• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wei Yugui, Peng Wanyu, Qiu Yingqing, Feng Wenzhong, Bai Tianjun, Ye Qing, Deng Wenping. Response of water use efficiency of Cryptomeria japonica to climate change in Lushan Mountain, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 48-57. DOI: 10.12171/j.1000-1522.20220279
Citation: Wei Yugui, Peng Wanyu, Qiu Yingqing, Feng Wenzhong, Bai Tianjun, Ye Qing, Deng Wenping. Response of water use efficiency of Cryptomeria japonica to climate change in Lushan Mountain, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 48-57. DOI: 10.12171/j.1000-1522.20220279

Response of water use efficiency of Cryptomeria japonica to climate change in Lushan Mountain, Jiangxi Province of eastern China

More Information
  • Received Date: July 09, 2022
  • Revised Date: October 17, 2022
  • Available Online: March 01, 2023
  • Published Date: March 24, 2023
  •   Objective  This study aimed to theoretically support the scientific assessment of the carbohydrate-water coupling connection of Cryptomeria japonica.
      Method  The water use efficiency (WUE) of Cryptomeria japonica was calculated using the tree-ring stable carbon isotope method in this study. Additionally, average temperatures (T), precipitation (W), average wind speeds (Ws), solar radiation (Rs), the drought index (SPEI, SPI, WI), and other climate change-related indicators were used to analyze the WUE of Cryptomeria japonica and its adaptation to climate change.
      Result  (1) From 1969 to 2018, the sequence of 13C values of Cryptomeria japonica tree rings in Lushan Mountain, Jiangxi Province of eastern China showed a downward trend; the variation range was −23.09‰ to −25.67‰, and the annual average was −24.55‰; the inter-annual value of Cryptomeria japonica WUE showed an upward trend; the variation range was 91.06 to 118.89 μmol/mol, with an annual average of 102.37 μmol/mol. (2) Correlation analysis revealed that the WUE of Cryptomeria japonica in Lushan Mountain was significantly correlated with the temperature in July, September to November of the previous year, February to June, and September to November of the current year, and significantly negatively correlated with the wind speed in July to December of the previous year and January to December of the current year. However, the solar radiation, precipitation, SPEI, WI, and SPI of each month had no significant impact on the WUE of Cryptomeria japonica on Lushan Mountain. (3)The multiple regression model analysis showed that the WUE of Cryptomeria japonica on Lushan Mountain was mainly related to Ws1 (wind speed in January of the current year), T3 (average temperature in March of the current year), T9 (average temperature in September of the current year), T−9 (average temperature in September of the previous year), and Ws12 (wind speed in December of the current year).
      Conclusion  T and Ws are the primary climatic variables affecting WUE of Cryptomeria japonica. The WUE of Cryptomeria japonica on Lushan Mountain is not significantly affected by W, Rs, or the drought indicators (SPI, SPEI and WI).
  • [1]
    李金群, 葛继稳, 彭凤姣, 等. 大九湖泥炭湿地生态系统碳水通量及水分利用效率研究[J]. 安全与环境工程, 2019, 26(1): 14−25.

    Li J Q, Ge J W, Peng F J, et al. Studies on carbon-water flux and water use efficiency in Dajiuhu peat wetland ecosystem[J]. Safety and Environmental Engineering, 2019, 26(1): 14−25.
    [2]
    Adams H D, Guardiola-Clarmonte M, Barron-Gafford G A, et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought[J]. Proceedings of the National Academy of Sciences, 2009, 106(17): 7063−7066. doi: 10.1073/pnas.0901438106
    [3]
    Williams A P, Allen C D, Millar C I, et al. Forest responses to increasing aridity and warmth in the southwestern United States[J]. Proceedings of the National Academy of Sciences, 2010, 107(50): 21289−21294. doi: 10.1073/pnas.0914211107
    [4]
    Devi N M, Kukarskih V V, Galimova A A, et al. Climate change evidence in tree growth and stand productivity at the upper treeline ecotone in the Polar Ural Mountains[J]. Forest Ecosystems, 2020, 7(1): 1−16. doi: 10.1186/s40663-019-0212-0
    [5]
    Leemans R, Eickhout B. Another reason for concern: regional and global impacts on ecosystems for different levels of climate change[J]. Global Environmental Change, 2004, 14(3): 219−228. doi: 10.1016/j.gloenvcha.2004.04.009
    [6]
    Huang M T, Piao S I, Sun Y, et al. Change in terrestrial ecosystem water-use efficiency over the last three decades[J]. Global Change Biology, 2015, 21(6): 2366−2378. doi: 10.1111/gcb.12873
    [7]
    杜晓铮, 赵祥, 王昊宇, 等. 陆地生态系统水分利用效率对气候变化的响应研究进展[J]. 生态学报, 2018, 38(23): 8296−8305.

    Du X Z, Zhao X, Wang H Y, et al. Responses of terrestrial ecosystem water use efficiency to climate change: a review[J]. Acta Ecologica Sinica, 2018, 38(23): 8296−8305.
    [8]
    夏磊. 全球陆地生态系统水分利用效率及人为用地植被缺失热效应估算[D]. 北京: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2015.

    Xia L. Water use efficiency in global terrestrial ecosystems and estimate of heat balance relating to vegetation in artificial areas[D]. Beijing: Graduate School of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Eco-Environment, Ministry of Education), 2015.
    [9]
    张良侠, 胡中民, 樊江文, 等. 区域尺度生态系统水分利用效率的时空变异特征研究进展[J]. 地球科学进展, 2014, 29(6): 691−699.

    Zhang L X, Hu Z M, Fan J W, et al. Advances in the spatiotemporal dynamics in ecosystem water use efficiency at regional scale[J]. Advances in Earth Science, 2014, 29(6): 691−699.
    [10]
    史芮林, 张庆芬, 李铭, 等. 植物碳同位素分馏在水分利用效率研究中的应用[J]. 中国农学通报, 2022, 38(23): 15−20.

    Shi R L, Zhang Q F, Li M, et al. Application of plant carbon isotope fractionation in the study of water use efficiency[J]. Chinese Agricultural Science Bulletin, 2022, 38(23): 15−20.
    [11]
    毕敏慧. 不同进化类型植物叶片光合特征对干旱、复水及低温的响应 [D]. 兰州: 兰州大学, 2017.

    Bi M H. Photosynthetic characteristic to dehydration, rehydration and low temperature in different evolutionary species[D]. Lanzhou: Lanzhou University, 2017.
    [12]
    沈芳芳, 樊后保, 吴建平, 等. 植物叶片水平δ13C与水分利用效率的研究进展[J]. 北京林业大学学报, 2017, 39(11): 114−124.

    Shen F F, Fan H B, Hu J P, et al. Review on carbon isotope composition (δ13C) and its relationship with water use efficiency at leaf level[J]. Journal of Beijing Forestry University, 2017, 39(11): 114−124.
    [13]
    Farquhar G A, O’Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Functional Plant Biology, 1982, 9(2): 121−137. doi: 10.1071/PP9820121
    [14]
    Anyia A O, Slaski J J, Nyachiro J M, et al. Relationship of carbon isotope discrimination to water use efficiency and productivity of barley under field and greenhouse conditions[J]. Journal of Agronomy and Crop Science, 2007, 193(5): 313−323. doi: 10.1111/j.1439-037X.2007.00274.x
    [15]
    Chen J J, Zhang S X, Anyia O. The physiology and stability of leaf carbon isotope discrimination as a measure of water-use efficiency in barley on the Canadian prairies[J]. Journal of Agronomy and Crop Science, 2011, 197(1): 1−11. doi: 10.1111/j.1439-037X.2010.00440.x
    [16]
    赵凤君, 沈应柏, 高荣孚, 等. 叶片δ13C与长期水分利用效率的关系[J]. 北京林业大学学报, 2006, 28(6): 40−45. doi: 10.3321/j.issn:1000-1522.2006.06.007

    Zhao F J, Shen Y B, Gao R F, et al. Relationship between foliar carbon isotope composition (δ13C) and long-term water use efficiency (WUEL)[J]. Journal of Beijing Forestry University, 2006, 28(6): 40−45. doi: 10.3321/j.issn:1000-1522.2006.06.007
    [17]
    路伟伟, 余新晓, 贾国栋, 等. 基于树轮δ13C值的北京山区油松水分利用效率[J]. 生态学报, 2017, 37(6): 2093−2100.

    Lu W W, Yu X X, Jia G D, et al. Variation characteristics of long-term water use efficiency based on tree-ringcarbon isotope discrimination[J]. Aata Ecologica Sinica, 2017, 37(6): 2093−2100.
    [18]
    Kannenberg S A, Driscoll A W, Szejner P, et al. Rapid increases in shrubland and forest intrinsic water-use efficiency during an ongoing megadrought[J]. Proceedings of the National Academy of Sciences, 2021, 118(52): e2118052118. doi: 10.1073/pnas.2118052118
    [19]
    Gagen M, Finsinger W, Wagner-Cremer F, et al. Evidence of changing intrinsic water-use efficiency under rising atmospheric CO2 concentrations in Boreal Fennoscandia from subfossil leaves and tree ring δ13C ratios[J]. Global Change Biology, 2011, 17(2): 1064−1072. doi: 10.1111/j.1365-2486.2010.02273.x
    [20]
    邓文平, 郭锦荣, 邹芹, 等. 庐山日本柳杉林下穿透雨时空分布特征[J]. 生态学报, 2021, 41(6): 2428−2438.

    Deng W P, Guo J R, Zou Q, et al. Characteristics of the temporal and spatial distribution of the throughfall in Cryptomeria japonica forest in Mount Lu[J]. Acta Ecologica Sinica, 2021, 41(6): 2428−2438.
    [21]
    刘新圣, 李松志, 莫申国. 庐山植物旅游资源及其开发利用[J]. 南方园艺, 2015, 26(4): 56−59. doi: 10.3969/j.issn.1674-5868.2015.04.020

    Liu X S, Li S Z, Mo S G. Plant tourism resources and its utilization in Lushan Mountain[J]. Southern Horticulture, 2015, 26(4): 56−59. doi: 10.3969/j.issn.1674-5868.2015.04.020
    [22]
    万加武, 夏海林, 周赛霞, 等. 江西庐山国家级自然保护区珍稀濒危植物优先保护定量研究[J]. 热带亚热带植物学报, 2019, 27(2): 171−180.

    Wan J W, Xia H L, Zhou S X, et al. Quantitative study on conservation priority of rare and endangered plants in Lushan National Nature Reserve, Jiangxi[J]. Journal of Tropical and Subtropical Botany, 2019, 27(2): 171−180.
    [23]
    于法展, 张忠启, 陈龙乾, 等. 江西庐山自然保护区主要森林植被水土保持功能评价[J]. 长江流域资源与环境, 2015, 24(4): 578−584.

    Yu F Z, Zhang Z Q, Chen L Q, et al. Research on soil and water conservation function of main forest vegetation in Lushan Nature Reserve in Jiangxi Province[J]. Resources and Environment in the Yangtze Basin, 2015, 24(4): 578−584.
    [24]
    李嘉宁, 张贇, 田昆, 等. 玉龙雪山不同针叶树种树轮宽度年表特征及其与气候因子的关系[J]. 西北植物学报, 2022, 42(3): 473−480.

    Li J N, Zhang Y, Tian K, et al. Tree-ring width chronology characteristics of different conifers and their relationship with climate factors on Yulong Snow Mountain[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(3): 473−480.
    [25]
    王春学, 秦宁生, 庞轶舒, 等. 树轮宽度记录的1861年以来松潘地区秋雨指数变化特征及其形成机理[J]. 水土保持研究, 2022, 29(2): 296−303. doi: 10.3969/j.issn.1005-3409.2022.2.stbcyj202202042

    Wang C X, Qin N S, Pang Y S, et al. Characteristics and formation mechanism of autumn rain recorded by tree-ring width in Songpan District since 1861[J]. Research of Soil and Water Conservation, 2022, 29(2): 296−303. doi: 10.3969/j.issn.1005-3409.2022.2.stbcyj202202042
    [26]
    张振, 金国庆, 丰忠平, 等. 马尾松年轮稳定碳同位素比率(δ13C)变化特征及影响因子分析[J]. 植物资源与环境学报, 2019, 28(4): 24−31.

    Zhang Z, Jin G Q, Feng Z P, et al. Analyses on variation characteristics and influence factors of ring stable carbon isotope ratio (δ13C) of Pinus massoniana[J]. Journal of Plant Resources and Environment, 2019, 28(4): 24−31.
    [27]
    Zheng P F, Wang D D, Jia G D, et al. Variation in water supply leads to different responses of tree growth to warming[J]. Forest Ecosystems, 2022, 9: 100003. doi: 10.1016/j.fecs.2022.100003
    [28]
    Allen R G, Pereira L S, Raes D, et al. FAO irrigation and drainage paper No. 56[M]. Rome: Food and Agriculture Organization of the United Nations, 1998.
    [29]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 气象干旱等级: GB/T 20481—2017[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration. Meteorological drought grade: GB/T 20481−2017[S]. Beijing: China Standards Press, 2017.
    [30]
    Feng S, Fu Q. Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics, 2013, 13(19): 10081−10094. doi: 10.5194/acp-13-10081-2013
    [31]
    Zadworny M, Jagodziński A M, Łakomy P, et al. Regeneration origin affects radial growth patterns preceding oak decline and death insights from tree-ring δ13C and δ18O[J]. Agricultural and Forest Meteorology, 2019, 278: 107685. doi: 10.1016/j.agrformet.2019.107685
    [32]
    李肖娟, 张福平, 王虎威, 等. 黑河流域植被水分利用效率时空变化特征及其与气候因子的关系[J]. 中国沙漠, 2017, 37(4): 733−741.

    Li X J, Zhang F P, Wang H W, et al. Analysis of the spatio-temporal characteristics of water use efficiency of vegetation and its relationship with climate in the Heihe River Basin[J]. Journal of Desert Research, 2017, 37(4): 733−741.
    [33]
    王鹏涛, 延军平, 蒋冲, 等. 2000—2012年陕甘宁黄土高原区地表蒸散时空分布及影响因素[J]. 中国沙漠, 2016, 36(2): 499−507.

    Wang P T, Yan J P, Jiang C, et al. Spatial and temporal variations of evapotranspiration and its influencing factors in the Loess Plateau in Shaanxi-Gansu-Ningxia region[J]. Journal of Desert Research, 2016, 36(2): 499−507.
    [34]
    张振香. 广东省气温和降水的趋势与突变分析[D]. 北京: 华北电力大学(北京), 2018.

    Zhang Z X. Trend and mutation analysis of temperature precipitation in the Guangdong Province[D]. Beijing: North China Electric Power University (Beijing), 2018.
    [35]
    Zhou Y K. Characterizing the spatio-temporal dynamics and variability in climate extremes over the Tibetan Plateau during 1960–2012[J]. Journal of Resources and Ecology, 2019, 10(4): 397−414. doi: 10.5814/j.issn.1674-764x.2019.04.007
    [36]
    李江风, 袁玉江, 由希尧. 树木年轮水文学研究与应用[M]. 北京: 科学出版社, 2000.

    Li J F, Yuan Y J, You X Y. The study on tree ring hydrology and its applications[M]. Beijing: Science Press, 2000.
    [37]
    O’Learry M H. Carbon isotopes in photosynthesis[J]. BioScience, 1988, 38(5): 328−336. doi: 10.2307/1310735
    [38]
    胡中民, 于贵瑞, 王秋凤, 等. 生态系统水分利用效率研究进展[J]. 生态学报, 2009, 29(3): 1498−1507. doi: 10.3321/j.issn:1000-0933.2009.03.048

    Hu Z M, Yu G R, Wang Q F, et al. Ecosystem level water use efficiency: a review[J]. Acta Ecologica Sinica, 2009, 29(3): 1498−1507. doi: 10.3321/j.issn:1000-0933.2009.03.048
    [39]
    Tan Z H, Zhang Y P, Deng X B, et al. Interannual and seasonal variability of water use efficiency in a tropical rainforest: results from a 9-year eddy flux time series[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(2): 464−479. doi: 10.1002/2014JD022535
    [40]
    Song Q H, Fei X H, Zhang Y P, et al. Water use efficiency in a primary subtropical evergreen forest in Southwest China[J]. Scientific Reports, 2017, 7(1): 1−10. doi: 10.1038/s41598-016-0028-x
    [41]
    Liu Y B, Xiao J F, Ju W M, et al. Water use efficiency of China’s terrestrial ecosystems and responses to drought[J]. Scientific Reports, 2015, 5(1): 1−12. doi: 10.9734/JSRR/2015/14076
    [42]
    Huang L, He B, Han L, et al. A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data[J]. Science of the Total Environment, 2017, 601: 1097−1107.
    [43]
    周佳, 孟平, 张劲松, 等. 河南民权与陕西白水刺槐径向生长与水分利用效率对气候响应的差异[J]. 林业科学研究, 2021, 34(6): 1−8.

    Zhou J, Meng P, Zhang J S, et al. Differences in the response of radial growth and intrinsic water use efficiency of Robinia pseudoacacia to climatic factors in Minquan of Henan Province and Baishui of Shaanxi Province[J]. Forest Research, 2021, 34(6): 1−8.
    [44]
    崔茜琳, 何云玲, 李宗善. 青藏高原植被水分利用效率时空变化及与气候因子的关系[J]. 应用生态学报, 2022, 33(6): 1525−1532.

    Cui Q L, He Y L, Li Z S. Spatial-temporal variation of vegetation water use efficiency and its relationship with climate factors over the Qinghai-Tibet Plateau, China[J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1525−1532.
    [45]
    仇宽彪, 成军锋. 陕西省植被水分利用效率及与气候因素的关系[J]. 水土保持研究, 2015, 22(6): 256−260.

    Qiu K B, Cheng J F. Vegetation water use efficiency and its relationship with climate in Shaanxi Province[J]. Research of Soil and Water Conservation, 2015, 22(6): 256−260.
    [46]
    Seyed R S, Sa’ari M, Shaharin I, et al. Comparison of daily and monthly results of three evapotranspiration models in tropical zone: a case study[J]. American Journal of Environmental Sciences, 2009, 5(6): 698−705. doi: 10.3844/ajessp.2009.698.705
    [47]
    Anten N P R, Alcalá H R, Schieving F, et al. Wind and mechanical stimuli differentially affect leaf traits in Plantago major[J]. New Phytologist, 2010, 188(2): 554−564. doi: 10.1111/j.1469-8137.2010.03379.x
    [48]
    王云霓. 宁夏六盘山主要树种及典型森林植被的水分利用效率研究[D]. 北京: 中国林业科学研究院, 2012.

    Wang Y N. Study on water use efficiency of main tree species and typical forest types in Liupan Mountains of Ningxia[D]. Beijing: Chinese Academy of Forestry, 2012.
    [49]
    徐晓桃. 黄河源区NPP及植被水分利用效率时空特征分析[D]. 兰州: 兰州大学, 2008.

    Xu X T. Spatial and temporal analysis of net primary productivity and water use efficiency in Yellow River source region[D]. Lanzhou: Lanzhou University, 2008.
  • Related Articles

    [1]Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240063
    [2]Luo Guangcheng, Lei Xiangdong, Shi Jingning, He Xiao, Xiang Wei, Li Yutang. Site quality evaluation of Larix olgensis plantations based on potential productivity in Jilin Province of northeastern China[J]. Journal of Beijing Forestry University, 2025, 47(1): 1-10. DOI: 10.12171/j.1000-1522.20240173
    [3]Jiang Jun, Chen Changqi, Chen Beibei, Wang Hao, Hu Dongyang, Zhang Yong, Zhang Yongfu, Li Jie, Zheng Junpeng. Effects of stand density on carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption of Platycladus orientalis plantations in rocky mountainous area of Beijing[J]. Journal of Beijing Forestry University, 2024, 46(10): 33-41. DOI: 10.12171/j.1000-1522.20240011
    [4]Luo Ye, Wang Jun, Yang Yuchun, He Huaijiang, Liu Ting. Growth patterns of Juglans mandshurica secondary forest with stand age and stand density in Northeast China[J]. Journal of Beijing Forestry University, 2024, 46(6): 10-19. DOI: 10.12171/j.1000-1522.20230171
    [5]Jin Suo, Bi Haojie, Liu Jia, Liu Yuhang, Wang Yu, Qi Jinqiu, Hao Jianfeng. Effects of stand density on community structure and species diversity of Cupressus funebris plantation in Yunding Mountain, southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 10-17. DOI: 10.12171/j.1000-1522.20190202
    [6]Shen Jianbo, Wang Yingkuan, Lei Xiangdong, Lei Yuancai, Wang Qiulai, Ye Jinsheng. Site quality evaluation of uneven-aged mixed coniferous and broadleaved stands in Guangdong Province of southern China based on BP neural network[J]. Journal of Beijing Forestry University, 2019, 41(5): 38-47. DOI: 10.13332/j.1000-1522.20190028
    [7]Chen Minghui, Hui Gangying, Hu Yanbo, Zhang Gongqiao, Zhang Ganggang, Liu Ruihong, Yang Aiming, Zhao Zhonghua, Wang Haibin. Impacts of structure-based forest management on forest quality of broadleaved Korean pine forests in northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 19-30. DOI: 10.13332/j.1000-1522.20190032
    [8]XU Luo, KANG Xin-gang, GUO Wei-wei, ZHANG Jia-wei, CHEN Ri-dong, LIAO Qing-wen, KONG Lei. Site quality evaluation of natural spruce-fir and broadleaf mixed stands.[J]. Journal of Beijing Forestry University, 2016, 38(5): 11-12. DOI: 10.13332/j.1000-1522.20140126
    [9]HUANG Guo-sheng, MA Wei, WANG Xue-jun, XIA Chao-zong, DANG Yong-feng. Forestland site quality evaluation of Fujian Province based on continuous forest inventory data.[J]. Journal of Beijing Forestry University, 2014, 36(3): 1-8. DOI: 10.13332/j.cnki.jbfu.2014.03.001
    [10]XU Cheng-yang, ZHANG Hua, JIA Zhong-kui, XUE Kang, DU Peng-zhi, WANG Jing-guo. Effects of stand density and site types on root characteristics of Platycladus orientalis plantations in Beijing mountainous area[J]. Journal of Beijing Forestry University, 2007, 29(4): 95-99. DOI: 10.13332/j.1000-1522.2007.04.022
  • Cited by

    Periodical cited type(8)

    1. 张慧,燕怡帆,朱雅,陈玉婷,王菁华,崔志鹏,杨迪,任学敏. 林分密度对伏牛山南麓山茱萸人工林林下草本植物多样性和土壤性质的影响. 西南林业大学学报(自然科学). 2025(01): 96-105 .
    2. 赵金同,马俊. 刺槐扦插育苗技术与精细抚育要点. 现代园艺. 2024(08): 49-51 .
    3. 何欢,康必均,尹婧,李菲,彭栋,李桂静,查同刚. 不同营林措施对川东华蓥山杉木林土壤团聚体稳定性及细根分布的影响. 土壤通报. 2024(02): 351-359 .
    4. 史小鹏,苟贺然,何淑勤,刘柏廷,冉兰芳,杨琪琳,扎西拉姆,陈雨馨,骆紫藤. 成都市温江区两种绿地土壤抗蚀抗冲性及其影响因素. 水土保持通报. 2024(04): 117-125 .
    5. 刘忆南,申振宏,都都,张知然,林勇明. 蒋家沟泥石流堆积扇不同植被类型区土壤抗蚀性评价. 应用与环境生物学报. 2024(05): 886-893 .
    6. 王依瑞,王彦辉,段文标,李平平,于澎涛,甄理,李志鑫,尚会军. 黄土高原刺槐人工林郁闭度对林下植物多样性特征的影响. 应用生态学报. 2023(02): 305-314 .
    7. 赵云鹤,钟鹏,高晗,付玉. 土地利用类型对典型黑土团聚体稳定性和抗蚀性的影响. 东北林业大学学报. 2023(09): 112-119 .
    8. 胡亚伟,施政乐,刘畅,徐勤涛,张建军. 晋西黄土区刺槐林密度对林下植物多样性及土壤理化性质的影响. 生态学杂志. 2023(09): 2072-2080 .

    Other cited types(8)

Catalog

    Article views (640) PDF downloads (90) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return