Citation: | Chen Xinyu, Meng Jingxiang, Zhou Xianqing, Yuan Huwei, Niu Shihui, Li Yue. Genetic variation of needle morphology and anatomical traits and physiological traits among Pinus tabuliformis geographic populations[J]. Journal of Beijing Forestry University, 2019, 41(7): 19-30. DOI: 10.13332/j.1000-1522.20190170 |
[1] |
张凯. 油松各器官功能性状及其对环境因子响应的研究[D]. 北京: 北京林业大学, 2016.
Zhang K. The functional tratis of different organs of Pinus tabulaeformis and their response to environment[D]. Beijing: Beijing Forestry University, 2016.
|
[2] |
Meng J X, Chen X Y, Huang Y J, et al. Environmental contribution to needle variation among natural populations of Pinus tabuliformis[J]. Journal of Forestry Research, 2019, 30(4): 1311−1322.
|
[3] |
Xing F Q, Mao J F, Meng J X, et al. Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents, Pinus tabuliformis and Pinus yunnanensis[J]. Ecology & Evolution, 2014, 4(10): 1890−1902.
|
[4] |
McKown A D, Guy R D, Klápště J, et al. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa[J]. New Phytologist, 2014, 201(4): 1263−1276. doi: 10.1111/nph.12601
|
[5] |
Lande R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation[J]. Journal of Evolutionary Biology, 2010, 22(7): 1435−1446.
|
[6] |
高琼, 王维有, 孟景祥, 等. 油松 × 云南松杂种与亲本种和高山松的光合特性比较[J]. 北京林业大学学报, 2016, 38(2):37−43.
Gao Q, Wang W Y, Meng J X, et al. Comparison of growth traits and photosynthetic physiology in Pinus tabuliformis from eight provenances of China[J]. Journal of Beijing Forestry University, 2016, 38(2): 37−43.
|
[7] |
蒋万杰, 欧晓岚, 刘艳红. 北京松山油松当年生与往年生针叶光合生理特性[J]. 生态科学, 2018, 37(1):121−127.
Jiang W J, Ou X L, Liu Y H. Photosynthetic characteristics in current and previous-year needles of Pinus tabulaeformis in the Songshan, Beijing, China[J]. Ecological Science, 2018, 37(1): 121−127.
|
[8] |
Wang M B, Gao F Q. Genetic variation in Chinese pine (Pinus tabulaeformis), a woody species endemic to China[J]. Biochemical Genetics, 2009, 47(1-2): 154−164. doi: 10.1007/s10528-009-9225-7
|
[9] |
Li W, Wang X, Li Y. Stability in and correlation between factors influencing genetic quality of seed lots in seed orchard of Pinus tabuliformis Carr. over a 12-year span[J/OL]. PLoS One, 2011, 6(8) (2011−08−24) [2018−10−20]. https://doi.org/10.1371/journal.pone.0023544.
|
[10] |
Wang B S, Mao J F, Gao J, et al. Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata[J]. Molecular Ecology, 2011, 20: 3796−3811. doi: 10.1111/mec.2011.20.issue-18
|
[11] |
续九如, 李颖岳. 林业试验设计[M]. 北京: 中国农业出版社, 2014.
Xu J R, Li Y Y. Experiments design in forestry[M]. Beijing: China Agricultural Press, 2014.
|
[12] |
Sultan S E. Evolutionary implications of phenotypic plasticity in plants[M]. New York: Springer, 1987: 127−178.
|
[13] |
Körner C, Neumayer M, Menendez-Riedl S P, et al. Functional morphology of mountain plants[J]. Flora, 1989, 182(5−6): 353−383. doi: 10.1016/S0367-2530(17)30426-7
|
[14] |
Beerling D, Kelly C. Evolutionary comparative analyses of the relationship between leaf structure and function[J]. New Phytologist, 1996, 134(1): 35−51. doi: 10.1111/nph.1996.134.issue-1
|
[15] |
黄雨洁. 云南松针叶与油松种实性状的种群变异研究[D]. 北京: 北京林业大学, 2015.
Huang Y J. Population genetic variation of Pinus yunnanensis needle and Pinus tabuliformis cone and seed taits[D]. Beijing: Beijing Forestry University, 2015.
|
[16] |
郭丽丽, 张茜茜, 郝立华, 等. 大气CO2倍增条件下冬小麦气体交换对高温干旱及复水过程的响应[J]. 作物学报, 2019, 45(6):949−956.
Guo L L, Zhang X X, Hao L H, et al. Responses of leaf gas exchange to high temperature and drought combination as well as re-watering of winter wheat under doubling atmospheric CO2 concentration[J]. Acta Agronomica Sinica, 2019, 45(6): 949−956.
|
[17] |
张明明. 不同地区日本落叶松叶片解剖结构比较研究[D]. 哈尔滨: 东北林业大学, 2012.
Zhang M M. Comparative study on leaf anatomical structure of Japanses larch in different areas[D]. Harbin: Northeast Forestry University, 2012.
|
[18] |
Xie Z S, Du H R, Xiang D F, et al. The changes of anatomical structure of vascular bundles and water transport in blueberry fruit during different growth and development stages[J]. Plant Physiology Journal, 2018, 54(1): 45−53.
|
[19] |
Peak D, Mott K A. A new, vapour-phase mechanism for stomatal responses to humidity and temperature[J]. Plant Cell & Environment, 2015, 34(1): 162−178.
|
[20] |
Hultine K R, Marshall J D. A comparison of three methods for determining the stomatal density of pine needles[J]. Journal of Experimental Botany, 2001, 52(355): 369−373. doi: 10.1093/jexbot/52.355.369
|
[21] |
Gilbert M E, Zwieniecki M A, Holbrook N M. Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought[J]. Journal of Experimental Botany, 2011, 62(8): 2875−2887. doi: 10.1093/jxb/erq461
|
[22] |
Pensa M, Aalto T, Jalkanen R. Variation in needle-trace diameter in respect of needle morphology in five conifer species[J]. Trees, 2004, 18(3): 307−311. doi: 10.1007/s00468-003-0307-6
|
[23] |
Cole K L, Fisher J, Arundel S T, et al. Geographical and climatic limits of needle types of one-and two-needled pinyon pines[J]. Journal of Biogeography, 2008, 35(2): 257−269.
|
[24] |
代剑峰, 高琼, 刘灏, 等. 高山松与亲本种多种群在高海拔生境下的苗期适应性研究[J]. 北京林业大学学报, 2012, 34(5):15−24.
Dai J F, Gao Q, Liu H, et al. Seedling adaptation of hybrid pine Pinus densata and its parental species in the high elevation habitat[J]. Journal of Beijing Forestry University, 2012, 34(5): 15−24.
|
[25] |
Roberntz P, Stockfors J. Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees[J]. Tree Physiology, 1998, 18(4): 233−241. doi: 10.1093/treephys/18.4.233
|
[26] |
Lin Y S, Medlyn B E, Ellsworth D S. Temperature responses of leaf net photosynthesis: the role of component processes[J]. Tree Physiology, 2012, 32(2): 219−231. doi: 10.1093/treephys/tpr141
|
[27] |
Caird M A, Richards J H, Donovan L A. Nighttime stomatal conductance and transpiration in C3 and C4 plants[J]. Plant Physiology, 2007, 143(1): 4−10. doi: 10.1104/pp.106.092940
|
[28] |
罗彬莹, 刘卫东, 吴际友, 等. 干旱胁迫对樟树幼苗光合特性和水分利用的影响[J]. 中南林业科技大学学报, 2019, 39(5):49−55.
Luo B Y, Liu W D, Wu J Y, et al. Effect of drought stress on photosynthetic characteristics and water use of Cinnamomum camphora seedlings[J]. Journal of Central South University of Forestry & Technology, 2019, 39(5): 49−55.
|
[29] |
叶子飘, 郑卓, 康华靖, 等. 自然条件下中熟籼稻初穗期剑叶光合的气孔和非气孔限制特征[J]. 生态学杂志, 2019, 38(4):1004−1012. doi: 10.3969/j.issn.1674-3075.2014.02.001
Ye Z P, Zheng Z, Kang H J, et al. Stomatal and non-stomatal limitations on photosynthesis of flag leaf of medium mature indica rice at early earring stage under natural conditions[J]. Chinese Journal of Ecology, 2019, 38(4): 1004−1012. doi: 10.3969/j.issn.1674-3075.2014.02.001
|
[30] |
潘瑞炽, 王晓菁, 李娘辉, 等. 植物生理学[M]. 北京: 高等教育出版社, 2012.
Pan R C, Wang X J, Li N H, et al. Plant physiology[M]. Beijing:Higher Education Press, 2012.
|
[31] |
Sultan S. Phenotypic plasticity and plant adaptation[J]. Acta botanica neerlandica, 1995, 44(4): 363−383. doi: 10.1111/plb.1995.44.issue-4
|
[32] |
张丹. 环境因子对红松光合作用及次生代谢产物的影响[D]. 哈尔滨: 东北林业大学, 2016.
Zhang D. Effects of environment on photosynthesis and secondary metabolitesr of Korean pine[D]. Harbin: Northeast Forestry University, 2016.
|
[33] |
赵海燕, 魏宁, 孙聪聪, 等. NaCl胁迫对银杏幼树组织解剖结构和光合作用的影响[J]. 北京林业大学学报, 2018, 40(11):28−41.
Zhao H Y, Wei N, Sun C C, et al. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28−41.
|
[34] |
冮慧欣, 王嘉琪, 黄春岩, 等. 8种绿化树种光合特性及叶片解剖结构比较[J]. 植物研究, 2019, 39(1):10−16.
Jiang H X, Wang J Q, Huang C Y, et al. Photosynthetic characteristics and leaf anatomical structure of eight tree species[J]. Bulletin of Botanical Research, 2019, 39(1): 10−16.
|
[35] |
刘力铭, 孙志虎, 李开隆, 等. 养分添加对白桦叶片气孔和气体交换异质性影响研究[J]. 中南林业科技大学学报, 2019, 39(4):72−78.
Liu L M, Sun Z H, Li K L, et al. Effects of nutrient addition on stomata and gas exchange heterogeneity of Betula platyplylla leaves[J]. Journal of Central South University of Forestry & Technology, 2019, 39(4): 72−78.
|