• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yu Xiao, Ouyang Xunzhi, Pan Ping, Deng Wenping, Peng Songli, Zang Hao, Hu Rongrong. Spatial structure characteristics and its evaluation of evergreen broadleaved forest at different growth stages in Lushan Mountain, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(12): 32-40. DOI: 10.12171/j.1000-1522.20210450
Citation: Yu Xiao, Ouyang Xunzhi, Pan Ping, Deng Wenping, Peng Songli, Zang Hao, Hu Rongrong. Spatial structure characteristics and its evaluation of evergreen broadleaved forest at different growth stages in Lushan Mountain, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(12): 32-40. DOI: 10.12171/j.1000-1522.20210450

Spatial structure characteristics and its evaluation of evergreen broadleaved forest at different growth stages in Lushan Mountain, Jiangxi Province of eastern China

More Information
  • Received Date: November 09, 2021
  • Revised Date: January 19, 2022
  • Accepted Date: July 28, 2022
  • Available Online: July 31, 2022
  • Published Date: December 24, 2023
  •   Objective  The analysis of stand spatial structure at different growth stages is conductive to understanding stand regeneration and stability, which can provide reference for optimizing stand spatial structure and natural vegetation restoration.
      Method  In the study, the evergreen broadleaved forest in Lushan Mountain, Jiangxi Province of eastern China was taken as the research object. The tree growth was divided into four stages: sapling (1 cm ≤ DBH < 5 cm), small tree (5 cm ≤ DBH < 10 cm), middle tree (10 cm ≤ DBH < 20 cm) and large tree (DBH ≥ 20 cm). The comprehensive index of spatial structure was constructed by four kinds of spatial structure parameters: mingling, neighborhood comparison, crowding degree and uniform angle index. The weight was assigned by entropy weight method.
      Result  (1) The proportions of sapling, small tree, medium tree and large tree were 72.7%, 16.8%, 6.5% and 4.0%, respectively. The diameter class structure of the stand was generally inverse ‘J’ type. (2) The average mingling of sapling, small tree, middle tree and large tree were 0.609, 0.746, 0.815 and 0.822, respectively. The average neighborhood comparison of them was 0.545, 0.268, 0.132 and 0.089, respectively. The average crowding degree of them was 0.852, 0.895, 0.871 and 0.842, respectively. The average uniform angle index of them was 0.576, 0.563, 0.553 and 0.507, respectively. With the increase of diameter class, the degree of mingling and growth dominance of trees increased, and the density of trees first increased and then decreased. The distribution pattern gradually changed from aggregation distribution to random distribution. (3) The weight of neighborhood comparison of small tree, medium tree and large tree was more than 75.0%. The way of optimizing spatial structure should mainly regulate the degree of forest differentiation. The weight of mingling and neighborhood comparison of sapling were 0.364 and 0.388, respectively. To optimize its spatial structure, the degree of forest mingling and differentiation should be mainly controlled simultaneously. The comprehensive index of spatial structure was large tree (0.054) < middle tree (0.082) < small tree (0.117) < sapling (0.265).
      Conclusion  The spatial structure of evergreen broadleaved forest in Lushan Mountain was gradually improved with the increase of diameter class. The best spatial structure was the large tree and the worst was the sapling. According to the spatial structure characteristics of trees at different growth stages, different forest management measures can be taken to optimize the spatial structure.
  • [1]
    Looney C E, D’Amato A W, Palik B J, et al. Size-growth relationship, tree spatial patterns, and tree-tree competition influence tree growth and stand complexity in a 160-year red pine chronosequence[J]. Forest Ecology and Management, 2018, 424: 85−94. doi: 10.1016/j.foreco.2018.04.044
    [2]
    Baskent E Z, Keles S. Spatial forest planning: a review[J]. Ecological Modelling, 2005, 188(2−4): 145−173.
    [3]
    Pommerening A, Stoyan D. Reconstructing spatial tree point patterns from nearest neighbour summary statistics measured in small subwindows[J]. Canadian Journal of Forest Research, 2008, 38(5): 1110−1122. doi: 10.1139/X07-222
    [4]
    惠刚盈, 胡艳波. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004

    Hui G Y, Hu Y B. Measuring species spatial isolation in mixed forests[J]. Forest Research, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004
    [5]
    惠刚盈, Gadow K V, Matthias A. 一个新的林分空间结构参数: 大小比数[J]. 林业科学研究, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001

    Hui G Y, Gadow K V, Matthias A. A new parameter for stand spatial structure: neighbourhood comparison[J]. Forest Research, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001
    [6]
    胡艳波, 惠刚盈. 基于相邻木关系的林木密集程度表达方式研究[J]. 北京林业大学学报, 2015, 37(9): 1−8. doi: 10.13332/j.1000-1522.20150125

    Hu Y B, Hui G Y. How to describe the crowding degree of trees based on the relationship of neighboring trees[J]. Journal of Beijing Forestry University, 2015, 37(9): 1−8. doi: 10.13332/j.1000-1522.20150125
    [7]
    惠刚盈, Gadow K V, 胡艳波. 林分空间结构参数角尺度的标准角选择[J]. 林业科学研究, 2004, 17(6): 687−692. doi: 10.3321/j.issn:1001-1498.2004.06.001

    Hui G Y, Gadow K V, Hu Y B. The optimum standard angle of the uniform angle index[J]. Forest Research, 2004, 17(6): 687−692. doi: 10.3321/j.issn:1001-1498.2004.06.001
    [8]
    曹小玉, 李际平, 封尧, 等. 杉木生态公益林林分空间结构分析及评价[J]. 林业科学, 2015, 51(7): 37−48.

    Cao X Y, Li J P, Feng Y, et al. Analysis and evaluation of the stand spatial structure of Cunninghamia lanceolata ecological forest[J]. Scientia Silvae Sinicae, 2015, 51(7): 37−48.
    [9]
    董灵波, 刘兆刚, 马妍, 等. 天然林林分空间结构综合指数的研究[J]. 北京林业大学学报, 2013, 35(1): 16−22. doi: 10.13332/j.1000-1522.2013.01.016

    Dong L B, Liu Z G, Ma Y, et al. A new composite index of stand spatial structure for natural forest[J]. Journal of Beijing Forestry University, 2013, 35(1): 16−22. doi: 10.13332/j.1000-1522.2013.01.016
    [10]
    Zhang T, Dong X, Guan H, et al. Effect of thinning on the spatial structure of a Larix gmelinii Rupr. secondary forest in the Greater Khingan Mountains[J]. Forests, 2018, 9(11): 720. doi: 10.3390/f9110720
    [11]
    李显良, 张贵, 李建军. 熵权−云模型法在环洞庭湖区林分空间结构评价中的应用[J]. 中南林业科技大学学报, 2021, 41(4): 12−19.

    Li X L, Zhang G, Li J J. Application of entropy weight cloud model method in evaluation of stand spatial structure around Dongting Lake[J]. Journal of Central South University of Forestry & Technology, 2021, 41(4): 12−19.
    [12]
    陈科屹, 张会儒, 雷相东, 等. 基于目标树经营的抚育采伐对云冷杉针阔混交林空间结构的影响[J]. 林业科学研究, 2017, 30(5): 718−726. doi: 10.13275/j.cnki.lykxyj.2017.05.003

    Chen K Y, Zhang H R, Lei X D, et al. Effect of thinning on spatial structure of spruce-fir mixed broadleaf-conifer forest base on crop tree management[J]. Forest Research, 2017, 30(5): 718−726. doi: 10.13275/j.cnki.lykxyj.2017.05.003
    [13]
    Zou Z H, Yi Y, Sun J N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment[J]. Journal of Environmental Sciences, 2006, 18(5): 1020−1023. doi: 10.1016/S1001-0742(06)60032-6
    [14]
    Nagpal R, Mehrotra D, Bhatia P K. Usability evaluation of website using combined weighted method: fuzzy AHP and entropy approach[J]. International Journal of System Assurance Engineering and Management, 2016, 7(4): 408−417.
    [15]
    Xie C S, Dong D P, Hua S P, et al. Safety evaluation of smart grid based on AHP-entropy method[J]. Systems Engineering Procedia, 2012, 4: 203−209. doi: 10.1016/j.sepro.2011.11.067
    [16]
    Hu G, Jin Y, Liu J, et al. Functional diversity versus species diversity: relationships with habitat heterogeneity at multiple scales in a subtropical evergreen broad-leaved forest[J]. Ecological Research, 2014, 29(5): 897−903. doi: 10.1007/s11284-014-1178-6
    [17]
    陈晓熹, 李群, 黄久香, 等. 翁源青云山自然保护区亚热带常绿阔叶林群落结构和区系特征[J]. 林业科学研究, 2020, 33(5): 77−85.

    Chen X X, Li Q, Huang J X, et al. The community structure and floristic characteristics of subtropical evergreen broadleaved forest in Qingyunshan Nature Reserve, Guangdong[J]. Forest Research, 2020, 33(5): 77−85.
    [18]
    赵洋毅, 王克勤, 陈奇伯, 等. 西南亚热带典型天然常绿阔叶林的空间结构特征[J]. 西北植物学报, 2012, 32(1): 187−192. doi: 10.3969/j.issn.1000-4025.2012.01.030

    Zhao Y Y, Wang K Q, Chen Q B, et al. Spatial structural characteristics of typical natural evergreen broad-leaved forest features of southwest subtropical area, China[J]. Journal of Northwest Forestry University, 2012, 32(1): 187−192. doi: 10.3969/j.issn.1000-4025.2012.01.030
    [19]
    范忆, 楼一恺, 库伟鹏, 等. 天目山紫楠种群年龄结构与点格局分析[J]. 浙江农林大学学报, 2020, 37(6): 1027−1035. doi: 10.11833/j.issn.2095-0756.20190631

    Fan Y, Lou Y K, Ku W P, et al. Age structure and spatial point pattern of Phoebe sheareri population in Mount Tianmu[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1027−1035. doi: 10.11833/j.issn.2095-0756.20190631
    [20]
    王进, 艾训儒, 朱江, 等. 木林子保护区优势种翅柃种群结构与空间分布格局[J]. 西北植物学报, 2019, 39(11): 2053−2063.

    Wang J, Ai X R, Zhu J, et al. Population structure and spatial distribution pattern of dominant species Eurya alata in Mulinzi Nature Reserve, Hubei Province[J]. Journal of Northwest Forestry University, 2019, 39(11): 2053−2063.
    [21]
    余鑫, 许崇华, 朱永一, 等. 北亚热带常绿阔叶林凋落物生产量及其与林分因子的关系[J]. 浙江农林大学学报, 2016, 33(6): 991−999. doi: 10.11833/j.issn.2095-0756.2016.06.010

    Yu X, Xu C H, Zhu Y Y, et al. Litterfall production and its relation to stand structural factors in a subtropical evergreen broadleaf forest[J]. Journal of Zhejiang A&F University, 2016, 33(6): 991−999. doi: 10.11833/j.issn.2095-0756.2016.06.010
    [22]
    刘信中, 王琅. 江西省庐山自然保护区生物多样性考察与研究[M]. 北京: 科学出版社, 2010.

    Liu X Z, Wang L. Scientific investigation and research on biodiversity in Lushan Nature Reserve, Jiangxi Province[M]. Beijing: Science Press, 2010.
    [23]
    万加武, 夏海林, 周赛霞, 等. 江西庐山国家级自然保护区珍稀濒危植物优先保护定量研究[J]. 热带亚热带植物学报, 2019, 27(2): 171−180. doi: 10.11926/jtsb.3947

    Wan J W, Xia H L, Zhou S X, et al. Quantitative study on conservation priority of rare and endangered plants in Lushan National Nature Reserve, Jiangxi[J]. Journal of Tropical and Subtropical Botany, 2019, 27(2): 171−180. doi: 10.11926/jtsb.3947
    [24]
    柴宗政. 基于相邻木关系的森林空间结构量化评价及R语言编程实现[D]. 杨凌: 西北农林科技大学, 2016.

    Chai Z Z. Quantitative evaluation and R programming of forest spatial structure based on the relationship of neighborhood trees[D]. Yangling: Northwest Agricultural and Forestry University of Science and Technology, 2016.
    [25]
    李帅, 魏虹, 倪细炉, 等. 基于层次分析法和熵权法的宁夏城市人居环境质量评价[J]. 应用生态学报, 2014, 25(9): 2700−2708.

    Li S, Wei H, Ni X L, et al. Evaluation of urban human settlement quality in Ningxia based on AHP and the entropy method[J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2700−2708.
    [26]
    惠刚盈, 胡艳波, 刘瑞红. 森林观察研究中的林分空间优势度分析方法[J]. 温带林业研究, 2019, 2(1): 1−6,12. doi: 10.3969/j.issn.2096-4900.2019.01.001

    Hui G Y, Hu Y B, Liu R H. Methods of analyzing stand spatial dominance in forest observational studies[J]. Journal of Temperate Forestry Research, 2019, 2(1): 1−6,12. doi: 10.3969/j.issn.2096-4900.2019.01.001
    [27]
    Ciceu A, Pitar D, Badea O. Modeling the diameter distribution of mixed uneven-aged stands in the south western carpathians in Romania[J]. Forests, 2021, 12(7): 958. doi: 10.3390/f12070958
    [28]
    Hubbell S P. Neutral theory and the evolution of ecological equivalence[J]. Ecology, 2006, 87(6): 1387−1398. doi: 10.1890/0012-9658(2006)87[1387:NTATEO]2.0.CO;2
    [29]
    吕寻, 杨双宝, 刘文桢, 等. 小陇山锐齿栎原始群落林木径阶空间结构特征[J]. 北京林业大学学报, 2015, 37(5): 11−18.

    Lü X, Yang S B, Liu W Z, et al. Analysis of spatial structure characteristics based on diameter class of trees in primeval Quercus aliena var. acuteserrata community in the forest area of Xiaolong Mountain, Gansu Province[J]. Journal of Beijing Forestry University, 2015, 37(5): 11−18.
    [30]
    Wang X, Liang C, Wang W. Balance between facilitation and competition determines spatial patterns in a plant population[J]. Chinese Science Bulletin, 2014, 59(13): 1405−1415. doi: 10.1007/s11434-014-0142-8
    [31]
    Gray L, He F. Spatial point-pattern analysis for detecting density-dependent competition in a boreal chronosequence of Alberta[J]. Forest Ecology and Management, 2009, 259(1): 98−106. doi: 10.1016/j.foreco.2009.09.048
    [32]
    黄小波, 李帅锋, 苏建荣, 等. 云龙天池云南松自然种群分布格局分析[J]. 林业科学研究, 2018, 31(4): 47−52.

    Huang X B, Li S F, Su J R, et al. Distribution of Pinus yunnanensis natural population in Yunlong Tianchi National Nature Reserve[J]. Forest Research, 2018, 31(4): 47−52.
    [33]
    李帅锋, 刘万德, 苏建荣, 等. 滇西北金沙江流域云南红豆杉群落种内与种间竞争[J]. 生态学杂志, 2013, 32(1): 33−38.

    Li S F, Liu W D, Su J R, et al. Intra-and interspecific competitions of Taxus yunnanensis population in Jinsha River Basin of northwest Yunnan Province, Southwest China[J]. Chinese Journal of Ecology, 2013, 32(1): 33−38.
    [34]
    陈科屹, 张会儒, 张博, 等. 云冷杉天然次生林死木分布格局及空间关联性[J]. 应用生态学报, 2021, 32(8): 2745−2754.

    Chen K Y, Zhang H R, Zhang B, et al. Spatial distribution and associations of dead woods in natural spruce-fir secondary forests[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2745−2754.
    [35]
    王芊姿, 喻阳华, 郑维. 人工林化感效应防控研究与展望[J]. 世界林业研究, 2020, 33(5): 31−36.

    Wang Q Z, Yu Y H, Zheng W. Research and prospect on allelopathy effect prevention and control of plantation[J]. World Forestry Research, 2020, 33(5): 31−36.
    [36]
    李婷婷, 容丽, 王梦洁, 等. 黔中喀斯特次生林群落结构动态[J]. 广西植物, 2021, 41(5): 684−694. doi: 10.11931/guihaia.gxzw202005035

    Li T T, Rong L, Wang M J, et al. Dynamics of phytoecommunity structure of karst secondary forest in Central Guizhou[J]. Guihaia, 2021, 41(5): 684−694. doi: 10.11931/guihaia.gxzw202005035
    [37]
    林富成, 王维芳, 门秀莉, 等. 兴安落叶松人工林空间结构优化[J]. 北京林业大学学报, 2021, 43(4): 68−76.

    Lin F C, Wang W F, Men X L, et al. Spatial structure optimal of Larix gmelinii plantation[J]. Journal of Beijing Forestry University, 2021, 43(4): 68−76.
  • Related Articles

    [1]Zhang Lingfeng, Liu Zhaogang, Dong Lingbo. Development stage division and stand structure characteristics of natural hard broadleaved forest in Maor Mountain, Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2025, 47(2): 10-22. DOI: 10.12171/j.1000-1522.20240169
    [2]Zhang Zhi, Guo Yang, Wan Shuke, Zhang Mengtao. Effects of spatial structure of Picea asperata secondary forest on light environment in Guandi Mountain of northern China[J]. Journal of Beijing Forestry University, 2023, 45(12): 41-48. DOI: 10.12171/j.1000-1522.20220391
    [3]Wei Yugui, Peng Wanyu, Qiu Yingqing, Feng Wenzhong, Bai Tianjun, Ye Qing, Deng Wenping. Response of water use efficiency of Cryptomeria japonica to climate change in Lushan Mountain, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 48-57. DOI: 10.12171/j.1000-1522.20220279
    [4]Xie Yi, Yang Hua. Relationship between stand spatial structure and DBH increment of principal species in natural spruce-fir mixed forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(9): 1-11. DOI: 10.12171/j.1000-1522.20210280
    [5]Zheng Yonghong, Zhang Yunyu, Wang Dan, Yu Jiahe, Wang Jialin. Marginal effect of radial growth of Cryptomeria japonica to climate in Lushan Mountain of southwestern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 63-69. DOI: 10.12171/j.1000-1522.20200372
    [6]Bai Tianjun, Liu Yuanqiu, Wen Linsheng, Pan Jun, Cao Wen, Zheng Xiling, Zou Qin, Deng Wengping. Response of earlywood and latewood ring width of Cryptomeria japonica to climate change in Lushan Mountain, eastern China[J]. Journal of Beijing Forestry University, 2020, 42(9): 61-69. DOI: 10.12171/j.1000-1522.20190439
    [7]LÜ Yan-jie, YANG Hua, ZHANG Qing, WANG Quan-jun, SUN Quan. Effects of spatial structure on DBH increment of natural spruce-fir forest[J]. Journal of Beijing Forestry University, 2017, 39(9): 41-47. DOI: 10.13332/j.1000-1522.20170184
    [8]PENG Mi, GUO Qing-xi.. Minimum area of the community spatial structure of broadleaf-Korean pine forest in Shengshan Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(12): 21-27. DOI: 10.13332/j.1000-1522.20150519
    [9]CHEN Ya-nan, YANG Hua, MA Shi-you, REN Mei-mei.. Spatial structure diversity of semi-natural and plantation stands of larix gmelini in Changbai Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2015, 37(12): 48-58. DOI: 10.13332/j.1000-1522.20150171
    [10]ZHENG Jingming, XU Man, SUN Yan, WAN Hui-lin, LIANG Tong-jun. Comparison of roadside alien plant composition inside and outside Lushan Nature Reserve, Jiangxi Province[J]. Journal of Beijing Forestry University, 2011, 33(3): 51-56.
  • Cited by

    Periodical cited type(11)

    1. 何秋玲,陈晓玉,杨申明,徐兴丽,向雪梅,王振吉. 无花果原花青素超声辅助提取工艺优化及抗氧化性研究. 生物化工. 2024(04): 1-7+12 .
    2. 林赛婷,田君飞,史荣祥,王欣莹,陈俊宇,王传浩,万小芳,陈广学. 微波辅助低共熔溶剂高效提取油茶壳原花青素的工艺优化. 应用化工. 2023(02): 398-403 .
    3. 焦思宇,许丁予,姚先超,刘鑫,林春燕,何丽欣,林日辉. 壳聚糖微花对原花青素吸附机理的研究. 食品工业科技. 2023(18): 43-49 .
    4. 郝丽,杨志伟. 超声波-酶法提取紫甘蓝花青素条件优化及其抗氧化和消化酶抑制活性研究. 食品安全质量检测学报. 2023(22): 295-304 .
    5. 颜雪琴,蔡金燕. 超临界CO_2萃取黑土豆原花青素及抗氧化性研究. 当代化工. 2023(12): 2803-2807 .
    6. 詹昕,赵芳芳,高志强,杨珍平,杨文平. 喷施有机硒肥对黑糯玉米籽粒硒及花青素含量的影响. 山西农业科学. 2022(02): 199-205 .
    7. 熊颖,禹霖,柏文富,李建挥,严佳文,聂东伶,吴思政. 不同品种蓝莓果实品质特征和抗氧化能力及多酚组成的比较. 中南林业科技大学学报. 2022(02): 119-128 .
    8. 汪建红. 双水相辅助内部沸腾法提取桂花叶黄酮. 食品研究与开发. 2022(04): 22-28 .
    9. 高琪,陈志远,刘艳妮. 皂素废水改良蓝莓土壤的重金属安全性评价. 中国果树. 2021(05): 33-37+109 .
    10. 吕筱,郑天元,韦新月,窦子珊,高晨佳,蔡冉,孟琬星,王汝华. 花生红衣中原花青素的提取工艺与活性研究. 农产品加工. 2021(09): 27-31 .
    11. 周海旭,谢美玉,高晗,李波,苏同超,李忠海. 樟树叶木脂素和多酚超声辅助同步提取工艺优化. 食品与机械. 2020(10): 143-148 .

    Other cited types(8)

Catalog

    Article views (855) PDF downloads (166) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return