• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yu Wenjing, Yang Shuai, Huang Ying, Diao Guiping. Analysis of insect resistance ability of the serine protease inhibitor PtrSPI from Populus tomentosa[J]. Journal of Beijing Forestry University, 2021, 43(9): 51-58. DOI: 10.12171/j.1000-1522.20210163
Citation: Yu Wenjing, Yang Shuai, Huang Ying, Diao Guiping. Analysis of insect resistance ability of the serine protease inhibitor PtrSPI from Populus tomentosa[J]. Journal of Beijing Forestry University, 2021, 43(9): 51-58. DOI: 10.12171/j.1000-1522.20210163

Analysis of insect resistance ability of the serine protease inhibitor PtrSPI from Populus tomentosa

More Information
  • Received Date: April 29, 2021
  • Revised Date: June 16, 2021
  • Available Online: July 13, 2021
  • Published Date: October 14, 2021
  •   Objective  To lay the foundation of the development of new insect-resistant biological pesticides in trees, the insect-resistant function of the serine protease inhibitor PtrSPI of Populus tomentosa was studied.
      Method  To analyze the function of serine protease inhibitor gene PtrSPI, the promoter and the expression pattern under feeding stress of Lymantria dispar larvaes of the gene PtrSPI in P. tomentosa were studied. To discuss the anti-insect ability of PtrSPI, the food intake, the body mass, the mortality and the serine protease enzyme activities of L. dispar larvae were studied after using the eukaryotic recombinant protein PtrSPI feeding L. dispar larvaes.
      Result  The results showed that 5 elements related to plant resistance to disease and insects were in the promoter region of the serine protease inhibitor gene PtrSPI of P. tomentosa; the expression pattern of the gene PtrSPI in P. tomentosa leaves was firstly decreased and then increased after being fed by L. dispar larvae, and the peak was 2.03 times of the control at 30 h; under the high concentration of recombinant protein (300 and 500 mg/mL), the food intake and the body mass of L. dispar larvaes were significantly inhibited, the mortality of L. dispar larvaes was up to more than 60% after 4 and 6 days, respectively, and the activities of the serine protease in L. dispar larvaes were significantly increased at the beginning of feeding.
      Conclusion  This study verifies the insect resistance of the serine protease inhibitor PtrSPI of P. tomentosa, and it provides theoretical basis and research materials for further research and development of new non-pollution and insect-resistance biological pesticides.
  • [1]
    孙红, 周艳涛, 李晓东, 等. 2020年全国主要林业有害生物发生情况及2021年发生趋势预测[J]. 中国森林病虫, 2021, 40(2):45−48.

    Sun H, Zhou Y T, Li X D, et al. The occurrence of major forest pests in China in 2020 and the occurrence trend forecast in 2021[J]. Forest Pest and Disease, 2021, 40(2): 45−48.
    [2]
    吕云彤, 张琪慧, 苑冉, 等. 中国森林害虫化学防治研究进展[J]. 环境昆虫学报, 2018, 40(3):543−552.

    Lü Y T, Zhang Q H, Yuan R, et al. Advances in chemical control for forest pests of China[J]. Journal of Environmental Entomology, 2018, 40(3): 543−552.
    [3]
    Johana C, Misas V, Renier L, et al. Papein-like cysteine proteases as hubs in plant immunity[J]. New Phytologist, 2016, 4: 902−907.
    [4]
    Remya P P, Kannan V M. Screening of plant seeds for protease inhibitor against larval gut proteases of Spodoptera Mauritia (boisd.) (Lepidoptera: noctuidae)[J]. International Journal of Agriculture Sciences, 2019, 2: 7773−7776.
    [5]
    赵丽芳, 陶美林, 潘国庆. 丝氨酸蛋白酶抑制剂超家族的研究进展[J]. 蝉业科学, 2016, 42(3):532−540.

    Zhao L F, Tao M L, Pan G Q. Advances in serine protease inhibitors (serpin) superfamily[J]. Science of Sericulture, 2016, 42(3): 532−540.
    [6]
    孙新菊. 低温处理下的白玉菇丝氨酸蛋白酶的活性及分子特性[J]. 江苏农业科学, 2015, 43(9):270−272.

    Sun X J. Activity and molecular characteristics of sproteinase of Hypsizygus marmoreus treated by low temperature[J]. Jiangsu Agricultural Sciences, 2015, 43(9): 270−272.
    [7]
    Nicole M, Vladimir G, Bernhard S, et al. Characterization of novel insect associated peptidases for hydrolysis of food proteins[J]. European Food Research and Technology, 2015, 240(2): 431−439. doi: 10.1007/s00217-014-2342-5
    [8]
    李雪. 半胱氨酸蛋白酶抑制剂相关基因SRAC1的功能分析[D]. 泰安: 山东农业大学, 2016.

    Li X. Function analysis of cystatin-associated gene SRAC1[D]. Antai: Shandong Agricultural University, 2016.
    [9]
    Savic J, Nikolic R, Banjac N, et al. Beneficial implications of sugar beet proteinase inhibitor BvSTI on plant architecture and salt stress tolerance in Lotus corniculatus L.[J/OL]. Journal of Plant Physiology, 2019, 243: 153055 [2021−02−11]. https://doi.org/10.1016/j.jplph.2019.153055.
    [10]
    王长春, 刘真真, 叶涛, 等. 蛋白酶抑制子在植物与病原物互作中的作用[J]. 浙江师范大学学报, 2019, 42(2):190−194.

    Wang C C, Liu Z Z, Ye T, et al. The role of protease inhibitors in the interaction between plants and pathogens[J]. Journal of Zhejiang Normal University, 2019, 42(2): 190−194.
    [11]
    杨帅, 黄颖, 王志英, 等. 毛果杨丝氨酸蛋白酶抑制剂基因的克隆及真核表达[J]. 东北林业大学学报, 2020, 48 (5): 88−98.

    Yang S, Huang Y, Wang Z Y, et al. Cloning and eukaryotic expression of a PtrSPI gene from Populus trichocarpa[J]. Journal of Northeast Forestry University, 2019, 2020, 48 (5): 88−98.
    [12]
    朱琨, 翟莹, 于海伟, 等. 大豆GmNCED5基因非生物胁迫响应及生物信息分析[J/OL]. 大豆科学, 2021 [2021−05−27]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DDKX20210526001&v=j7LtoqI9wdecn1GRgp7ZM%25mmd2FWuRmF9%25mmd2BxuQnMGKV7WEEj1rMLJg5FMs8L8ht3buP6eI.

    Zhu K, Zhai Y, Yu H W, et al. Response of soybean GmNCED5 gene under abiotic stress and its bioinformatics analysis [J/OL]. Soybean Science, 2021 [2021−05−27]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=DDKX20210526001&v=j7LtoqI9wdecn1GRgp7ZM%25mmd2FWuRmF9%25mmd2BxuQnMGKV7WEEj1rMLJg5FMs8L8ht3buP6eI.
    [13]
    李豆, 苏功博, 胡晓晴, 等. 白桦BpSPL6基因启动子的克隆及表达分析[J/OL]. 北京林业大学学报, 2021: 1−9 [2021−06−13]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=BJLY20210610000&v=VOz5fs4kSA7FoO8WWRdDy1eYWNL4kqN1cvWnimOH9efoz4xTnEZnTkV2rwvlqgzW.

    Li D, Su G B, Hu X Q, et al. Cloning and expression analysis of BpSPL6 promoter from Betula platyphylla [J/OL]. Journal of Beijing Foresty University, 2021: 1−9 [2021−06−13]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=BJLY20210610000&v=VOz5fs4kSA7FoO8WWRdDy1eYWNL4kqN1cvWnimOH9efoz4xTnEZnTkV2rwvlqgzW.
    [14]
    张璐鑫. 低温胁迫对小麦根系生理及茎基腐病致病菌含量影响[D]. 保定: 河北农业大学, 2020.

    Zhang L X. Effects of low temperature stress on root physiology and pathogen content of stem base rot of wheat[D]. Baoding: Hebei Agricultural University, 2020.
    [15]
    Huang Y, Mijiti G, Wang Z Y. Functional analysis of the class II hydrophobin gene HFB2-6 from the biocontrol agent Trichoderma asperellum ACCC30536[J]. Microbiological, 2015, 171: 8−20. doi: 10.1016/j.micres.2014.12.004
    [16]
    Paola Z, Chiara F, Milena F, et al. Determination of anti-p52 IgM and anti-gB IgG by ELISA as a novel diagnostic tool for detection of early and late phase of primary human cytomegalovirus infections during pregnancy[J]. Journal of Clinical Virology, 2019, 120: 38−43. doi: 10.1016/j.jcv.2019.09.006
    [17]
    李欣悦, 王振越, 曹传旺. LdNPV对CO2胁迫下舞毒蛾生长发育及生化酶活性影响[J]. 北京林业大学学报, 2019, 41(9):139−146.

    Li X Y, Wang Z Y, Cao C W. Effects of LdNPV on growth, development and biochemical enzymatic activities of Lymantria dispar under CO2 concentration stress[J]. Journal of Beijing Forestry University, 2019, 41(9): 139−146.
    [18]
    王雯. 丝氨酸蛋白酶ACYPI4531在豌豆免疫防御反应中的作用研究[D]. 杨凌: 西北农业科技大学, 2019.

    Wang W. The role of serine protease ACYP4531 in immune responses of the pea aphid, Acythosiphon pisum[D]. Yangling: Northwest A&F University, 2019.
    [19]
    刘会香, 张星耀. 植物蛋白酶抑制剂及其在林木抗虫基因工程中的应用[J]. 林业科学, 2005, 43(3):148−156. doi: 10.3321/j.issn:1001-7488.2005.03.025

    Liu H X, Zhang X Y. Plant protease inhibitors their application on forest tree resisting pest genetic engineering[J]. Scientia Silvae Sinicae, 2005, 43(3): 148−156. doi: 10.3321/j.issn:1001-7488.2005.03.025
    [20]
    Zhu J, He Y, Yan X M, et al. Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant (Camellia sinensis)[J]. Horticulture Research, 2019, 6(1): 126. doi: 10.1038/s41438-019-0208-5
    [21]
    谢可方, 董爱武, 忻骅, 等. 大豆KUNITZ型胰蛋白酶抑制剂的稳定性及抗虫性研究[J]. 复旦学报(自然科学版), 2002, 41(6):631−634.

    Xie K F, Dong A W, Xin H, et al. A study of the stability and insect resistance of soybean KUNTIZ-type trypsin inhibitor[J]. Journal of Fudan University (Natural Science), 2002, 41(6): 631−634.
    [22]
    Saikhedkar N S, Joshi R S, Yadav A K, et al. Phyto-inspired cyclic peptides derived from plant Pin-II type protease inhibitor reactive center loops for crop protection from insect pests[J]. Biochimica et Biophysica Acta, 2019, 1863(8): 1254−1262. doi: 10.1016/j.bbagen.2019.05.003
    [23]
    Guimaraes L C, Oliveira C F R, Marangoni S, et al. Purification and characterization of a Kunitz inhibitor from Poincianella pyramidalis with insecticide activity against the Mediterranean flour moth[J]. Pesticide Biochemistry and Physiology, 2015, 118: 1−9. doi: 10.1016/j.pestbp.2014.12.001
    [24]
    Raha O, Arwa B, Hanan A A, et al. Production of a biopesticide on host and non-host serine protease inhibitors for red palm weevil in palm trees[J]. Saudi Journal of Biological Sciences, 2020, 27(10): 2803−2808. doi: 10.1016/j.sjbs.2020.06.048
    [25]
    Fabio K T, Walter R T. Molecular insights into mechanisms of lepidopteran serine proteinase resistance to natural plant defenses[J]. Biochemical and Biophysical Research Communications, 2015, 467(4): 885−891. doi: 10.1016/j.bbrc.2015.10.049
    [26]
    Bendre A D, Ramasamu S, Suresh C G. Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights[J]. International Journal of Biological Macromolecules, 2018, 113: 933−943. doi: 10.1016/j.ijbiomac.2018.02.148
    [27]
    Bhattacharyya A, Rai S, Babu C R. A trypsin and chymotrypsin inhibitor from Caesalpinia bonduc seeds: Isolation, partial characterization and insecticidal properties[J]. Plant Physiology and Biochemistry, 2007, 45: 169−177. doi: 10.1016/j.plaphy.2007.02.003
    [28]
    Leo F R, Bonadé-BOTTINO M A, Ceci L R, et al. Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants[J]. Plant Physiology, 1998, 118(3): 997−1004. doi: 10.1104/pp.118.3.997
    [29]
    Patston P A, Gettins P G W. Significance of secondary structure predictions on the reactive center loop region of seprins: a model for the folding of serpins into a metastablestate[J]. FEBS Letters, 1996, 383(1−2): 87−92. doi: 10.1016/0014-5793(96)00231-1
    [30]
    冯玮. 植物蛋白酶抑制剂研究进展概述[J]. 生物学教学, 2020, 45(12):61−63. doi: 10.3969/j.issn.1004-7549.2020.12.026

    Feng W. Review on the research progress of plant protease inhibitor[J]. Biology Teaching, 2020, 45(12): 61−63. doi: 10.3969/j.issn.1004-7549.2020.12.026
  • Related Articles

    [1]Cui Yanhong, Bi Huaxing, Hou Guirong, Wang Ning, Wang Shanshan, Zhao Danyang, Ma Xiaozhi, Yun Huiya. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 77-87. DOI: 10.12171/j.1000-1522.20200122
    [2]Li Cong, Lu Mei, Ren Yulian, Du Fan, Tao Hai, Yang Luoping, Wang Dongxu. Distribution of soil nitrogen components of Wenshan typical subtropical forests along an altitude gradient and its influencing factors in Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(12): 63-73. DOI: 10.12171/j.1000-1522.20200252
    [3]Wang Fengjuan, Tong Xinyu, Xia Xiaoyu, Fu Qun, Guo Qingqi. Effects of simulated different cooking temperatures on the quality of Korean pine seed oil and principal component analysis[J]. Journal of Beijing Forestry University, 2019, 41(11): 116-124. DOI: 10.13332/j.1000-1522.20190115
    [4]Zhao Yu, Jin Kun. Preliminary analysis on the summer habitat selection of Mongolia subspecies of goitred gazelle in Wulate, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 115-123. DOI: 10.13332/j.1000-1522.20180049
    [5]Li Lianqiang, Niu Shukui, Chen Feng, Tao Changsen, Chen Ling, Zhang Peng. Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2019, 41(3): 58-67. DOI: 10.13332/j.1000-1522.20180361
    [6]AN Hai-long, LIU Qing-qian, CAO Xue-hui, ZHANG Gang, WANG Hui, LIU Chao, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places[J]. Journal of Beijing Forestry University, 2016, 38(1): 59-66. DOI: 10.13332/j.1000--1522.20150164
    [7]CHEN Si-yu, YANG Hui, HAN Jiao, ZHANG Da-wei, ZHAO Shan-shan, ZHANG Zhong-hui, GUO Zhong-ling, YANG Yu-chun. Provenance variation of seed traits of Juglans mandshurica in Changbai mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2015, 37(12): 32-40. DOI: 10.13332/j.1000-1522.20150278
    [8]QU Chao-qi, MAN Xiu-ling, DUAN Liang-liang. Comprehensive evaluation on the effects of different biological agents on survival rate, growth, physiological and biochemical indexes of desert plant Yucca brevifolia seedlings[J]. Journal of Beijing Forestry University, 2012, 34(4): 67-72.
    [9]ZHUANG Jian-qi, , CUI Peng, GE Yong-gang, HONG Yong. Relationship between rainfall characteristics and total amount of debris flow[J]. Journal of Beijing Forestry University, 2009, 31(4): 77-83.
    [10]MO Chang-ming, MA Xiao-jun, , QI Li-wang, BAI Long-hua, SHI Lei, FENG Shi-xin. Genetic variation, correlation and path analysis of Siraitia grosvenorii germplasm characters.[J]. Journal of Beijing Forestry University, 2008, 30(4): 121-125.

Catalog

    Article views (1063) PDF downloads (42) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return