Citation: | Li Bingyi, Liu Guanhong, Shu Lifu. Simulation study on surface fire behavior of main forest types in Mentougou District, Beijing[J]. Journal of Beijing Forestry University, 2022, 44(6): 96-105. DOI: 10.12171/j.1000-1522.20210204 |
[1] |
白尚斌. 基于多智能体理论的林火蔓延模拟[D]. 北京: 北京林业大学, 2008.
Bai S B. Simulation of forest fire spreading based on multi-agent theory [D]. Beijing: Beijing Forestry University, 2008.
|
[2] |
赵璠, 舒立福, 周汝良, 等. 西南林区森林火灾火行为模拟模型评价[J]. 应用生态学报, 2017, 28(10): 3144−3154.
Zhao P, Shu L F, Zhou R L, et al. Evaluating fire behavior simulators in southwestern China forest area[J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3144−3154.
|
[3] |
舒立福, 刘晓东. 森林防火学概论[M]. 北京: 中国林业出版社, 2016: 187−192.
Shu L F, Liu X D. Introduction to forest fire prevention [M]. Beijing: China Forestry Publishing House, 2016: 187−192.
|
[4] |
胡海清, 牛树奎. 林火生态与管理[M]. 北京: 中国林业出版社, 2005.
Hu H Q, Niu S K. Forest fire ecology and management [M]. Beijing: China Forestry Publishing House, 2005.
|
[5] |
Vilà-Vilardell L, Keeton W S, Thom D, et al. Climate change effects on wildfire hazards in the wildland-urban-interface-blue pine forests of Bhutan[J]. Forest Ecology and Management, 2020, 461: 117927. doi: 10.1016/j.foreco.2020.117927
|
[6] |
牛树奎, 贺庆棠, 陈锋, 等. 北京山区主要针叶林可燃物空间连续性研究: 可燃物水平连续性与树冠火蔓延[J]. 北京林业大学学报, 2012, 34(4): 1−9.
Niu S K, He Q T, Chen F, et al. Spatial continuity of fuels in major coniferous forests in Beijing mountainous area: fuel horizontal continuity and crown fire spread[J]. Journal of Beijing Forestry University, 2012, 34(4): 1−9.
|
[7] |
陶长森, 牛树奎, 陈锋, 等. 北京山区主要针叶林潜在火行为及冠层危险指数研究[J]. 北京林业大学学报, 2019, 40(9): 55−62.
Tao C S, Niu S K, Chen F, et al. Potential fire behavior and canopy hazard index of main coniferous forests in Beijing mountain area[J]. Journal of Beijing Forestry University, 2019, 40(9): 55−62.
|
[8] |
王刚, 金晓钟. 细小可燃物易燃性的试验研究[J]. 森林防火, 1995(3): 5−7.
Wang G, Jin X Z. Experimental study on flammability of fine fuel[J]. Forest Fire Prevention, 1995(3): 5−7.
|
[9] |
陶长森, 牛树奎, 陈羚, 等. 妙峰山林场主要针叶林冠层特征及潜在火行为[J]. 北京林业大学学报, 2018, 40(5): 82−89.
Tao C S, Niu S K, Chen L, et al. Canopy characteristics and potential crown fire behavior of main coniferous forest in Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2018, 40(5): 82−89.
|
[10] |
赵凤君, 王明玉, 舒立福. 森林火灾中的树冠火研究[J]. 世界林业研究, 2010, 23(1): 39−43.
Zhao F J, Wang M Y, Shu L F. A review of crown fire research[J]. World Forestry Research, 2010, 23(1): 39−43.
|
[11] |
Pimont F, Dupuy J L, Linn R R, et al. Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC[J]. Annals of Forest Science, 2011, 68(3): 523−530. doi: 10.1007/s13595-011-0061-7
|
[12] |
Stankevich T S. Forecasting the spatial behavior of a forest fire at uncertainty and instability of the process[J]. Lesnoy Zhurnal (Forestry Journal), 2021(1): 20−34. doi: 10.37482/0536-1036-2021-1-20-34
|
[13] |
Arif M, Alghamdi K K, Sahel S A, et al. Role of machine learning algorithms in forest fire management: a literature review[J]. Journal of Robotics and Automation, 2021, 5(1): 212−226.
|
[14] |
Finney M A. Design of regular landscape fuel treatment patterns for modifying fire growth and behavior[J]. Forest Science, 2001, 47(2): 219−228.
|
[15] |
Marshall G, Dan K T, Anderson K, et al. The impact of fuel treatments on wildfire behavior in North American boreal fuels: a simulation study using FIRETEC[J]. Fire, 2020, 3(2): 18. doi: 10.3390/fire3020018
|
[16] |
Xie H T, Fawcett J E, Wang G G. Fuel dynamics and its implication to fire behavior in loblolly pine-dominated stands after southern pine beetle outbreak[J]. Forest Ecology and Management, 2020, 466: 118130. doi: 10.1016/j.foreco.2020.118130
|
[17] |
Iqbal N I, Ahmad S, Kim D H. Towards mountain fire safety using fire spread predictive analytics and mountain fire containment in IoT environment[J]. Sustainability, 2021, 13(5): 2461. doi: 10.3390/su13052461
|
[18] |
Andrews P L. Current status and future needs of the BehavePlus fire modeling system[J]. International Journal of Wildland Fire, 2014, 23(1): 21−33. doi: 10.1071/WF12167
|
[19] |
Starns H D, Fuhlendorf S D, Elmore R D, et al. Recoupling fire and grazing reduces wildland fuel loads on rangelands [J/OL]. Ecosphere, 2019, 10(1): e02578[2021−08−15]. https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.2578.
|
[20] |
Hahn G E, Coates T A, Aust W M, et al. Long-term impacts of silvicultural treatments on wildland fuels and modeled fire behavior in the Ridge and Valley Province, Virginia (USA)[J]. Forest Ecology and Management, 2021, 496: 119475. doi: 10.1016/j.foreco.2021.119475
|
[21] |
Rothermel R C. How to predict the spread and intensity of forest and range fires [M]. Ogden: General Technical Report/Intermountain Forest and Range Experiment Station, 1983: 161.
|
[22] |
Bufacchi P, Santos J C, de Carvalho J A, et al. Estimation of the surface area-to-volume ratios of litter components of the Brazilian rainforest and their impact on litter fire rate of spread and flammability[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(5): 1−10.
|
[23] |
Drury S A, Rauscher H M, Banwell E M, et al. The interagency fuels treatment decision support system: functionality for fuels treatment planning[J]. Fire Ecology, 2016, 12(1): 103−123.
|
[24] |
Gibson S. Examining the effect of annual grass invasion on fire spread and severity: fuel modeling for Ventenata dubia[D]. Corvallis: Oregon State University, 2021.
|
[25] |
Zhiri A B, Olayiwola R O, Odo C E. Modeling fire spread behavior in coupled atmospheric-forest fire[J]. Journal of Science, Technology, Mathematics and Education (JOSTMED), 2020, 16(4): 104−113.
|
[26] |
赵方莹, 程小琴. 门头沟区煤矿废弃地自然恢复植物群落种间关系[J]. 东北林业大学学报, 2010, 38(8): 50−53.
Zhao F Y, Cheng X Q. Interspecific relationship of plant communities in degraded mined land in Mentougou District, Beijing during natural rehabilitation[J]. Journal of Northeast Forestry University, 2010, 38(8): 50−53.
|
[27] |
王九中, 邬明权. 北京市门头沟区2003—2014年植被初级生产力时空变化[J]. 华东师范大学学报(自然科学版), 2018, 197(1): 168−175.
Wang J Z, Wu M Q. Spatio-temporal analysis about the primary productivity of Mentougou District in Beijing from 2003 to 2014[J]. Journal of East China Normal University (Natural Science), 2018, 197(1): 168−175.
|
[28] |
李克. 北京山区主要森林类型潜在火行为及扑救措施研究[D]. 北京: 北京林业大学, 2019.
Li K. Fire behavior and fighting measures of major forest types in the mountainous area [D]. Beijing: Beijing Forestry University, 2019.
|
[29] |
韩梅, 温鹏, 许慧敏, 等. 北京市十三陵林场油松林地表火行为模拟[J]. 北京林业大学学报, 2019, 40(10): 95−101.
Han M, Wen P, Xu H M, et al. Simulation of surface fire behavior of Pinus tabuliformis forest in Ming Tombs Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2019, 40(10): 95−101.
|
[30] |
Rothermel R. A mathematical model for predicting fire spread in wildland fuels [M]. Ogden: General Technical Report/Intermountain Forest and Range Experiment Station, 1972: 115.
|
[31] |
舒立福, 王明玉, 田晓瑞, 等. 关于森林燃烧火行为特征参数的计算与表述[J]. 林业科学, 2004, 40(3): 179−183. doi: 10.3321/j.issn:1001-7488.2004.03.031
Shu L F, Wang M Y, Tian X R, et al. Calculation and description of forest fire behavior characters[J]. Scientia Silvae Sinicae, 2004, 40(3): 179−183. doi: 10.3321/j.issn:1001-7488.2004.03.031
|
[32] |
卢欣艳. 北京西山森林火险影响因素时空规律研究[D]. 北京: 北京林业大学, 2010.
Lu X Y. The spatial and temporal rules of forest fire factors in Beijng Xishan Centre [D]. Beijing: Beijing Forestry University, 2010.
|
[33] |
宁吉彬, 瓮岳太, 邸雪颖, 等. 大兴安岭沟塘草甸地表可燃物载量快速测定方法[J]. 东北林业大学学报, 2018, 46(5): 44−48. doi: 10.3969/j.issn.1000-5382.2018.05.009
Ning J B, Weng Y T, Di X Y, et al. Rapid determination method for swamp meadow surface fuel loads of Daxing’an Mountains[J]. Journal of Northeast Forestry University, 2018, 46(5): 44−48. doi: 10.3969/j.issn.1000-5382.2018.05.009
|
[34] |
刘冠宏. 北京地区典型林分地表火及向树冠火蔓延机制研究[D]. 北京: 北京林业大学, 2019.
Liu G H. Study on the mechanism of surface fire and spread of canopy fire of typical tree species in Beijing area [D]. Beijing: Beijing Forestry University, 2019.
|
[35] |
单延龙, 舒立福, 王洪伟, 等. Rothermel火蔓延模型特征参数的解析[J]. 森林防火, 2003(1): 22−25. doi: 10.3969/j.issn.1002-2511.2003.01.012
Shan Y L, Shu L F, Wang H W, et al. Analysis of characteristic parameters of Rothermel’s fire spread model[J]. Forest Fire Prevention, 2003(1): 22−25. doi: 10.3969/j.issn.1002-2511.2003.01.012
|
[36] |
王凯, 牛树奎. 基于Rothermel模型的北京鹫峰国家森林公园潜在火行为[J]. 浙江农林大学学报, 2016, 33(1): 42−50. doi: 10.11833/j.issn.2095-0756.2016.01.006
Wang K, Niu S K. Research on the potential fire behavior in Jiufeng National Forest Park of Beijing based on the Rothermel Model[J]. Journal of Zhejiang A&F University, 2016, 33(1): 42−50. doi: 10.11833/j.issn.2095-0756.2016.01.006
|
[37] |
田晓瑞, 舒立福, 阎海平, 等. 华北地区防火树种筛选[J]. 火灾科学, 2002, 11(1): 43−48. doi: 10.3969/j.issn.1004-5309.2002.01.007
Tian X R, Shu L F, Yan H P, et al. Selecting fire-resistance tree species in northern China[J]. Fire Safety Science, 2002, 11(1): 43−48. doi: 10.3969/j.issn.1004-5309.2002.01.007
|
[38] |
田晓瑞, 舒立福, 乔启宇, 等. 南方林区防火树种的筛选研究[J]. 北京林业大学学报, 2001, 23(5): 43−47. doi: 10.3321/j.issn:1000-1522.2001.05.011
Tian X R, Shu L F, Qiao Q Y, et al. Research on fire-resistance tree species in south China[J]. Journal of Beijing Forestry University, 2001, 23(5): 43−47. doi: 10.3321/j.issn:1000-1522.2001.05.011
|
[39] |
李炳怡, 刘冠宏, 李伟克, 等. 不同火强度对河北平泉油松林土壤有机碳及土壤养分影响[J]. 生态科学, 2018, 37(4): 35−44.
Li B Y, Liu G H, Li W K, et al. Effects of different wildfire intensities on soil organic carbon and soil nutrients in Pinus tabulaeformis forests in Pingquan County, Hebei Province[J]. Ecological Science, 2018, 37(4): 35−44.
|
[40] |
郭利峰. 北京八达岭林场人工油松林燃烧性研究[D]. 北京: 北京林业大学, 2007.
Guo L F. Research on artificial Pinus tabulaeformis forest combustibility of Badaling Forest Center in Beijing [D]. Beijing: Beijing Forestry University, 2007.
|
[41] |
葛学林, 董广生. 林火学 [M]. 哈尔滨: 东北林业大学出版社, 1997: 132−181, 163.
Ge X L, Dong G S. Forest fire science [M]. Harbin: Northeast Forestry University Press, 1997: 132−181, 163.
|
[42] |
李炳怡, 丁永全, 舒立福, 等. 我国人工林森林可燃物特点及管理技术研究进展[J]. 世界林业研究, 2020, 34(1): 90−95.
Li B Y, Ding Y Q, Shu L F, et al. Research progress in plantation fuel characteristics and management in China[J]. World Forestry Research, 2020, 34(1): 90−95.
|
[43] |
Tian X R, Shu L F, He Q T. Selection of fire-resistant tree species for southwestern China[J]. Forest Ecosystems (Forestry Studies in China), 2001, 3(2): 32−38.
|
[44] |
李世友, 王秋华, 张尚书, 等. 滇东北中高海拔地区防火树种筛选[J]. 西南林学院学报, 2006, 26(3): 55−58.
Li S Y, Wang Q H, Zhang S S, et al. Selection of fire resistant tree species for the middle-high altitude areas in northeastern part of Yunnan Province[J]. Journal of Southwest Forestry University, 2006, 26(3): 55−58.
|
[45] |
闫想想, 王秋华, 李晓娜, 等. 昆明周边主要林型地表可燃物的燃烧特性研究[J]. 西南林业大学学报, 2020, 40(5): 135−142. doi: 10.11929/j.swfu.201912035
Yan X X, Wang Q H, Li X N, et al. Combustibility of surface fuels in major forest types around Kunming[J]. Journal of Southwest Forestry University, 2020, 40(5): 135−142. doi: 10.11929/j.swfu.201912035
|
[46] |
王晓丽. 北京山区森林燃烧性研究[D]. 北京: 北京林业大学, 2010.
Wang X L. Study on combustibility of forests in Beijing mountain area [D]. Beijing: Beijing Forestry University, 2010.
|
[47] |
Banerjee T, Heilman W, Goodrick S, et al. Effects of canopy midstory management and fuel moisture on wildfire behavior[J]. Scientific Reports, 2020, 10(1): 17312. doi: 10.1038/s41598-020-74338-9
|
[48] |
贺红士, 常禹, 胡远满, 等. 森林可燃物及其管理的研究进展与展望[J]. 植物生态学报, 2010, 34(6): 741−752. doi: 10.3773/j.issn.1005-264x.2010.06.013
He H S, Chang Y, Hu Y M, et al. Contemporary studies and future perspectives of forest fuel and fuel management[J]. Chinese Journal of Plant Ecology, 2010, 34(6): 741−752. doi: 10.3773/j.issn.1005-264x.2010.06.013
|
[49] |
van Wagner C E. Prediction of crown fire behavior in two stands of jack pine[J]. Canadian Journal of Forest Research, 1993, 23(3): 442−449. doi: 10.1139/x93-062
|
1. |
李雪,朱宾宾,满秀玲. 温度和水分对寒温带典型森林类型土壤有机碳矿化的影响. 东北林业大学学报. 2025(02): 127-136 .
![]() | |
2. |
王军,满秀玲. 去除凋落物和草毡层对寒温带典型森林土壤活性有机碳的短期影响. 水土保持研究. 2024(01): 168-177 .
![]() | |
3. |
刘巧娟,张之松,满秀玲,高明磊,赵佳龙. 寒温带多年冻土区不同林龄白桦林土壤酶活性动态特征. 东北林业大学学报. 2024(03): 125-131 .
![]() | |
4. |
祝顺万,刘利霞,胡雪凡,代伟,王月容,李芳. 华北落叶松混交林林下植物群落特征对间伐的响应. 森林工程. 2024(03): 47-55 .
![]() | |
5. |
刘贝贝,蔡体久. 大兴安岭北部主要森林类型土壤活性碳组分及碳库稳定性变化特征. 水土保持学报. 2024(06): 203-213 .
![]() | |
6. |
沈健,何宗明,董强,林宇,郜士垒. 滨海防护林土壤CO_2排放和土壤因子对计划火烧的响应. 水土保持学报. 2023(01): 254-261 .
![]() | |
7. |
沈健,何宗明,董强,郜士垒,曹光球,林宇,黄政. 滨海沙地两种防护林土壤呼吸月际动态及影响因素. 应用与环境生物学报. 2023(02): 432-439 .
![]() | |
8. |
王军,满秀玲. 去除凋落物和草毡层对寒温带典型森林土壤氮素的短期影响. 森林工程. 2023(04): 1-9 .
![]() | |
9. |
刘思琪,满秀玲,张頔,徐志鹏. 寒温带4种乔木树种不同径级根系分解及碳氮释放动态. 北京林业大学学报. 2023(07): 36-46 .
![]() | |
10. |
沈健,何宗明,董强,林宇,郜士垒. 尾巨桉人工林火烧迹地土壤呼吸组分特征及其与土壤因子的关系. 生态学杂志. 2023(07): 1537-1547 .
![]() | |
11. |
沈健,何宗明,董强,郜士垒,林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响. 植物生态学报. 2023(07): 1032-1042 .
![]() | |
12. |
沈健,何宗明,董强,郜士垒,林宇,石焱. 不同处理方式下湿地松人工林土壤呼吸及温度敏感性变化. 西北林学院学报. 2023(05): 10-18 .
![]() | |
13. |
田慧敏,刘彦春,刘世荣. 暖温带麻栎林凋落物调节土壤碳排放通量对降雨脉冲的响应. 生态学报. 2022(10): 3889-3896 .
![]() | |
14. |
张茹,马秀枝,杜金玲,李长生,梁芝,吴天龙. 模拟增温对大兴安岭兴安落叶松林土壤CO_2通量的影响. 东北林业大学学报. 2022(08): 83-88 .
![]() | |
15. |
张扬,张秋良,李小梅,代海燕,王飞. 兴安落叶松林生长季碳交换对气候变化的响应. 西部林业科学. 2021(05): 73-80+89 .
![]() |