Influence of thinning intensity on canopy structure and light environment inside Larix gmelinii secondary forest
-
摘要:目的为改善林分结构和促进林木生长,对大兴安岭落叶松次生林进行不同强度的抚育间伐,研究落叶松冠层结构和光合特性指标的相关关系,进而探讨改善林内光环境特征的最佳间伐强度。方法设置间伐强度为9.43%、16.75%、29.00%、40.01%、53.09%、67.25%的实验样地和未进行间伐作业的对照样地。对不同样地落叶松冠层结构参数和光合特征参数指标值间的差异进行描述性统计,运用相关系数法确定不同指标间的相关关系进而剔除有显著正相关的部分指标,同时运用灰色关联法对各个样地的光环境特征进行综合评价。其中冠层结构选取林隙分数、开度、叶面积指数、叶倾角、直接定点因子、间接定点因子、总定点因子、冠上直接辐射、冠上间接辐射、冠上总辐射、冠下直接辐射、冠下间接辐射、冠下总辐射13项指标,光合特征参数选取蒸腾速率、光合速率、CO2参考值、叶片表面P.A.R、叶片温度、胞间CO2浓度、水蒸气气孔导度7项指标。结果各样地林隙分数表现为随间伐强度的增加先减少后增加,开度、直接定点因子、总定点因子与之变化趋势相同,各项指标值均在间伐强度为29.00%的样地中最小;叶面积指数在间伐强度为29.00%时达到最大值;不同间伐强度样地的冠上辐射通量无显著差异性;冠下直接辐射通量和冠下总辐射通量随间伐强度的增加先减少后增加。随着间伐强度的增加,落叶松的蒸腾速率、光合速率、水蒸气气孔导度均呈现先增加后减少的趋势,叶片表面P.A.R、叶片温度先增加后趋于稳定,间伐增加了林地内的CO2浓度;胞间CO2浓度随着间伐强度的增加先减小再增加后减小。林隙分数与开度、直接定点因子、总定点因子、冠下直接辐射、冠下总辐射呈显著正相关,与叶面积指数呈显著负相关;蒸腾速率、光合速率、水蒸气气孔导度之间呈显著正相关性。剔除相关性极强的指标后,冠层结构的林隙分数与光合速率呈显著负相关,叶面积指数与光合速率呈显著正相关。运用灰色关联综合评判林地内的光环境特征,关联度表现为间伐强度29.00%(0.823)>40.01%(0.794)>53.09%(0.739)>0%(0.724)>67.25%(0.713)>16.75%(0.701)>9.43%(0.673)。结论落叶松冠层结构与光合特征指标间存在相关性,落叶松冠层的透光率对于光合速率有明显的影响。结合二者综合评价不同间伐强度下的林地光环境特征,抚育间伐强度为29.00%、40.01%的落叶松天然次生林林地的林内光环境特征较好,说明29.00%~40.01%的中等强度间伐有利于林内光环境的改善。Abstract:ObjectiveIn order to restore the forest structure and improve the forest growth of Larix gmelinii in Daxing' an Mountains of northeastern China, the different thinning intensities of forest were carried out to find the relationship between canopy structure and the photosynthetic characteristics of the undergrowth vegetation and to optimize the operating effects of secondary forest.MethodThe experimental plots with thinning intensities of 9.43%, 16.75%, 29.00%, 40.01%, 53.09%, 67.25%, and the control plot were set. The canopy structure parameters selected were the gap fraction, canopy opening, leaf area index, leaf inclination, direct fixed-point factor, indirect fixed-point factor, total fixed-point factor, direct radiation on the crown, indirect radiation on the crown, total radiation on the crown, direct radiation under the crown, indirect radiation under the crown, total radiation under the canopy(13 indexes). The photosynthetic parameters selected 7 indexes, i.e. transpiration rate, photosynthetic rate, CO2 reference value, leaf surface P.A.R, leaf temperature, intercellular CO2 concentration, stomatal conductance. They were used to describe the differences between different places and the correlation coefficient method was used to determine the correlation between different indexes. At the same time, the gray correlation method was used to evaluate the light environment of each sample.ResultThe results showed that: gap fraction, canopy opening, direct fixed-point factor and total fixed-point factor decreased first and then increased by increase of thinning intensity, and the value of the 4th sample with thinning strength of 29% was the smallest. The leaf area index reached the maximum value when the thinning intensity was 29%. There was no significant difference between the radiation direct radiation on the crown and the total radiation on the crown. The direct radiation under the crown and total radiation under the crown also decreased first and then increased by the increase of thinning intensity. With the increase of thinning intensity, transpiration rate, photosynthetic rate and stomatal conductance all appeared first increasing and then decreasing trend, while leaf surface P.A.R, leaf temperature raised afterwards steadily. Thinning increased the concentration of CO2 in woodland and the intercellular CO2 concentration decreased at first, then increased, reduced at last by the increasing of thinning intensity. The gap fraction was positively correlated with opening, direct fixed-point factor, total fixed-point factor, direct radiation under canopy and total radiation under canopy, but negatively correlated with leaf area index. There was a positively significant correlation between transpiration rate, photosynthetic rate and stomatal conductance. After removing the strongest correlation index, the gap fraction was negatively correlated with the photosynthetic rate, and leaf area index had a significant positive correlation with photosynthetic rate. Comprehensive evaluation of characteristics of the light environment in woodland was tested by grey correlation and the correlation degree was 29.00%(0.823)>40.01%(0.794)>53.09%(0.739)>0%(0.724)>67.25%(0.713)>16.75%(0.701)>9.43%(0.673).ConclusionThere was correlation between canopy structure and photosynthetic index of larch, and the light transmittance of canopy had obvious influence on photosynthesis rate of undergrowth. Combining the two characteristics of the light environment to evaluate them comprehensively under different thinning intensities, it was best that 29% and 40.01% of thinning in larch natural secondary forest in the light environment. It indicates that intermediate thinning of 29.00%-40.01% is beneficial to the improvement of light environment in the forest.
-
-
表 1 样地概况
Table 1 General information of sample plots
样地编号
Sample No.采伐强度
Cutting strength/%海拔
Elevation/m伐前Before cutting 伐后After cutting 平均树高
Average tree height/m平均胸径
Average DBH/cm树种组成
Tree species composition蓄积量/
(m3·hm-2)Stock volume/
(m3·ha-1)林分密度/
(株·hm-2)Stand density/
(tree·ha-1)郁闭度
Coverage/%蓄积量/
(m3·hm-2)Stock volume/
(m3·ha-1)林分密度/
(株·hm-2)Stand density/
(tree·ha-1)郁闭度
Coverage/%1 0 594 3L6B1Z 105.56 2175 65 105.56 2175 65 12.37 11.36 2 9.43 635 7L3B 71.84 1659 65 65.06 1414 55 10.39 10.63 3 16.75 571 10L 111.53 2175 70 92.85 1712 50 12.56 12.03 4 29.00 670 10L 123.11 1512 70 87.41 1010 50 10.91 9.89 5 40.01 587 8L2B 146.39 2850 65 87.82 1950 45 11.38 11.40 6 53.09 554 9L1B 163.73 2000 65 76.81 1123 40 10.91 9.89 7 67.25 544 8L2B 179.74 2150 70 58.86 1200 40 12.96 12.67 注:L为落叶松,B为白桦,Z为樟子松; 在树种比例中,比例小于0.5的树种忽略不计。Notes: L for Larix gmelinii, B for Betula platyphylla, Z for Pinus sylvestris var. mongolica; in the proportion of tree species, trees with a ratio of less than 0.5 are neglected. 表 2 冠层结构参数
Table 2 Canopy structural parameters
样地编号
Sample No.林隙分数
Gap fraction/%开度
Canopy opening/%叶面积指数
Leaf area index叶倾角
Leaf inclination/(°)定点因子Fixed-point factor 辐射通量Radiation flux/(mol·m-2·d-1) 直接Direct 间接Indirect 总体Total 冠上On the crown 冠下Under the crown 直射Direct 散射Scattering 总体Total 直射Direct 散射Scattering 总体Total 1 6.937±1.01a 7.396±1.01ab 5.153±0.25a 14.76±0.73a 0.071±0.010a 0.132±0.021a 0.169±0.019a 29.87±0.36a 4.164±0.13a 34.03±0.24a 1.392±0.368ac 0.419±0.013a 1.627±0.134a 2 5.525±1.19ab 5.915±0.85bc 5.629±0.31b 14.76±0.49a 0.068±0.003ab 0.124±0.037a 0.157±0.029a 29.89±0.29a 4.162±0.18a 34.05±0.27a 1.278±0.032ac 0.387±0.016a 1.492±0.042b 3 4.107±1.11b 4.628±0.77c 6.716±0.24c 15.47±0.92a 0.042±0.009c 0.099±0.019ab 0.105±0.027bc 29.88±0.41a 4.165±0.24a 34.05±0.36a 0.965±0.029b 0.303±0.026b 1.113±0.027c 4 3.962±1.22b 4.397±1.01c 6.814±0.41c 14.76±0.43a 0.041±0.013c 0.117±0.016a 0.091±0.015c 29.88±0.29a 4.162±0.19a 34.04±0.28a 0.916±0.010b 0.422±0.016a 1.092±0.014c 5 5.293±1.25ab 5.614±0.91bc 5.927±0.14b 14.76±0.39a 0.053±0.006bc 0.102±0.030ab 0.139±0.031ab 29.73±0.38a 4.164±0.21a 33.89±0.34a 1.129±0.022bc 0.324±0.032b 1.289±0.033d 6 5.418±1.28ab 5.819±0.80bc 5.891±0.27b 13.97±0.36a 0.061±0.010ab 0.148±0.043a 0.158±0.038a 29.85±0.27a 4.161±0.23a 34.01±0.25a 1.156±0.078bc 0.517±0.030c 1.371±0.031d 7 7.261±1.43a 7.635±1.16a 5.017±0.17a 14.29±0.42a 0.072±0.007a 0.060±0.011b 0.173±0.014a 29.86±0.40a 4.139±0.41a 34.00±0.39a 1.491±0.034a 0.223±0.018d 1.623±0.037a 注:表中数字为“平均值±标准差”。同列不同字母表示差异显著(P < 0.05)。下同。Notes: the number in the table is “average ± standard deviation”. different letters in each column indicate significant difference (P<0.05). The same below. 表 3 冠层结构参数相关性
Table 3 Correlation of canopy structural parameters
冠层结构参数
Canopy structure parameter林隙分数
Gap fraction开度
Canopy opening叶面积指数
Leaf area index叶倾角
Leaf inclina-tion直接定点因子
Direct fixed-point factor间接定点因子
Indirect fixed-point factor总定点因子
Total fixed-point factor冠上直接辐射
Direct radiation on the crown冠上间接辐射
Indirect radiation on the crown冠上总辐射
Total radiation on the crown冠下直接辐射
Direct radiation under the crown冠下间接辐射
Indirect radiation under the crown冠下总辐射
Total radiation under the canopy林隙分数Gap fraction 1 开度Canopy opening 0.999** 1 叶面积指数Leaf area index -0.985** -0.979** 1 叶倾角Leaf inclination -0.497 -0.475 0.508 1 直接定点因子Direct fixed-point factor 0.931** 0.928** -0.971** -0.546 1 间接定点因子Indirect fixed-point factor -0.247 -0.242 0.177 -0.168 -0.030 1 总定点因子Total fixed-point factor 0.922** 0.915** -0.962** -0.599 0.970** -0.011 1 冠上直接辐射Direct radiation on the crown -0.038 -0.003 0.062 0.113 0.093 0.141 -0.078 1 冠上间接辐射Indirect radiation on the crown -0.607 -0.600 0.546 0.482 -0.485 0.726 -0.452 -0.104 1 冠上总辐射Total radiation on the crown -0.139 -0.103 0.153 0.193 0.013 0.262 -0.154 0.986** 0.063 1 冠下直接辐射Direct radiation under the crown 0.981** 0.980** -0.989** -0.463 0.965** -0.266 0.934** 0.042 -0.624 -0.062 1 冠下间接辐射Indirect radiation under the crown -0.244 -0.243 0.197 -0.351 -0.052 0.961** -0.036 0.165 0.577 0.262 -0.280 1 冠下总辐射Total radiation under the canopy 0.967** 0.967** -0.987** -0.485 0.989** -0.099 0.953** 0.084 -0.508 -2.7×10-5 0.985** -0.125 1 注:**表示相关性显著(P < 0.01)。Note:** represents significant correlation at P < 0.01 level. 表 4 落叶松光合参数
Table 4 Vegetation photosynthetic parameters
样地编号
Sample No.蒸腾速率
Transpiration rate/(mmol·m-2·s-1)光合速率
Photosynthetic rate/(μmol·m-2·s-1)CO2参考值
CO2 reference value/
(μmol·mol-1)叶片表面
P.A.Rleaf surface P.A.R/
(μmol·m-2·s-1)叶片温度
Leaf temperature/℃胞间CO2浓度
Intercellular CO2 concentration/
(μmol·mol-1)水蒸气气孔导度
Stomatal conductance/
(mmol·m-2·s-1)1 0.641±0.12a 1.743±0.22a 389.4±37.68a 425.9±41.64a 21.24±3.14a 395±31.83a 0.018±0.004a 2 0.742±0.17a 1.872±0.36ab 401.7±41.40a 486.2±39.21a 23.79±4.17a 353.7±28.40ab 0.022±0.008a 3 1.274±0.21bc 2.318±0.13b 428.5±52.12ab 579.2±76.01a 27.26±3.37ab 318.4±32.58b 0.031±0.003ab 4 2.268±0.41d 2.729±0.35c 432.7±42.59ab 1236.7±113.37b 30.39±2.69b 375.4±23.42ab 0.046±0.006c 5 1.635±0.32c 2.106±0.21ab 496.6±49.27b 1247.5±125.29b 37.13±4.25c 391.3±29.14a 0.035±0.007b 6 1.286±0.19bc 1.887±0.13ab 432.7±38.28ab 1124.5±162.63b 41.78±3.68c 317.1±40.63bc 0.029±0.008ab 7 0.992±0.12ab 1.759±0.24a 396.4±39.16a 1284.7±182.50b 43.54±4.43c 301.2±27.56c 0.021±0.007a 注:表中数字为“平均值±标准差”,同列不同字母表示差异显著(P < 0.05)。Notes: the number in the table is “average ± standard deviation”. Different letters in each column indicate significant difference at P<0.05 level. 表 5 落叶松光合特征参数相关性
Table 5 Correlation of vegetation photosynthetic parameters
光合参数
Photosynthetic parameter蒸腾速率
Transpiration rate光合速率
Photosynthetic rateCO2参考值
CO2 reference value叶片表面P.A.R
leaf surface P.A.R叶片温度
Leaf temperature胞间CO2浓度
Intercellular CO2 concentration水蒸气气孔导度
Stomatal conductance蒸腾速率Transpiration rate 1 光合速率Photosynthetic rate 0.883** 1 CO2参考值CO2 reference value 0.629 0.414 1 叶片表面P.A.R Leaf surface P.A.R 0.662 0.274 0.509 1 叶片温度Leaf temperature 0.281 -0.120 0.344 0.861* 1 胞间CO2浓度Intercellular CO2 concentration 0.17 0.195 0.298 -0.176 -0.533 1 水蒸气气孔导度Stomatal conductance 0.983** 0.929** 0.642 0.534 0.152 0.218 1 注:**表示相关性显著(P < 0.01),*表示相关性显著(P < 0.05)。下同。Notes:** represents significant correlation(P < 0.01),* represents significant correlation(P < 0.05). The same below. 表 6 冠层与光合参数相关关系
Table 6 Correlation of canopy and vegetation photosynthetic parameters
参数
Parameter林隙分数
Gap fraction叶面积指数
Leaf area index叶倾角
Leaf inclination间接定点因子
Indirect fixed-point factor冠上总辐射
Total radiation on the crown光合速率
Photosynthetic rateCO2参考值
CO2 reference value叶片表面P.A.R
Leaf surface P.A.R胞间CO2浓度
Intercellular CO2 concentration林隙分数Gap fraction 1 叶面积指数Leaf area index -0.985** 1 叶倾角Leaf inclination -0.497 0.508 1 间接定点因子Indirect fixed-point factor -0.247 0.177 -0.168 1 冠上总辐射Total radiation on the crown -0.139 0.153 0.193 0.262 1 光合速率Photosynthetic rate -0.875** 0.919** 0.459 0.006 0.108 1 CO2参考值CO2 reference value -0.490 0.462 0.099 0.008 -0.790 0.414 1 叶片表面P.A.R Leaf surface P.A.R -0.059 0.110 -0.526 -0.357 -0.566 0.274 0.509 1 胞间CO2浓度Intercellular CO2 concentration -0.076 0.046 0.248 0.370 -0.264 0.195 0.299 -0.176 1 表 7 林地光环境各指标值
Table 7 Index values of woodland light environment
样地编号
Sample No.林隙分数
Gap fraction/%叶面积指数
Leaf area index叶倾角Leaf
inclination/
(°)间接定点因子
Indirect fixed-point factor冠上总辐射
Total radiation on the crown/
(mol·m-2·d-1)光合速率
Photosynthetic rate/(μmol·m-2·s-1)CO2参考值
CO2 reference value/(μmol·mol-1)叶片表面P.A.R
Leaf surface P.A.R/
(μmol·m-2·s-1)胞间CO2浓度
Intercellular CO2 concentration/
(μmol·mol-1)1 6.937 5.153 14.76 0.132 34.034 1.743 389.4 425.9 395.0 2 5.525 5.629 14.76 0.124 34.052 1.872 401.7 486.2 353.7 3 4.107 6.716 15.47 0.099 34.045 2.318 428.5 579.2 318.4 4 3.962 6.814 14.76 0.117 34.042 2.729 432.7 1236.7 375.4 5 5.293 5.927 14.76 0.102 33.894 2.106 496.6 1247.5 391.3 6 5.418 5.891 13.97 0.148 34.011 1.887 432.7 1124.5 317.1 7 7.261 5.017 14.29 0.06 33.999 1.759 396.4 1284.7 301.2 表 8 林地光环境灰色关联评价
Table 8 Grey correlation evaluation of woodland light environment
样地编号Sample No. 关联度Correlation degree 1 0.724 2 0.673 3 0.701 4 0.823 5 0.794 6 0.739 7 0.713 -
[1] 张彦雷, 康峰峰, 韩海荣, 等.太岳山油松人工林冠下光环境特征与冠层结构[J].南京林业大学学报(自然科学版), 2014, 38(2):169-174. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201402034 Zhang Y L, Kang F F, Han H R, et al.Measurement and analysis on understory light environment and canopy structure of Pinus tabulaeformis plantation in the Taiyue Mountain[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2014, 38(2): 169-174. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201402034
[2] 徐丽宏, 时忠杰, 王彦辉, 等.六盘山主要植被类型冠层截留特征[J].应用生态学报, 2010, 21(10):2487-2493. http://d.old.wanfangdata.com.cn/Periodical/yystxb201010006 Xu L H, Shi Z J, Wang Y H, et al. Canopy interception characteristics of main vegetation types in Liupan Mountains of China[J]. Chinese Journal of Applied Ecology, 2010, 21(10):2487-2493. http://d.old.wanfangdata.com.cn/Periodical/yystxb201010006
[3] Kane V R K R, Bakker J D B D, Mcgaughey M G J, et al. Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data[J]. Canadian Journal of Forest Research, 2010, 40(40):774-787. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f2410b9c53db772cb8faacd31a0c6c40
[4] Morton D C, Nagol J, Carabajal C C, et al. Amazon forests maintain consistent canopy structure and greenness during the dry season[J]. Nature, 2014, 506:221. doi: 10.1038/nature13006
[5] 田平, 韩海荣, 康峰峰, 等.密度调整对太岳山华北落叶松人工林冠层结构及林下植被的影响[J].北京林业大学学报, 2016, 38(8):45-53. doi: 10.13332/j.1000-1522.20160018 Tian P, Han H R, Kang F F, et al. Influence of density adjustment on canopy structure and understory vegetation of the Larix principis-rupprechtii plantation in Taiyue Mountain, Shanxi, China[J]. Journal of Beijing Forestry University, 2016, 38(8):45-53. doi: 10.13332/j.1000-1522.20160018
[6] 时忠杰, 张宁南, 何常清, 等.桉树人工林冠层、凋落物及土壤水文生态效应[J].生态学报, 2010, 30(7):1932-1939. http://d.old.wanfangdata.com.cn/Periodical/stxb201007033 Shi Z J, Zhang N N, He C Q, et al.Eco-hydrological effect of the canopy, litter and soil of a eucalyptus plantation in South China[J]. Acta Ecologica Sinica, 2010, 30(7):1932-1939. http://d.old.wanfangdata.com.cn/Periodical/stxb201007033
[7] 刘蔚漪, 范少辉, 刘广路, 等.闽北不同类型毛竹林冠层降雨再分配特征[J].南京林业大学学报(自然科学版), 2011, 35(4):63-66. doi: 10.3969/j.issn.1000-2006.2011.04.013 Liu W Y, Fan S H, Liu G L, et al. Characteristics of rainfall redistribution under the canopy of different types Phyllostachys edulis forests in Northern Fujian Province[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2011, 35(4):63-66. doi: 10.3969/j.issn.1000-2006.2011.04.013
[8] Zhao K, Popescu S, Meng X, et al. Characterizing forest canopy structure with lidar composite metrics and machine learning[J]. Remote Sensing of Environment, 2012, 115(8):1978-1996. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a6bdd91edd634bec4e7a877b82705c35
[9] Garbulsky M F, Peñuelas J, Gamon J, et al. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis[J]. Remote Sensing of Environment, 2011, 115(2):281-297. doi: 10.1016/j.rse.2010.08.023
[10] 钟泳林, 王志云, 冼丽铧, 等.基于粗糙集的林木冠层结构和光分布对净光合速率影响研究[J].中南林业科技大学学报, 2014, 34(4):43-49. doi: 10.3969/j.issn.1673-923X.2014.04.009 Zhong Y L, Wang Z Y, Xian L H, et al. Effects of canopy structure and solar radiation distribution on net photosynthetic rate based on rough set theory[J].Journal of Central South University of Forestry & Technology, 2014, 34(4):43-49. doi: 10.3969/j.issn.1673-923X.2014.04.009
[11] 郑益兴, 彭兴民, 吴疆翀, 等.印楝种源不同生长季节冠层间的光响应特征[J].林业科学研究, 2011, 24(2):176-183. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201102007 Zheng Y X, Peng X M, Wu J C, et al. Light response characteristics of Azadirachta indica provenances in different growing seasons within crowns[J]. Forest Research, 2011, 24(2):176-183. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201102007
[12] 周晓果, 温远光, 朱宏光, 等.大明山常绿阔叶林冠层垂直结构与林下植物更新[J].应用生态学报, 2017, 28(2):367-374. http://d.old.wanfangdata.com.cn/Periodical/yystxb201702001 Zhou X G, Wen Y G, Zhu H G, et al. Canopy vertical structure and understory plant regeneration of an evergreen broadleaved forest in Damingshan, Guangxi, China[J]. Chinese Journal of Applied Ecology, 2017, 28(2):367-374. http://d.old.wanfangdata.com.cn/Periodical/yystxb201702001
[13] 张甜, 朱玉杰, 董希斌.抚育间伐对大兴安岭天然用材林冠层结构及光环境特征的影响[J].东北林业大学学报, 2016, 44(10):1-7. doi: 10.3969/j.issn.1000-5382.2016.10.001 Zhang T, Zhu Y J, Dong X B. Canopy structure and light characters after tending felling in Daxing'an Mountains[J].Journal of Northeast Forestry University, 2016, 44(10):1-7. doi: 10.3969/j.issn.1000-5382.2016.10.001
[14] 郎莹, 张光灿, 张征坤, 等.不同土壤水分下山杏光合作用光响应过程及其模拟[J].生态学报, 2011, 31(16):4499-4508. http://d.old.wanfangdata.com.cn/Periodical/stxb201116002 Lang Y, Zhang G C, Zhang Z K, et al. Light response of photosynthesisand its simulation in leaves of Prunus sibirica L.under different soil water conditions[J]. Acta Ecologica Sinica, 2011, 31(16):4499-4508. http://d.old.wanfangdata.com.cn/Periodical/stxb201116002
[15] Kull O, Niinemets U. Distribution of leaf photosynthetic properties in tree canopies: comparison of species with different shade tolerance[J]. Functional Ecology, 2010, 12(3):472-479. http://cn.bing.com/academic/profile?id=4cd6dbf3945fcfdfd5bffba9a2dbe2c5&encoded=0&v=paper_preview&mkt=zh-cn
[16] 韩刚, 赵忠.不同土壤水分下4种沙生灌木的光合光响应特性[J].生态学报, 2010, 30(15):4019-4026. http://d.old.wanfangdata.com.cn/Periodical/stxb201015008 Han G, Zhao Z. Light response characteristics of photosynthesis of four xerophilous shrubs under different soil moistures[J]. Acta Ecologica Sinica, 2010, 30(15):4019-4026. http://d.old.wanfangdata.com.cn/Periodical/stxb201015008
[17] 鲁肃, 张宇清, 吴斌, 等.水分胁迫下油蒿光合光响应过程及其模拟[J].北京林业大学学报, 2014, 36(1):55-61. http://j.bjfu.edu.cn/article/id/9959 Lu S, Zhang Y Q, Wu B, et al. Measurement and simulation of photosynthesis-light response process in Artemisia ordosica under water stress[J]. Journal of Beijing Forestry University, 2014, 36(1):55-61. http://j.bjfu.edu.cn/article/id/9959
[18] Polívka T, Frank H A. Molecular factors controlling photosynthetic light harvesting by carotenoids.[J]. Accounts of Chemical Research, 2010, 43(8):1125. doi: 10.1021/ar100030m
[19] Chen J, Wu F H, Wang W H, et al. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings[J]. Journal of Experimental Botany, 2011, 62(13):4481-4493. doi: 10.1093/jxb/err145
[20] 刘宪钊, 陆元昌, 周燕华.退化次生林恢复过程中群落结构和生态位动态[J].生态学杂志, 2010, 29(1):22-28. http://d.old.wanfangdata.com.cn/Periodical/stxzz201001004 Liu X Z, Lu Y C, Zhou Y H. Dynamic changes of plant community structure and population niche in the recovery process of degenerated secondary forests[J]. Chinese Journal of Ecology, 2010, 29(1):22-28. http://d.old.wanfangdata.com.cn/Periodical/stxzz201001004
[21] 周洋, 郑小贤.福建三明栲树次生林树种间联结性研究[J].中南林业科技大学学报, 2016, 36(1):101-106. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201601017 Zhou Y, Zheng X X. Study on interspecific association of Castanopsis fargesii secondary forest in Jiangle, county Fujian province[J]. Journal of Central South University of Forestry & Technology, 2016, 36(1):101-106. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201601017
[22] 朱玉杰, 董希斌, 李祥.不同抚育强度对兴安落叶松幼苗光合作用的影响[J].东北林业大学学报, 2015, 43(10):51-54. doi: 10.3969/j.issn.1000-5382.2015.10.010 Zhu Y J, Dong X B, Li X. Effect of different intensity tending on photosynthesis of Larix gmelini seedling[J]. Journal of Northeast Forestry University, 2015, 43(10):51-54. doi: 10.3969/j.issn.1000-5382.2015.10.010
[23] 谭一波, 何琴飞, 郑威, 等.珠江流域中上游防护林冠层结构对林下植被的影响[J].生态学杂志, 2016, 35(12):3148-3156. http://d.old.wanfangdata.com.cn/Periodical/stxzz201612002 Tan Y B, He Q F, Zheng W, et al. Effects of canopy structure on understory vegetation in shelterbelt forests along the middle and upper reaches of Pearl River[J]. Chinese Journal of Ecology, 2016, 35(12):3148-3156. http://d.old.wanfangdata.com.cn/Periodical/stxzz201612002
[24] 张甜, 朱玉杰, 董希斌, 等.抚育间伐对小兴安岭天然针阔混交次生林生境的影响[J].北京林业大学学报, 2017, 39(10):1-12. doi: 10.13332/j.1000-1522.20170187 Zhang T, Zhu Y J, Dong X B, et al. Effects of thinning on the habitat of natural mixed broadleaf-conifer secondary forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(10):1-12. doi: 10.13332/j.1000-1522.20170187
[25] 熊亚运, 夏文通, 王晶, 等.基于观赏价值和种球再利用的郁金香品种综合评价与筛选[J].北京林业大学学报, 2015, 37(1):107-114. doi: 10.13332/j.cnki.jbfu.2015.01.010 Xiong Y Y, Xia W T, Wang J, et al. Comprehensive evaluation and screening of tulip cultivars based on their ornamental value and reuse of bulbs[J]. Journal of Beijing Forestry University, 2015, 37(1):107-114. doi: 10.13332/j.cnki.jbfu.2015.01.010
[26] 吴雁雯, 张金池, 刘鑫, 等.凤阳山阔叶混交林主要树种光合蒸腾特性研究:基于灰色关联法[J].南京林业大学学报(自然科学版), 2015, 39(1):55-61. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201501011 Wu Y W, Zhang J C, Liu X, et al. Analysis of photosynthesis and transpiration characteristics of typical tree species in the broad-leaved mixed forest of Fengyang Mountain:based on grey correlation method[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2015, 39(1):55-61. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201501011
[27] 曲杭峰, 董希斌, 马晓波, 等.大兴安岭不同类型低质林改造效果的综合评价[J].东北林业大学学报, 2016, 44(12):1-5. doi: 10.3969/j.issn.1000-5382.2016.12.001 Qu H F, Dong X B, Ma X B, et al. Effect of different types of low-quality forest transformation in Daxing'an Mountains on comprehensive evaluation[J].Journal of Northeast Forestry University, 2016, 44(12):1-5. doi: 10.3969/j.issn.1000-5382.2016.12.001
[28] 毛波, 董希斌.大兴安岭低质山杨林改造效果的综合评价[J].东北林业大学学报, 2016, 44(8):7-12. doi: 10.3969/j.issn.1000-5382.2016.08.002 Mao B, Dong X B. Comprehensive evaluation on the effect of transformation of low-quality Populus davidiana forest in Daxing'an Mountains[J]. Journal of Northeast Forestry University, 2016, 44(8):7-12. doi: 10.3969/j.issn.1000-5382.2016.08.002
[29] 吴恒, 党坤良, 田相林, 等.秦岭林区天然次生林与人工林立地质量评价[J].林业科学, 2015, 51(4):78-88. http://d.old.wanfangdata.com.cn/Periodical/lykx201504010 Wu H, Dang K L, Tian X L, et al. Evaluating site quality for secondary forests and plantation in Qinling Mountains[J]. Scientia Silvae Sinicae, 2015, 51(4):78-88. http://d.old.wanfangdata.com.cn/Periodical/lykx201504010
[30] 王平.西南山地两种阔叶林冠层结构特征的研究[D].成都: 四川农业大学, 2016. Wang P. Research on the canopy structure characteristics of mountain broad-leaved forest in the South-West[D].Chengdu: Sichuan Agricultural University, 2016.
[31] 于文颖, 纪瑞鹏, 冯锐, 等.不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应[J].生态学报, 2015, 35(9):2902-2909. http://d.old.wanfangdata.com.cn/Periodical/xinnc201817088 Yu W Y, Ji R P, Feng R, et al. Response of water stress on photosynthetic characteristics and water use efficiency of maize leaves in different growth stage[J]. Acta Ecologica Sinica, 2015, 35(9):2902-2909. http://d.old.wanfangdata.com.cn/Periodical/xinnc201817088
[32] 曹生奎, 冯起, 司建华, 等.胡杨光合蒸腾与影响因子间关系的研究[J].干旱区资源与环境, 2012, 26(4):155-159. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201204028 Cao S K, Feng Q, Si J H, et al. Relationships of photosynthesis and transpiration of Populus euphratica with their affecting factors[J]. Journal of Arid Land Resources and Environment, 2012, 26(4):155-159. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201204028
[33] 赵风华, 王秋凤, 王建林, 等.小麦和玉米叶片光合-蒸腾日变化耦合机理[J].生态学报, 2011, 31(24):7526-7532. http://d.old.wanfangdata.com.cn/Periodical/stxb201124023 Zhao F H, Wang Q F, Wang J L, et al. Photosynthesis-transpiration coupling mechanism of wheat and maize during daily variation[J]. Acta Ecologica Sinica, 2011, 31(24):7526-7532. http://d.old.wanfangdata.com.cn/Periodical/stxb201124023
[34] 郭江, 肖凯, 郭新宇, 等.玉米冠层结构、光分布和光合作用研究综述[J].玉米科学, 2005, 13(2):55-59. doi: 10.3969/j.issn.1005-0906.2005.02.019 Guo J, Xiao K, Guo X Y, et al. Review onmaize canopy structure, light distributing and canopy photosynthesis[J].Journal of Maize Sciences, 2005, 13(2):55-59. doi: 10.3969/j.issn.1005-0906.2005.02.019
[35] 姚文秀, 赵成章, 陈静, 等.张掖湿地旱柳冠层内垂直层次光截获与叶片光合生理性状的关系[J].生态学杂志, 2018, 37(2):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201805006.htm Yao W X, Zhao C Z, Chen J, et al. The relationship between light interception and photosynthetic physiological characters in vertical level within the canopy of Salix matsudana in Zhangye Wetland[J]. Chinese Journal of Ecology, 2018, 37(2):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201805006.htm
-
期刊类型引用(8)
1. 马尔妮,王瑜瑶,李京予,仲翔. 水分对木材细胞壁孔隙结构影响研究进展. 北京林业大学学报. 2024(02): 1-8 . 本站查看
2. 崔文燕,王明涛,章宇麒,罗执赢,于建芳. 六环石改性杨木木材的制备. 林产工业. 2024(05): 24-27+69 . 百度学术
3. 曹树扬,施静波,董友明,吕建雄. 不同温度下斜叶桉木材吸湿、解吸等温线与热力学性质. 化工进展. 2024(09): 5095-5105 . 百度学术
4. 王凯清,周子懿,马尔妮. 基于糠醇改性的木材细胞壁孔隙变化对水分的影响. 北京林业大学学报. 2023(09): 127-136 . 本站查看
5. 许威,曹军,花军,陈光伟. 高应变率加载自由水对全饱和木材原料解离强度的影响. 东北林业大学学报. 2023(12): 125-129 . 百度学术
6. 王瑜瑶,马尔妮. 不同预处理方法对木材细胞壁孔隙结构影响. 北京林业大学学报. 2023(11): 140-151 . 本站查看
7. 李韵珂,栗振鑫,张语桐,易启睿,马尔妮. 水分引发的木材细胞壁无定形物质对纤维素结晶结构的影响. 北京林业大学学报. 2022(12): 121-131 . 本站查看
8. 赵喜龙,王喜明,贺勤,王磊,邵伟. 人工林杨木皱缩恢复工艺参数优化研究. 林产工业. 2022(10): 19-22 . 百度学术
其他类型引用(2)