• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yue Yang, Wei Liuduan, Xu Chengyang, Zhang Haiyan. Response of functional characters of street trees with different leaf textures to impervious land coverage under canopy[J]. Journal of Beijing Forestry University, 2022, 44(6): 34-43. DOI: 10.12171/j.1000-1522.20210262
Citation: Yue Yang, Wei Liuduan, Xu Chengyang, Zhang Haiyan. Response of functional characters of street trees with different leaf textures to impervious land coverage under canopy[J]. Journal of Beijing Forestry University, 2022, 44(6): 34-43. DOI: 10.12171/j.1000-1522.20210262

Response of functional characters of street trees with different leaf textures to impervious land coverage under canopy

More Information
  • Received Date: July 13, 2021
  • Revised Date: October 13, 2021
  • Available Online: June 01, 2022
  • Published Date: June 24, 2022
  •   Objective  The aim of the paper was to study the responses of street trees to impervious land coverage under canopy and to analyze resource utilization and allocation strategies of street trees with different leaf textures by comparing changes and trade-off and synergy in twig and leaf functional traits.
      Method  Common greening tree species of Sophora japonica, Platanus acerifolia and Ligustrum lucidum in Jinan, Shandong Province of eastern China were selected to represent tree leaf textures of paper, wax and leather leaf, respectively, and 5 gradients of impermeable surface coverage were divided by 20% interval. Samples of twigs and leaves were obtained by typical sampling methods.
      Result  (1) The sensitivity of branch and leaf traits of tree species with different leaf textures to the response of impervious ground coverage under the crown was different. The sensitivity of twig functional traits to the response of impervious ground coverage under the crown decreased significantly with the increase of thickness of wax layer on the leaf surface, and the leaf functional traits of Platanus acerifolia were more sensitive to the change of impervious ground coverage under the crown. However, the characters (leaf emergence intensity and branch leaf mass ratio) representing the relationship between branches and leaves were sensitive to the impervious ground coverage environment under the canopy. (2) The distribution of photosynthate decreased with the increase of impervious ground coverage, and the growth of branches and leaves, leaf space and leaf area decreased significantly with the increase of impervious ground coverage. With the increase of coverage degree of hardened ground, the three tree species adopted the way of reducing leaf area and maintaining leaf number to adapt to the environment. (3) Allometric growth relationship showed that, under the stress of impervious ground coverage, the resource input of trees to leaves was higher than that of twigs. In the interior of twigs, the resource input for the thickening growth of twigs was more than that for the elongation growth. The utilization mode of internal resources in leaves changed with the change of leaf texture: paper leaf trees tended to allocate more resources to the establishment of leaf resource acquisition organization, while leather leaf trees tended to allocate more resources to the establishment of leaf defense mechanism.
      Conclusion  Impervious ground coverage environment will significantly affect the growth of branches and leaves of trees. The adaptation strategies adopted by the leaves of tree species with different leaf textures to the hardened surface environment are different. The paper leaf tree species tend to adopt the adaptation strategy of “low consumption-fast income”, while the leather leaf tree species tend to adopt the adaptation strategy of “high consumption- slow income”, and the adaptation strategy of wax leaf tree species is between the two.
  • [1]
    王美娇, 周丽, 周青, 等. 地表硬化的植物学效应及机理研究进展[J]. 土壤通报, 2019, 50(1): 226−232.

    Wang M J, Zhou L, Zhou Q, et al. Advances in botanic effects and mechanisms of impervious surface[J]. Chinese Journal of Soil Science, 2019, 50(1): 226−232.
    [2]
    朱济友, 于强, 刘亚培, 等. 植物功能性状及其叶经济谱对城市热环境的响应[J]. 北京林业大学学报, 2018, 40(9): 72−81.

    Zhu J Y, Yu Q, Liu Y P, et al. Response of plant functional traits and leaf economics spectrum to urban thermal environment[J]. Journal of Beijing Forestry University, 2018, 40(9): 72−81.
    [3]
    Hanley P A, Arndt S K, Livesley S J, et al. Relating the climate envelopes of urban tree species to their drought and thermal tolerance[J/OL]. Science of the Total Environment, 2020, 753: 142012[2021−06−01]. https://doi.org/10.1016/j.scitotenv.2020.142012.
    [4]
    Jim C Y. Physical and chemical properties of a Hong Kong roadside soil in relation to urban tree growth[J]. Urban Ecosystems, 1998, 2(2): 171−181.
    [5]
    Calfapietra C, Peuelas J, Niinemets L. Urban plant physiology: adaptation-mitigation strategies under permanent stress[J]. Trends in Plant Science, 2015, 20(2): 72−75. doi: 10.1016/j.tplants.2014.11.001
    [6]
    Esperón-Rodríguez M, Rymer P D, Power S A, et al. Functional adaptations and trait plasticity of urban trees along a climatic gradient[J/OL]. Urban Forestry & Urban Greening, 2020, 54: 126771[2021−06−02]. https://doi.org/10.1016/j.ufug.2020.126771.
    [7]
    Zhu J, Zhu H, Cao Y, et al. Effect of simulated warming on leaf functional traits of urban greening plants[J/OL]. BMC Plant Biology, 2020, 20(1): 139[2021−06−01]. https://doi.org/10.1186/s12870-020-02359-7.
    [8]
    Williams N, Hahs A K, Vesk P A. Urbanisation, plant traits and the composition of urban floras[J]. Perspectives in Plant Ecology Evolution & Systematics, 2015, 17(1): 78−86.
    [9]
    Mullaney J, Lucke T, Trueman S J. The effect of permeable pavements with an underlying base layer on the growth and nutrient status of urban trees[J]. Urban Forestry & Urban Greening, 2015, 14(1): 19−29.
    [10]
    朱济友, 于强, 徐程扬, 等. 植物功能性状及其叶经济谱对硬化地表的响应[J]. 农业机械学报, 2019, 50(3): 204−211. doi: 10.6041/j.issn.1000-1298.2019.03.022

    Zhu J Y, Yu Q, Xu C Y, et al. Response of plant function spectrum to urban pavement[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 204−211. doi: 10.6041/j.issn.1000-1298.2019.03.022
    [11]
    陈媛媛, 江波, 王效科, 等. 北京典型绿化树种幼苗光合特性对硬化地表的响应[J]. 生态学报, 2017, 37(11): 3673−3682.

    Chen Y Y, Jiang B, Wang X K, et al. Effect of pavement on the leaf photosynthetic characteristics of saplings of three common tree species (Pinus tabulaeformis,Fraxinus chinensis, and Acer truncatum) in Beijing[J]. Acta Ecologica Sinica, 2017, 37(11): 3673−3682.
    [12]
    于伟伟, 陈媛媛, 杨宁, 等. 硬化地表对油松和白蜡树下非根围及根围土壤微生物量碳氮的影响[J]. 生态学报, 2020, 40(4): 1376−1382.

    Yu W W, Chen Y Y, Yang N, et al. Effects of pavements on soil microbial biomass carbon and nitrogen in non-rhizosphere and rhizosphere of Pinus tabuliformis and Fraxinus chinensis[J]. Acta Ecological Sinica, 2020, 40(4): 1376−1382.
    [13]
    于伟伟, 陈媛媛, 汪旭明, 等. 硬化地表对不同树种土壤微生物群落结构和功能的影响[J]. 生态学报, 2019, 39(10): 3575−3585.

    Yu W W, Chen Y Y, Wang X M, et al. Effects of land pavement on the structure and function of soil microbial community under different tree species[J]. Acta Ecologica Sinica, 2019, 39(10): 3575−3585.
    [14]
    Fajardo A, Siefert A. Phenological variation of leaf functional traits within species[J]. Oecologia, 2016, 180(4): 951−959. doi: 10.1007/s00442-016-3545-1
    [15]
    Laughlin C L, Lusk C H , Bellingham P J, et al. Intraspecific trait variation can weaken interspecific trait correlations when assessing the whole-plant economic spectrum[J]. Ecology and Evolution, 2017, 7: 8936−8949. doi: 10.1002/ece3.3447
    [16]
    Westoby M, Falster D S, Moles A T, et al. Plant ecological strategies: some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics, 2002, 33(1): 125−159. doi: 10.1146/annurev.ecolsys.33.010802.150452
    [17]
    杨建军, 苏文华, 王玲玲, 等. 高山栲叶性状种内变异及其与环境因子的关系[J]. 广东农业科学, 2015, 42(12): 152−158. doi: 10.3969/j.issn.1004-874X.2015.12.030

    Yang J J, Su W H, Wang L L, et al. Intraspecific variations of Castanopsis delavayi leaf traits and their relationship with environmental factors[J]. Guangdong Agricultural Sciences, 2015, 42(12): 152−158. doi: 10.3969/j.issn.1004-874X.2015.12.030
    [18]
    杨冬梅, 章佳佳, 周丹, 等. 木本植物茎叶功能性状及其关系随环境变化的研究进展[J]. 生态学杂志, 2012, 31(3): 702−713.

    Yang D M, Zhang J J, Zhou D, et al. Leaf and twig functional traits of woody plants and their relationships with environmental change: a review[J]. Chinese Journal of Ecology, 2012, 31(3): 702−713.
    [19]
    Wright I J, Falster D S. Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics[J]. Physiologia Plantarum, 2006, 127: 445−456. doi: 10.1111/j.1399-3054.2006.00699.x
    [20]
    Westoby M, Wright I J. The leaf size - twig size spectrum and its relationship to other important spectra of variation among species[J]. Oecologia, 2003, 135(4): 621−628. doi: 10.1007/s00442-003-1231-6
    [21]
    Sun S C, Jin D M, Shi P L. The leaf size–twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship[J]. Annals of Botany, 2006, 97(1): 97−107. doi: 10.1093/aob/mcj004
    [22]
    郭庆学, 柴捷, 钱凤, 等. 不同木本植物功能型当年生小枝功能性状差异[J]. 生态学杂志, 2013, 32(6): 1465−1470.

    Guo Q X, Chai J, Qian F, et al. Leaf and stem traits of current-year twigs vary with different functional types of woody plant[J]. Chinese Journal of Ecology, 2013, 32(6): 1465−1470.
    [23]
    Corner E J H. The durian theory or the origin of the modern tree[J]. Annals of Botany, 1949, 13(4): 367−414. doi: 10.1093/oxfordjournals.aob.a083225
    [24]
    钟巧连, 刘立斌, 许鑫, 等. 黔中喀斯特木本植物功能性状变异及其适应策略[J]. 植物生态学报, 2018, 42(5): 562−572. doi: 10.17521/cjpe.2017.0270

    Zhong Q L, Liu L B, Xu X, et al. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China[J]. Chinese Journal of Plant Ecology, 2018, 42(5): 562−572. doi: 10.17521/cjpe.2017.0270
    [25]
    龙嘉翼, 赵宇萌, 孔祥琦, 等. 观赏灌木小枝和叶性状在林下庇荫环境中的权衡关系[J]. 生态学报, 2018, 38(22): 8022−8030.

    Long J Y, Zhao Y M, Kong X Q, et al. Trade-offs between twig and leaf traits of ornamental shrubs grown in shade[J]. Acta Ecologica Sinica, 2018, 38(22): 8022−8030.
    [26]
    Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423−434. doi: 10.1046/j.0269-8463.2001.00542.x
    [27]
    史青茹, 许洺山, 赵延涛, 等. 浙江天童木本植物Corner法则的检验: 微地形的影响[J]. 植物生态学报, 2014, 38(7): 665−674.

    Shi Q R, Xu M S, Zhao Y T, et al. Testing of corner’s rules across woody plants in Tiantong Region, Zhejiang Province: effects of micro-topography[J]. Chinese Journal of Plant Ecology, 2014, 38(7): 665−674.
    [28]
    李亚男, 杨冬梅, 孙书存, 等. 杜鹃花属植物小枝大小对小枝生物量分配及叶面积支持效率的影响: 异速生长分析[J]. 植物生态学报, 2008, 32(5): 1175−1183. doi: 10.3773/j.issn.1005-264x.2008.05.022

    Li Y N, Yang D M, Sun S C, et al. Effects of twig size on biomass allocation within twigs and on lamina area supporting efficiency in Rhododendron: allometric scaling analyses[J]. Chinese Journal of Plant Ecology, 2008, 32(5): 1175−1183. doi: 10.3773/j.issn.1005-264x.2008.05.022
    [29]
    Normand F, Bissery C, Damour G, et al. Hydraulic and mechanical stem properties affect leaf-stem allometry in mango cultivars[J]. New Phytologist, 2008, 178(3): 590−602. doi: 10.1111/j.1469-8137.2008.02380.x
    [30]
    杨冬梅, 毛林灿, 彭国全. 常绿和落叶阔叶木本植物小枝内生物量分配关系研究: 异速生长分析[J]. 植物研究, 2011, 31(4): 472−477. doi: 10.7525/j.issn.1673-5102.2011.04.015

    Yang D M, Mao L C, Peng G Q. Within-twig biomass allocation in evergreen and deciduous broad-leave species: allometric scaling analyses[J]. Bulletin of Botanical Research, 2011, 31(4): 472−477. doi: 10.7525/j.issn.1673-5102.2011.04.015
    [31]
    张志翔. 树木学[M]. 北京: 中国林业出版社, 2008.

    Zhang Z X. Dendrology [M]. Beijing: China Forestry Publishing House, 2008.
    [32]
    中华人民共和国交通运输部. 公路沥青路面设计规范(JTG D50—2017) [S]. 北京: 人民交通出版社, 2017.

    Ministry of Transport of the People’s Republic of China. Specifications for design of highway asphalt pavement: JTG D50−2017 [S]. Beijing: China Communications Press, 2017.
    [33]
    徐程扬. 紫椴幼苗, 幼树对光的响应与适应研究[D]. 北京: 北京林业大学, 1999.

    Xu C Y. Responses and adaptations of Tilia amurensis seedlings and saplings to light regimes [D]. Beijing: Beijing Forestry University, 1999.
    [34]
    Warton D I, Wright I J, Falster D S, et al. Bivariate line-fitting methods for allometry[J]. Biological Reviews, 2006, 81(2): 259. doi: 10.1017/S1464793106007007
    [35]
    赵园园, 陈洪醒, 陈红, 等. 重庆市6种常见园林植物功能性状对城乡生境梯度的响应[J]. 生态学杂志, 2019, 8(8): 2346−2353.

    Zhao Y Y, Chen H X, Chen H, et al. Changes of functional traits of six common garden plant species across an urban-rural gradient of Chongqing[J]. Chinese Journal of Ecology, 2019, 8(8): 2346−2353.
    [36]
    巨鑫慧, 高肖, 李伟峰, 等. 京津冀城市群土地利用变化对地表径流的影响[J]. 生态学报, 2020, 40(4): 1413−1423.

    Ju X H, Gao X, Li W F, et al. Effects of land use changes on surface runoff in Beijing-Tianjin-Hebei urban agglomeration[J]. Acta Ecologica Sinica, 2020, 40(4): 1413−1423.
    [37]
    孔正红, 李树人, 李有福, 等. 不同硬化地面类型对城市悬铃木物质循环的影响[J]. 河南农业大学学报, 1998, 32(4): 13−18.

    Kong Z H, Li S R, Li Y F, et al. Effects of different hardened grounds on the material recycling of Platanus acerifolia (Ait) wild[J]. Acta Agricultural Universitatis Henanensis, 1998, 32(4): 13−18.
    [38]
    徐振东. 城市热岛效应成因的研究与分析[D]. 大连: 大连理工大学, 2003.

    Xu Z D. Study and analysis of the causes of urban heat island effect [D]. Dalian: Dalian University of Technology, 2003.
    [39]
    Asaeda T, Ca V T, Wake A. Heat storage of pavement and its effect on the lower atmosphere[J]. Atmospheric Environment, 1996, 30(3): 413−427. doi: 10.1016/1352-2310(94)00140-5
    [40]
    Montague T, Kjelgren R. Energy balance of six common landscape surfaces and the influence of surface properties on gas exchange of four containerized tree species[J]. Scientia Horticulturae, 2004, 100(1−4): 229−249. doi: 10.1016/j.scienta.2003.08.010
    [41]
    Schoettle A W. The interaction between leaf longevity and shoot growth and foliar biomass per shoot in Pinus contorta at two elevations[J]. Tree Physiology, 1990, 7: 209−214. doi: 10.1093/treephys/7.1-2-3-4.209
    [42]
    宋金艳, 刘东焕, 赵世伟, 等. 高温伤害光合机构原初位点的研究进展[J]. 生命科学, 2008, 21(2): 263−267. doi: 10.3969/j.issn.1004-0374.2008.02.020

    Song J Y, Liu D H, Zhao S W, et al. Advances in studies on primary site of photosynthetic apparatus injured by high temperature[J]. Chinese Bulletin of Life Sciences, 2008, 21(2): 263−267. doi: 10.3969/j.issn.1004-0374.2008.02.020
    [43]
    Peppe D J, Royer D L, Cariglino B, et al. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications[J]. The New phytologist, 2011, 190(3): 724−739. doi: 10.1111/j.1469-8137.2010.03615.x
    [44]
    占红. 城市不透水面的扩张对地表径流量的影响[D]. 哈尔滨: 哈尔滨师范大学, 2016.

    Zhan H. The expansion of impervious surface on runoff [D]. Harbin: Harbin Normal University, 2016.
    [45]
    Wang R, Huang W, Chen L, et al. Anatomical and physiological plasticity in Leymus chinensis (Poaceae) along large-scale longitudinal gradient in Northeast China[J/OL]. PLoS One, 2011, 6(11): e26209[2021−06−01]. https://doi.org/10.1371/journal.pone.0026209.
    [46]
    Craine J M, Froehle J, Tilman D G, et al. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients[J]. Oikos, 2001, 93(2): 274−285. doi: 10.1034/j.1600-0706.2001.930210.x
    [47]
    任悦. 不同水分梯度下垂柳枝叶性状及其与光合特性的关系[D]. 兰州: 西北师范大学, 2019.

    Ren Y. The relationship between leaf traits and photosynthetic characteristics of Salix babylonica under different water gradients [D]. Lanzhou: Northwest Normal University, 2019.
    [48]
    Harvey P H, Pagel M D. The comparative method in evolutionary biology [M]. Oxford: Oxford University Press, 1991.
    [49]
    Enquist B J, Niklas K J. Invariant scaling relations across tree-dominated communities[J]. Nature, 2001, 410: 655−660. doi: 10.1038/35070500
    [50]
    卢艺苗, 王满堂, 陈晓萍, 等. 江西常绿阔叶林木本植物不同冠层高度当年生小枝茎构型对叶生物量的影响[J]. 应用生态学报, 2019, 30(11): 3653−3661.

    Lu Y M, Wang M T, Chen X P, et al. Effects of the current-year shoot stem configuration on leaf biomass in different canopy heights of woody plants in evergreen broad-leaved forest in Jiangxi Province, China[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3653−3661.
    [51]
    Hacke U G, Sperry J S. Functional and ecological xylem anatomy[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2001, 4(2): 97−115. doi: 10.1078/1433-8319-00017
    [52]
    King D, Loucks O L. The theory of tree bole and branch form[J]. Radiation & Environmental Biophysics, 1978, 15(2): 141−165.
    [53]
    Long J N, Smith F W, Scott D. The role of Douglas-fir stem sapwood and heartwood in the mechanical and physiological support of crowns and development of stem form[J]. Canadian Journal of Forest Research, 1981, 11(3): 459−464. doi: 10.1139/x81-063
    [54]
    Costa D S, Classen A, Ferger S, et al. Relationships between abiotic environment, plant functional traits, and animal body size at Mount Kilimanjaro, Tanzania[J/OL]. PLoS One, 2017, 12(3): e0174157[2021−06−02]. https://doi.org/10.1371/journal.pone.0174157.
    [55]
    李俊慧, 彭国全, 杨冬梅. 常绿和落叶阔叶物种当年生小枝茎长度和茎纤细率对展叶效率的影响[J]. 植物生态学报, 2017, 41(6): 650−660. doi: 10.17521/cjpe.2016.0376

    Li J H, Peng G Q, Yang D M. Effect of stem length to stem slender ratio of current-year twigs on the leaf display efficiency in evergreen and deciduous broadleaved trees[J]. Chinese Journal of Plant Ecology, 2017, 41(6): 650−660. doi: 10.17521/cjpe.2016.0376
    [56]
    刘艳芳. 贡嘎山阔叶木本植物叶片解剖结构特征及其环境适应研究 [D]. 重庆: 西南大学, 2015.

    Liu Y F. The study on anatomical structures character and its environmental adaptation of leaves from broad-leaved woody plants in Mt. Gongga, Southwest China [D]. Chongqing: Southwest University, 2015.
    [57]
    Diemer M. Life span and dynamics of leaves of herbaceous perennials in high-elevation environments: ‘news from the elephant’s leg’[J]. Functional Ecology, 1998, 12(3): 413−425. doi: 10.1046/j.1365-2435.1998.00207.x
    [58]
    Coley P D. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense[J]. Oecologia, 1988, 74(4): 531−536. doi: 10.1007/BF00380050
    [59]
    Pratt C J. Use of permeable, reservoir pavement constructions for stormwater treatment and storage for re-use[J]. Water Science and Technology, 1999, 39(5): 145−151. doi: 10.2166/wst.1999.0233
    [60]
    侯立柱, 冯绍元, 韩志文, 等. 透水砖铺装地面垫层结构对城市雨水入渗过程的影响[J]. 中国农业大学学报, 2006(4): 83−88. doi: 10.3321/j.issn:1007-4333.2006.04.018

    Hou L Z, Feng S Y, Han Z W, et al. Experimental study on impacts of infiltration treated with porous pavement[J]. Journal of China Agricultural University, 2006(4): 83−88. doi: 10.3321/j.issn:1007-4333.2006.04.018
    [61]
    侯立柱, 刘江涛, 吕建华. 透水性铺装地面的壤中流特征[J]. 中国水土保持科学, 2014, 12(2): 52−58. doi: 10.3969/j.issn.1672-3007.2014.02.009

    Hou L Z, Liu J T, Lü J H. Characteristics of subsurface flow in porous pavement[J]. Science of Soil and Water Conservation, 2014, 12(2): 52−58. doi: 10.3969/j.issn.1672-3007.2014.02.009
    [62]
    武晟, 汪志荣, 张建丰, 等. 不同下垫面径流系数与雨强及历时关系的实验研究[J]. 中国农业大学学报, 2006, 11(5): 55−59. doi: 10.3321/j.issn:1007-4333.2006.05.012

    Wu S, Wang Z R, Zhang J F, et al. Experimental study on relationship among runoff coefficients of different underlying surfaces, rainfall intensity and duration[J]. Journal of China Agricultural University, 2006, 11(5): 55−59. doi: 10.3321/j.issn:1007-4333.2006.05.012
    [63]
    赵芳. 绿色建筑与小区低影响开发雨水利用技术研究 [D]. 重庆: 重庆大学, 2012.

    Zhao F. Study on low impact development technology of rainwater utilization in green building and community [D]. Chongqing: Chongqing University, 2012.
    [64]
    Soenke B, 陈义荣. 透水性混凝土路面砖路面现场的长期渗透性能研究[J]. 建筑砌块与砌块建筑, 2008(2): 37−41. doi: 10.3969/j.issn.1003-5273.2008.02.012

    Soenke B, Chen Y R. Study on long-term permeability properties of permeable concrete pavement[J]. Structures Units & Units Architecture, 2008(2): 37−41. doi: 10.3969/j.issn.1003-5273.2008.02.012
  • Related Articles

    [1]Li Bingyi, Liu Guanhong, Gu Ze, Li Weike, Tian Ye, Wang Bo, Liu Xiaodong, Shu Lifu. Characteristics of soil nitrogen change in the burned area of Pinus tabuliformis forest in Pingquan County, Hebei Province of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 1-10. DOI: 10.12171/j.1000-1522.20220007
    [2]Zhou Zhiyong, Xu Mengyao, Wang Yongqiang, Gao Yu, Jia Kuangdi. Evolutionary characteristics of soil quality and organic carbon stability with forest stand age for Pinus tabuliformis forests in the Taiyue Mountain of Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(10): 112-119. DOI: 10.12171/j.1000-1522.20220320
    [3]Shen Ying, Qin Tao, Guo Yinhua, Zhang Huan, Zhou Zhiyong. Short-term effects of forest fire on soil microorganism and enzyme activities of Pinus tabuliformis forest in Taiyue Mountain, Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2022, 44(4): 76-85. DOI: 10.12171/j.1000-1522.20210042
    [4]Zhang Yun, Yu Yue, Cui Xiaoyang, Wang Haiqi. Spatiotemporal variations of soil moisture content in the Larix gmelinii forest under interference of experimental forest fire in northern Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 94-101. DOI: 10.12171/j.1000-1522.20190182
    [5]LI Wei-ke, LIU Xiao-dong, NIU Shu-kui, LI Bing-yi, LIU Guan-hong, CHU Yan-qin. Impact of fire on soil microbial biomass of Pinus tabuliformis forest in Pingquan County, Hebei of northern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 70-77. DOI: 10.13332/j.1000-1522.20160420
    [6]WANG Shu-li, LIANG Xiao-jiao, MA Chao, ZHOU Jian-ping. Coupling relationship between Hedysarum mongdicum shrub plantation and sand soil based on structural equation model[J]. Journal of Beijing Forestry University, 2017, 39(1): 1-8. DOI: 10.13332/j.1000-1522.20160101
    [7]GU Hui-yan, JIN Yu-song, ZHANG Yun-hui, CHEN Xiang-wei. Effects of forest fire on soil nutrients of Ass. Pinus pumila-Larix gmelinii forest in Great Xing’an Mountains.[J]. Journal of Beijing Forestry University, 2016, 38(7): 48-54. DOI: 10.13332/j.1000-1522.20150510
    [8]SUN Tian-yong, WANG Li-hai, XU Hua-dong, BAO Zhen-yu. Effects of soil chemical properties on trunk decay of Korean pine standing trees in Xiao Xing'an Mountains,northeastern China.[J]. Journal of Beijing Forestry University, 2014, 36(2): 30-37.
    [9]WANG Xu-qin, DAI Wei, XIA Liang-fang, DENG Zong-fu, YU Hai-xia, NIE Li-shui. Effects of different subtropical plantations on physical and chemical properties of soil[J]. Journal of Beijing Forestry University, 2006, 28(6): 56-59.
    [10]NIE Li-shui, WANG Deng-zhi, WANG Bao-guo. Relationship between soil conditions and declining growth rate of aged Pinus tabulaeformis at Jietai Temple of Beijing[J]. Journal of Beijing Forestry University, 2005, 27(5): 32-36.
  • Cited by

    Periodical cited type(15)

    1. 李雪,朱宾宾,满秀玲. 温度和水分对寒温带典型森林类型土壤有机碳矿化的影响. 东北林业大学学报. 2025(02): 127-136 .
    2. 王军,满秀玲. 去除凋落物和草毡层对寒温带典型森林土壤活性有机碳的短期影响. 水土保持研究. 2024(01): 168-177 .
    3. 刘巧娟,张之松,满秀玲,高明磊,赵佳龙. 寒温带多年冻土区不同林龄白桦林土壤酶活性动态特征. 东北林业大学学报. 2024(03): 125-131 .
    4. 祝顺万,刘利霞,胡雪凡,代伟,王月容,李芳. 华北落叶松混交林林下植物群落特征对间伐的响应. 森林工程. 2024(03): 47-55 .
    5. 刘贝贝,蔡体久. 大兴安岭北部主要森林类型土壤活性碳组分及碳库稳定性变化特征. 水土保持学报. 2024(06): 203-213 .
    6. 沈健,何宗明,董强,林宇,郜士垒. 滨海防护林土壤CO_2排放和土壤因子对计划火烧的响应. 水土保持学报. 2023(01): 254-261 .
    7. 沈健,何宗明,董强,郜士垒,曹光球,林宇,黄政. 滨海沙地两种防护林土壤呼吸月际动态及影响因素. 应用与环境生物学报. 2023(02): 432-439 .
    8. 王军,满秀玲. 去除凋落物和草毡层对寒温带典型森林土壤氮素的短期影响. 森林工程. 2023(04): 1-9 .
    9. 刘思琪,满秀玲,张頔,徐志鹏. 寒温带4种乔木树种不同径级根系分解及碳氮释放动态. 北京林业大学学报. 2023(07): 36-46 . 本站查看
    10. 沈健,何宗明,董强,林宇,郜士垒. 尾巨桉人工林火烧迹地土壤呼吸组分特征及其与土壤因子的关系. 生态学杂志. 2023(07): 1537-1547 .
    11. 沈健,何宗明,董强,郜士垒,林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响. 植物生态学报. 2023(07): 1032-1042 .
    12. 沈健,何宗明,董强,郜士垒,林宇,石焱. 不同处理方式下湿地松人工林土壤呼吸及温度敏感性变化. 西北林学院学报. 2023(05): 10-18 .
    13. 田慧敏,刘彦春,刘世荣. 暖温带麻栎林凋落物调节土壤碳排放通量对降雨脉冲的响应. 生态学报. 2022(10): 3889-3896 .
    14. 张茹,马秀枝,杜金玲,李长生,梁芝,吴天龙. 模拟增温对大兴安岭兴安落叶松林土壤CO_2通量的影响. 东北林业大学学报. 2022(08): 83-88 .
    15. 张扬,张秋良,李小梅,代海燕,王飞. 兴安落叶松林生长季碳交换对气候变化的响应. 西部林业科学. 2021(05): 73-80+89 .

    Other cited types(4)

Catalog

    Article views (674) PDF downloads (69) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return