• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHAO Yang, YU Xin-xiao.. Effects of climate variation and land use change on runoff-sediment yield in typical watershed of loess hilly-gully region[J]. Journal of Beijing Forestry University, 2013, 35(3): 39-45.
Citation: ZHAO Yang, YU Xin-xiao.. Effects of climate variation and land use change on runoff-sediment yield in typical watershed of loess hilly-gully region[J]. Journal of Beijing Forestry University, 2013, 35(3): 39-45.

Effects of climate variation and land use change on runoff-sediment yield in typical watershed of loess hilly-gully region

More Information
  • Received Date: December 31, 1899
  • Revised Date: December 31, 1899
  • Published Date: May 29, 2013
  • In order to explore the impacts of climate variation and land use change on runoff and sediment yield, and to understand the variation pattern of land use and water resources in the Loess Plateau region, the Luoyugou Watershed in loess hilly-gully region was selected as the study object. Mathematical statistics method, double mass curve and grey correlation degree analysis were applied to analyze the variation trends of annual precipitation, annual runoff and annual sediment yield in the period of 1986- 2008. A multi-year average water balance model was used to quantify the respective contribution of climate and land use change to the reduction of runoff and sediment yield. Brief conclusions could be drawn as follows: 1) precipitation in the Luoyugou Basin did not show an obvious tendency (P =0.22), whereas annual runoff and sediment yield showed a downtrend (P =0.025 and P =0.087, respectively) from 1986 to 2008 with an abrupt change identified in 1994. 2) Besides the rainfall, potential evaportranspiration and sunshine hours were main impacting factors on the runoff and sediment reduction, respectively. 3) The contribution rate of climate variation to runoff-sediment change reached 33.1% and 32.5%, respectively, while that of land use change reached 66.9% and 67.5%, respectively.
  • Related Articles

    [1]Yang Chengchao. Model construction and application of effective freeze-thaw injury in poplar[J]. Journal of Beijing Forestry University, 2021, 43(12): 47-54. DOI: 10.12171/j.1000-1522.20200245
    [2]Geng Dan, Xia Chaozong, Zhang Guobin, Liu Xiaodong, Kang Fengfeng. Biomass model construction of shrub layer of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2018, 40(3): 34-41. DOI: 10.13332/j.1000-1522.20170257
    [3]WANG Xiao-hui, GUO Qing-xi, CAI Ti-jiu. Quantitative effect of topography and forest type on snow melting process in spring[J]. Journal of Beijing Forestry University, 2016, 38(2): 83-89. DOI: 10.13332/j.1000-1522.20150317
    [4]ZHOU Shu-mei, LEI Ting-wu, LEI Qi-xiang, ZHANG Man-liang. Hydraulic geometry model at small watershed outlets on the Loess Plateau of China.[J]. Journal of Beijing Forestry University, 2015, 37(9): 45-52. DOI: 10.13332/j.1000-1522.20150043
    [5]WU Jin-zhuo, PENG Xuan-yi, LIN Wen-shu. Development of forest biodiversity evaluation index system for conifer and broad leaf mixed forest and model construction[J]. Journal of Beijing Forestry University, 2015, 37(4): 8-18. DOI: DOI:10.13332/j.1000-1522.20140209
    [6]ZHANG Yan-lin, FENG Zhong-ke, , YAO Shan, DONG Bin. Modelling on temporal and spatial spread of city forest fire.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 27-32.
    [7]WU Ming-shan, XU Hui.. Effect of measurement errors on volume model and parameter estimation[J]. Journal of Beijing Forestry University, 2008, 30(5): 83-86.
    [8]LIU Xing-e, WANG Xiao-qing, JIANG Ze-hui, REN Hai-qing, FEI Ben-hua. Effects of planting density on tree growth and wood quality and modeling the wood quality of Populus×xiaohei[J]. Journal of Beijing Forestry University, 2007, 29(6): 161-166. DOI: 10.13332/j.1000-1522.2007.06.023
    [9]ZHANG Zhan-yu, SU Li-tan, ZHANG Guo-hua. Computer simulation of water movement and heat transfer in groundwater-soil-vegetation-atmosphere continuum at oasis-desert ecotone[J]. Journal of Beijing Forestry University, 2006, 28(6): 88-92.
    [10]WANG An-zhi, LIU Jian-mei, PEI Tie-fan, JIN Chang-jie. An experiment and model construction of rainfall interception by Picea koraiensis[J]. Journal of Beijing Forestry University, 2005, 27(2): 38-42.
  • Cited by

    Periodical cited type(14)

    1. 秦瑞杰,李平,肖培青,马田铂,王柯凡. 罗玉沟流域水沙变化趋势及影响因素. 水土保持研究. 2024(01): 151-158 .
    2. 汪滨,张志强. 黄土高原典型流域土壤侵蚀对退耕还林土地利用变化的响应. 农业工程学报. 2023(12): 60-70 .
    3. 张婷,刘士余,盛菲,王艳艳,余敏琪,卢静媛. 章水流域输沙变化对水文气象因素的响应. 中国水土保持科学(中英文). 2023(04): 60-68 .
    4. 王晓雨,马瑞,张富,胡彦婷,王玲莉,蒋承洋,陈素娥. 关川河上游水沙变化特征及其对降水和水保措施的响应. 干旱区研究. 2023(11): 1765-1775 .
    5. 陶淑芸,刘沂轩,程建敏,王桂林. 连云港市低山丘陵区侵蚀性降雨特征及产流产沙规律. 水土保持通报. 2022(04): 33-41 .
    6. 杨洁,金继明,邵进,王玉宝. 黄土高原中部典型流域植被恢复对径流的影响. 农业机械学报. 2021(05): 258-266+257 .
    7. 李芳,黄维东,王启优,徐娟,朱咏. 渭河上游干流代表水文站径流一致性分析. 中国水土保持. 2021(08): 35-39+9 .
    8. 黄晨璐,陈军武,黄维东,孙超,郭西峰. 渭河上游水利水保措施的减水减沙效应分析. 冰川冻土. 2020(03): 965-973 .
    9. 欧延升,汪霞,李佳,贾海霞,赵云飞,黄政,洪苗苗. 不同恢复年限人工草地土壤碳氮磷含量及其生态化学计量特征. 应用与环境生物学报. 2019(01): 38-45 .
    10. 周才钰,何毅,穆兴民,李朋飞. 黄河中游极端降雨对输沙量影响的时序分析. 人民黄河. 2019(03): 6-10+15 .
    11. 魏安琪,魏天兴,刘海燕,王莎. 黄土区刺槐和油松人工林土壤微生物PLFA分析. 北京林业大学学报. 2019(04): 88-98 . 本站查看
    12. 寇馨月,黄俊,姜学兵,向家平,金平伟,王思伟. 不同下垫面径流小区次降雨对产流产沙的影响. 水土保持通报. 2017(02): 27-31+38 .
    13. 成六三,高晓东,陈小莉,吴普特. 黄土丘陵区榆林南部退耕还林(草)工程综合效益评价. 西南林业大学学报. 2016(04): 88-96 .
    14. 王皓玥,师学义,钱铭杰. 土地整治视角下流域土地利用变化研究综述. 中国人口·资源与环境. 2016(S1): 190-193 .

    Other cited types(13)

Catalog

    Article views (1284) PDF downloads (81) Cited by(27)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return