinguish the temperature differences between different types of small feature and have a greater advantage when it comes to the use of accurate retrieval of land surface temperature because of the higher resolution.
  • [1]
    Li Z L, Tang B H, Wu H, et al. Satellite-derived land surface temperature: current status and perspectives[J]. Remote Sensing of Environment, 2013, 131: 14−37. doi: 10.1016/j.rse.2012.12.008
    [2]
    Rozenstein O, Qin Z H, Derimian Y, et al. Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm[J]. Sensors, 2014, 14: 5768−5780. doi: 10.3390/s140405768
    [3]
    Jiménez-Muñoz J C, Sobrino J A, Skokovic D, et al. Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11: 1840−1843. doi: 10.1109/LGRS.2014.2312032
    [4]
    Jin M J, Li J M, Wang C L, et al. A practical split-window algorithm for retrieving land surface temperature from Landsat-8 data and a case study of an urban area in China[J]. Remote Sensing, 2015, 7: 4371−4390. doi: 10.3390/rs70404371
    [5]
    Ren H Z, Du C, Liu R Y, et al. Atmospheric water vapor retrieval from Landsat 8 thermal infrared images[J]. Journal of Geophysical Research: Atmospheres, 2015, 120: 1723−1738. doi: 10.1002/2014JD022619
    [6]
    Wang F, Qin Z H, Song C Y, et al. An improved Mono-Window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data[J]. Remote Sensing, 2015, 7: 4268−4289. doi: 10.3390/rs70404268
    [7]
    Cristóbal J, Jiménez-Muñoz J C, Prakash A, et al. An improved single-channel method to retrieve land surface temperature from the Landsat-8 thermal band[J]. Remote Sensing, 2018, 10: 431. doi: 10.3390/rs10030431
    [8]
    Yu X L, Guo X L, Wu Z C. Land surface temperature retrieval from Landsat 8 TIRS: comparison between radiative transfer equation-based method, split window algorithm and single channel method[J]. Remote Sensing, 2014, 6: 9829−9852. doi: 10.3390/rs6109829
    [9]
    宋挺, 段峥, 刘军志, 等. Landsat 8 数据地表温度反演算法对比[J]. 遥感学报, 2015, 19(3):451−464.

    Song T, Duan Z, Liu J Z, et al. Comparison of four algorithms to retrieve land surface temperature using Landsat 8 satellite[J]. Journal of Remote Sensing, 2015, 19(3): 451−464.
    [10]
    徐涵秋. 新型 Landsat 8卫星影像的反射率和地表温度反演[J]. 地球物理学报, 2015, 58(3):741−747.

    Xu H Q. Retrieval of the reflectance and land surface temperature of the newly-launched Landsat 8 satellite[J]. Chinese Journal of Geophysics, 2015, 58(3): 741−747.
    [11]
    徐涵秋. Landsat 8热红外数据定标参数的变化及其对地表温度反演的影响[J]. 遥感学报, 2016, 20(2):229−235.

    Xu H Q. Change of Landsat 8 TIRS calibration parameters and its effect on land surface temperature retrieval[J]. Journal of Remote Sensing, 2016, 20(2): 229−235.
    [12]
    Qin Z H, Dall ’olmo G, Karnieli A, et al. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data[J]. Journal of Geophysical Research: Atmospheres, 2001, 106: 22655−22670. doi: 10.1029/2000JD900452
    [13]
    Gerace A, Montanaro M. Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard Landsat 8[J]. Remote Sensing of Environment, 2017, 191: 246−257. doi: 10.1016/j.rse.2017.01.029
    [14]
    Qin Z H, Karnieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing, 2010, 22(18): 3719−3746.
    [15]
    覃志豪. 陆地卫星 TM6 波段范围内地表比辐射率的估计[J]. 国土资源遥感, 2004, 61(3):28−42. doi: 10.3969/j.issn.1001-070X.2004.03.007

    Qin Z H. The estimation of land surface emissivity for Landsat TM6[J]. Remote Sensing for Land & Resources, 2004, 61(3): 28−42. doi: 10.3969/j.issn.1001-070X.2004.03.007
    [16]
    Sobrino J A, Coll C, Caselles V. Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5[J]. Remote Sensing of Environment, 1991, 38(1): 19−34. doi: 10.1016/0034-4257(91)90069-I
    [17]
    Cristóbal J, Jiménez-Muñoz J C, Sobrino J A, et al. Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature[J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D08103.
    [18]
    Jiménez-Muñoz J C, Sobrino J. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D22): 4688. doi: 10.1029/2003JD003480
    [19]
    Sobrino J A, Li Z L, Stoll M P, et al. Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data[J]. International Journal of Remote Sensing, 1996, 17: 2089−2114. doi: 10.1080/01431169608948760
  • Related Articles

    [1]Zhan Ting, Ren Jinyuan, Peng Yao, Cao Jinzhen. Influence of bamboo fiber particle size and addition ratio on the properties of bamboo fiber/polypropylene/CaCO3 composite[J]. Journal of Beijing Forestry University, 2024, 46(1): 131-140. DOI: 10.12171/j.1000-1522.20230262
    [2]Hao Qian, Wang Yida, Ge Ying, Zhou Jing, Liu Zhenbo. Acoustic vibration performance of birch veneer-metal copper mesh composites[J]. Journal of Beijing Forestry University, 2023, 45(1): 148-158. DOI: 10.12171/j.1000-1522.20220378
    [3]Lin Bin, Zhai Xueyong, Li Rui, Sun Lipeng, Zhang Yuanting, Yin Yuxue, Liu Zhenbo. Optimization of preparation process of birch veneer/glass fiber composite[J]. Journal of Beijing Forestry University, 2019, 41(4): 127-135. DOI: 10.13332/j.1000-1522.20190049
    [4]WANG Dan-dan, CAO Yang, WANG Cui-cui, WEI Wen-bang, ZHANG Shuang-bao. Effect of silane coupling agent on mechanical properties of eucalyptus veneer/polyvinyl chloride (PVC) composites[J]. Journal of Beijing Forestry University, 2016, 38(2): 120-123. DOI: 10.13332/j.1000-1522.20150258
    [5]ZHAO Jun-shi, XU Zheng-dong, WANG Jin-lin, ZHANG Shuang-bao. Influence of fiber-glass on mechanical properties of composite laminates.[J]. Journal of Beijing Forestry University, 2014, 36(2): 129-132.
    [6]SUN Feng, ZHOU Yong-dong, LI Xiao-ling, LvJian-xiong, HAN Chen-jing, ZHAN Man-jun. Effects of species, diameter and processing equipment on veneer recovery of Eucalyptus spp.[J]. Journal of Beijing Forestry University, 2013, 35(4): 128-133.
    [7]ZHANG Ying, YU Zhi-ming, WANG Nan.. Quantitative evaluation of veneer gelatinize process and its effect[J]. Journal of Beijing Forestry University, 2010, 32(4): 251-255.
    [8]GUO Hong-wu, WANG Jin-lin, LI Chun-sheng, YAN Hao-Peng. Light-induced discoloration and influencing factors of dyed veneer after painted.[J]. Journal of Beijing Forestry University, 2008, 30(4): 22-27.
    [9]ZHANG De-rong, YU Zhi-ming, LI Jian-zhang, JIN Xiao-juan. Technical parameters of Laminated Veneer Lumber manufactured with dyeing and fire-retardant treated veneers[J]. Journal of Beijing Forestry University, 2005, 27(3): 83-86.
    [10]WANG Zheng, ZHAO Xing-zhi, GUO Wen-jing. Process factors and performances of recycled plastic-wood fiber composites.[J]. Journal of Beijing Forestry University, 2005, 27(1): 1-5.
  • Cited by

    Periodical cited type(15)

    1. 李潇潇. 古建筑木构件损伤及耐久性研究综述. 低温建筑技术. 2025(01): 16-19 .
    2. 麻胜兰,陈志宁,邵顺安,姜绍飞,许跃飞. 基于声发射多参数耦合的木材裂缝检测方法. 建筑结构. 2024(02): 136-144 .
    3. 赵东,马荣宇,于立川,赵健,刘嘉辉. 基于经验模态分解和小波包能量熵的杉木加载过程中细观损伤监测与识别. 北京林业大学学报. 2024(03): 123-131 . 本站查看
    4. 刘佳,于孟言,高珊,陈昱龙,冯蔓萱,杜鑫宇. 基于AE-BP模型的杨木胶合板应力损伤识别. 中南林业科技大学学报. 2024(04): 169-179 .
    5. 张萌,王灵芝,李守宇,张庆文,杨宇彤. 不同变量圆竹建筑填充组合节点轴压损伤声发射特性研究. 林产工业. 2024(07): 17-22 .
    6. 刘陈陈,黄奥,李昇昊,陈昕煜,顾华志. 基于机器视/听觉的耐火材料蚀损行为表征评价研究进展. 钢铁研究学报. 2024(10): 1247-1266 .
    7. 何佳明,李猛,蔡高洁,胡彬,佘艳华. 不同含水率雪松木的裂纹演化规律试验研究. 科学技术与工程. 2023(05): 1888-1894 .
    8. 李猛,佘艳华,何学杰,王俊辉,何佳明. 基于PZT和DIC对木构件榫卯松动监测试验研究. 林产工业. 2023(06): 20-26 .
    9. 李猛,佘艳华,贺才豪,何佳明,陈迪. 不同温度下的柏木构件顺纹压缩损伤规律研究. 西南林业大学学报(自然科学). 2023(05): 153-163 .
    10. 赖菲,王明华,肖洒,丁锐,罗蕊寒,邓婷婷,李明. 应用声发射技术和图像分形理论对樟子松木材裂纹演化特征的检测. 东北林业大学学报. 2022(07): 89-93 .
    11. 邢雪峰,李善明,金菊婉,林兰英,周永东,傅峰. 高能微波处理辐射松木材的抗弯力学性能与损伤演化特征. 北京林业大学学报. 2022(08): 107-116 . 本站查看
    12. 邢雪峰,李善明,周永东,林兰英,傅峰. 声发射技术在木质材料损伤监测中的应用研究进展. 世界林业研究. 2022(06): 63-68 .
    13. 杨丽华. 基于数字林业技术加强林业管理的研究. 造纸装备及材料. 2022(11): 96-98 .
    14. 陈泽华,杨小军,张璐,董浩然,赵琦. 防腐处理胶合木的层间界面断裂韧性研究. 森林与环境学报. 2021(02): 219-224 .
    15. 杜永刚,周伟,刘朔,刘亚萍,刘佳,马连华. 含夹渣缺陷Q245R钢的声发射特性和DIC研究. 电子测量技术. 2021(18): 1-6 .

    Other cited types(9)

Catalog

    Article views (5815) PDF downloads (390) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return