• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Chen Xinyu, Meng Jingxiang, Zhou Xianqing, Yuan Huwei, Niu Shihui, Li Yue. Genetic variation of needle morphology and anatomical traits and physiological traits among Pinus tabuliformis geographic populations[J]. Journal of Beijing Forestry University, 2019, 41(7): 19-30. DOI: 10.13332/j.1000-1522.20190170
Citation: Chen Xinyu, Meng Jingxiang, Zhou Xianqing, Yuan Huwei, Niu Shihui, Li Yue. Genetic variation of needle morphology and anatomical traits and physiological traits among Pinus tabuliformis geographic populations[J]. Journal of Beijing Forestry University, 2019, 41(7): 19-30. DOI: 10.13332/j.1000-1522.20190170

Genetic variation of needle morphology and anatomical traits and physiological traits among Pinus tabuliformis geographic populations

More Information
  • Received Date: March 31, 2019
  • Revised Date: April 28, 2019
  • Available Online: July 07, 2019
  • Published Date: June 30, 2019
  • Objective Needles are the important organs of physiological activities in pine species, but the relationship between morphological and anatomical characteristics and physiological traits of diffenent geographical populations are still unclarified. Thus, assessing the association between the two kinds of traits could provide a new perspective for understanding the adaptive variation of Pinus tabuliformis.
    Method Based on the common garden test of 8 geographic populations which collected in different habitats from the whole distribution area of Pinus tabuliformis, we assessed the variation of morphological and anatomical traits, transpiration and photosynthetic physiological traits of secondary needles of 4-year-old seedlings, and evaluated the correlation between traits.
    Result (1) Significant genetic variations were found among geographical populations in needle thickness, vascular bundle, stomatal and resin canal traits; (2) significant genetic diversity of physiological traits was found among geographical populations, except for water use efficiency; (3) the net photosynthetic rate, transpiration rate and intercellular CO2 concentration were positively correlated with morphological and anatomical traits; (4) the intercellular CO2 concentration of populations was significantly positively correlated with the annual precipitation and the average temperature of January/ annual precipitation, the stomatal limitation value was significantly negatively correlated with annual precipitation and average temperature of January/annual precipitation; (5) the number of stomatal lines was significantly positively correlated with longitude, while resin canal number was significantly negatively correlated with the longitude but was significantly positively correlated with the altitude. Resin canal area/mesophyll area was significantly negatively correlated with longitude and latitude.
    Conclusion Variation of needle traits could reflect the photosynthetic physiological diversity among geographical populations. The number of needle stomata and regulation capacity of stomata would increase with the decreased precipitation, and the change of the number of resin canal mesophyll area. This study provided a theoretical reference for understanding the relationship between the anatomical and anatomical characteristics of the needles and photosynthetic physiological traits, and adaptive evolution of the pine species and genetic improvement.
  • [1]
    张凯. 油松各器官功能性状及其对环境因子响应的研究[D]. 北京: 北京林业大学, 2016.

    Zhang K. The functional tratis of different organs of Pinus tabulaeformis and their response to environment[D]. Beijing: Beijing Forestry University, 2016.
    [2]
    Meng J X, Chen X Y, Huang Y J, et al. Environmental contribution to needle variation among natural populations of Pinus tabuliformis[J]. Journal of Forestry Research, 2019, 30(4): 1311−1322.
    [3]
    Xing F Q, Mao J F, Meng J X, et al. Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents, Pinus tabuliformis and Pinus yunnanensis[J]. Ecology & Evolution, 2014, 4(10): 1890−1902.
    [4]
    McKown A D, Guy R D, Klápště J, et al. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa[J]. New Phytologist, 2014, 201(4): 1263−1276. doi: 10.1111/nph.12601
    [5]
    Lande R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation[J]. Journal of Evolutionary Biology, 2010, 22(7): 1435−1446.
    [6]
    高琼, 王维有, 孟景祥, 等. 油松 × 云南松杂种与亲本种和高山松的光合特性比较[J]. 北京林业大学学报, 2016, 38(2):37−43.

    Gao Q, Wang W Y, Meng J X, et al. Comparison of growth traits and photosynthetic physiology in Pinus tabuliformis from eight provenances of China[J]. Journal of Beijing Forestry University, 2016, 38(2): 37−43.
    [7]
    蒋万杰, 欧晓岚, 刘艳红. 北京松山油松当年生与往年生针叶光合生理特性[J]. 生态科学, 2018, 37(1):121−127.

    Jiang W J, Ou X L, Liu Y H. Photosynthetic characteristics in current and previous-year needles of Pinus tabulaeformis in the Songshan, Beijing, China[J]. Ecological Science, 2018, 37(1): 121−127.
    [8]
    Wang M B, Gao F Q. Genetic variation in Chinese pine (Pinus tabulaeformis), a woody species endemic to China[J]. Biochemical Genetics, 2009, 47(1-2): 154−164. doi: 10.1007/s10528-009-9225-7
    [9]
    Li W, Wang X, Li Y. Stability in and correlation between factors influencing genetic quality of seed lots in seed orchard of Pinus tabuliformis Carr. over a 12-year span[J/OL]. PLoS One, 2011, 6(8) (2011−08−24) [2018−10−20]. https://doi.org/10.1371/journal.pone.0023544.
    [10]
    Wang B S, Mao J F, Gao J, et al. Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata[J]. Molecular Ecology, 2011, 20: 3796−3811. doi: 10.1111/mec.2011.20.issue-18
    [11]
    续九如, 李颖岳. 林业试验设计[M]. 北京: 中国农业出版社, 2014.

    Xu J R, Li Y Y. Experiments design in forestry[M]. Beijing: China Agricultural Press, 2014.
    [12]
    Sultan S E. Evolutionary implications of phenotypic plasticity in plants[M]. New York: Springer, 1987: 127−178.
    [13]
    Körner C, Neumayer M, Menendez-Riedl S P, et al. Functional morphology of mountain plants[J]. Flora, 1989, 182(5−6): 353−383. doi: 10.1016/S0367-2530(17)30426-7
    [14]
    Beerling D, Kelly C. Evolutionary comparative analyses of the relationship between leaf structure and function[J]. New Phytologist, 1996, 134(1): 35−51. doi: 10.1111/nph.1996.134.issue-1
    [15]
    黄雨洁. 云南松针叶与油松种实性状的种群变异研究[D]. 北京: 北京林业大学, 2015.

    Huang Y J. Population genetic variation of Pinus yunnanensis needle and Pinus tabuliformis cone and seed taits[D]. Beijing: Beijing Forestry University, 2015.
    [16]
    郭丽丽, 张茜茜, 郝立华, 等. 大气CO2倍增条件下冬小麦气体交换对高温干旱及复水过程的响应[J]. 作物学报, 2019, 45(6):949−956.

    Guo L L, Zhang X X, Hao L H, et al. Responses of leaf gas exchange to high temperature and drought combination as well as re-watering of winter wheat under doubling atmospheric CO2 concentration[J]. Acta Agronomica Sinica, 2019, 45(6): 949−956.
    [17]
    张明明. 不同地区日本落叶松叶片解剖结构比较研究[D]. 哈尔滨: 东北林业大学, 2012.

    Zhang M M. Comparative study on leaf anatomical structure of Japanses larch in different areas[D]. Harbin: Northeast Forestry University, 2012.
    [18]
    Xie Z S, Du H R, Xiang D F, et al. The changes of anatomical structure of vascular bundles and water transport in blueberry fruit during different growth and development stages[J]. Plant Physiology Journal, 2018, 54(1): 45−53.
    [19]
    Peak D, Mott K A. A new, vapour-phase mechanism for stomatal responses to humidity and temperature[J]. Plant Cell & Environment, 2015, 34(1): 162−178.
    [20]
    Hultine K R, Marshall J D. A comparison of three methods for determining the stomatal density of pine needles[J]. Journal of Experimental Botany, 2001, 52(355): 369−373. doi: 10.1093/jexbot/52.355.369
    [21]
    Gilbert M E, Zwieniecki M A, Holbrook N M. Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought[J]. Journal of Experimental Botany, 2011, 62(8): 2875−2887. doi: 10.1093/jxb/erq461
    [22]
    Pensa M, Aalto T, Jalkanen R. Variation in needle-trace diameter in respect of needle morphology in five conifer species[J]. Trees, 2004, 18(3): 307−311. doi: 10.1007/s00468-003-0307-6
    [23]
    Cole K L, Fisher J, Arundel S T, et al. Geographical and climatic limits of needle types of one-and two-needled pinyon pines[J]. Journal of Biogeography, 2008, 35(2): 257−269.
    [24]
    代剑峰, 高琼, 刘灏, 等. 高山松与亲本种多种群在高海拔生境下的苗期适应性研究[J]. 北京林业大学学报, 2012, 34(5):15−24.

    Dai J F, Gao Q, Liu H, et al. Seedling adaptation of hybrid pine Pinus densata and its parental species in the high elevation habitat[J]. Journal of Beijing Forestry University, 2012, 34(5): 15−24.
    [25]
    Roberntz P, Stockfors J. Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees[J]. Tree Physiology, 1998, 18(4): 233−241. doi: 10.1093/treephys/18.4.233
    [26]
    Lin Y S, Medlyn B E, Ellsworth D S. Temperature responses of leaf net photosynthesis: the role of component processes[J]. Tree Physiology, 2012, 32(2): 219−231. doi: 10.1093/treephys/tpr141
    [27]
    Caird M A, Richards J H, Donovan L A. Nighttime stomatal conductance and transpiration in C3 and C4 plants[J]. Plant Physiology, 2007, 143(1): 4−10. doi: 10.1104/pp.106.092940
    [28]
    罗彬莹, 刘卫东, 吴际友, 等. 干旱胁迫对樟树幼苗光合特性和水分利用的影响[J]. 中南林业科技大学学报, 2019, 39(5):49−55.

    Luo B Y, Liu W D, Wu J Y, et al. Effect of drought stress on photosynthetic characteristics and water use of Cinnamomum camphora seedlings[J]. Journal of Central South University of Forestry & Technology, 2019, 39(5): 49−55.
    [29]
    叶子飘, 郑卓, 康华靖, 等. 自然条件下中熟籼稻初穗期剑叶光合的气孔和非气孔限制特征[J]. 生态学杂志, 2019, 38(4):1004−1012. doi: 10.3969/j.issn.1674-3075.2014.02.001

    Ye Z P, Zheng Z, Kang H J, et al. Stomatal and non-stomatal limitations on photosynthesis of flag leaf of medium mature indica rice at early earring stage under natural conditions[J]. Chinese Journal of Ecology, 2019, 38(4): 1004−1012. doi: 10.3969/j.issn.1674-3075.2014.02.001
    [30]
    潘瑞炽, 王晓菁, 李娘辉, 等. 植物生理学[M]. 北京: 高等教育出版社, 2012.

    Pan R C, Wang X J, Li N H, et al. Plant physiology[M]. Beijing:Higher Education Press, 2012.
    [31]
    Sultan S. Phenotypic plasticity and plant adaptation[J]. Acta botanica neerlandica, 1995, 44(4): 363−383. doi: 10.1111/plb.1995.44.issue-4
    [32]
    张丹. 环境因子对红松光合作用及次生代谢产物的影响[D]. 哈尔滨: 东北林业大学, 2016.

    Zhang D. Effects of environment on photosynthesis and secondary metabolitesr of Korean pine[D]. Harbin: Northeast Forestry University, 2016.
    [33]
    赵海燕, 魏宁, 孙聪聪, 等. NaCl胁迫对银杏幼树组织解剖结构和光合作用的影响[J]. 北京林业大学学报, 2018, 40(11):28−41.

    Zhao H Y, Wei N, Sun C C, et al. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28−41.
    [34]
    冮慧欣, 王嘉琪, 黄春岩, 等. 8种绿化树种光合特性及叶片解剖结构比较[J]. 植物研究, 2019, 39(1):10−16.

    Jiang H X, Wang J Q, Huang C Y, et al. Photosynthetic characteristics and leaf anatomical structure of eight tree species[J]. Bulletin of Botanical Research, 2019, 39(1): 10−16.
    [35]
    刘力铭, 孙志虎, 李开隆, 等. 养分添加对白桦叶片气孔和气体交换异质性影响研究[J]. 中南林业科技大学学报, 2019, 39(4):72−78.

    Liu L M, Sun Z H, Li K L, et al. Effects of nutrient addition on stomata and gas exchange heterogeneity of Betula platyplylla leaves[J]. Journal of Central South University of Forestry & Technology, 2019, 39(4): 72−78.
  • Cited by

    Periodical cited type(5)

    1. 曹林青,钟秋平,邹玉玲,田丰,贺义昌. 油桐种质资源叶片结构变异及与环境因子的关系. 南京林业大学学报(自然科学版). 2023(04): 95-102 .
    2. 冯珊珊,黄春晖,唐梦云,蒋维昕,白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释. 植物生态学报. 2023(08): 1116-1130 .
    3. 周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 .
    4. 梁艳,赵雪莹,白雪,刘德强,张妍,潘朋. PVP处理对黑皮油松外植体酚类物质形成及酶活性的影响. 林业科学. 2021(10): 166-174 .
    5. 梁艳,赵雪莹,许昕,马世宇,金一锋,朱琨,王晶. 黑皮油松外植体的抗褐化处理与诱导培养. 分子植物育种. 2020(21): 7173-7178 .

    Other cited types(4)

Catalog

    Article views (2951) PDF downloads (73) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return