• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Ruipeng, Shi Changqing, Yang Jianying, Shi Lili, Wei Guangkuo, Liu Yun, Yan Sheng. Ecological restoration effect evaluation of Zhangxuan iron tailings in Hebei Province of northern China under different vegetation patterns[J]. Journal of Beijing Forestry University, 2022, 44(8): 66-76. DOI: 10.12171/j.1000-1522.20210538
Citation: Li Ruipeng, Shi Changqing, Yang Jianying, Shi Lili, Wei Guangkuo, Liu Yun, Yan Sheng. Ecological restoration effect evaluation of Zhangxuan iron tailings in Hebei Province of northern China under different vegetation patterns[J]. Journal of Beijing Forestry University, 2022, 44(8): 66-76. DOI: 10.12171/j.1000-1522.20210538

Ecological restoration effect evaluation of Zhangxuan iron tailings in Hebei Province of northern China under different vegetation patterns

More Information
  • Received Date: December 19, 2021
  • Revised Date: March 04, 2022
  • Available Online: July 18, 2022
  • Published Date: August 24, 2022
  •   Objective  To explore the effects of different vegetation restoration patterns on ecological restoration effects in iron ore abandoned sites, suitable vegetation restoration patterns were selected to solve the problems of low soil nutrients, plant growth difficulties and serious soil and water loss in abandoned iron tailings land.
      Method  Fourteen types of vegetation restoration patterns of iron tailings ponds in Zhangxuan mining area of Hebei Province, northern China were studied. The vegetation growth characteristics, species composition and plant diversity characteristics, soil nutrients and other indicators were selected to compare their restoration effects in order to screen out suitable vegetation restoration patterns in the area.
      Result  The vegetation coverage of all patterns was generally at the middle and upper level, and Pinus tabuliformis, Hippophae rhamnoides, Phragmites communis and Artemisia lavandulaefolia were the dominant species of tree, shrub and herb in the study area, respectively. The diversity index of tree and tree + shrub patterns were generally higher than that of shrub and shrub + herb, but the richness index was generally poor. Different vegetation restoration patterns and soil depths all had significant effects on soil nutrients. The soil was rich in fast-acting potassium (K), but low in phosphorus (P), nitrogen (N) and organic matter in the area. According to CRITIC-GRA model, the top three patterns in the study area were Pinus tabuliformis, Pinus tabuliformis + Fraxinus pennsylvanica and Hippophae rhamnoides + Lespedeza bicolor, which were all evaluated as “excellent”; among all the restoration measures, only the natural restoration measures were evaluated as “poor”.
      Conclusion  It is suggested to adopt soil covering for seedling restoration, and give priority to Pinus tabuliformis + Hippophae rhamnoides or Lespedeza bicolor + Artemisia lavandulaefolia or Melilotus officinalis in plant species selection. In addition, appropriate amount of nitrogen and phosphate fertilizer or organic fertilizer can be applied to accelerate soil nutrient improvement of iron tailing pond.
  • [1]
    胡振琪, 肖武, 赵艳玲. 再论煤矿区生态环境“边采边复”[J]. 煤炭学报, 2020, 45(1): 351−359. doi: 10.13225/j.cnki.jccs.YG19.1694

    Hu Z Q, Xiao W, Zhao Y L. Re-discussion on coal mine eco-environment concurrent mining and reclamation[J]. Journal of China Coal Society, 2020, 45(1): 351−359. doi: 10.13225/j.cnki.jccs.YG19.1694
    [2]
    王璐, 杨胜香, 赵东波, 等. 不同有机废弃物对铅锌尾矿基质性质和植物生长的影响[J]. 农业环境科学学报, 2020, 39(9): 1946−1956. doi: 10.11654/jaes.2020-0283

    Wang L, Yang S X, Zhao D B, et al. Effects of different organic wastes on plant growth and tailings properties of a Pb-Zn mine[J]. Journal of Agro-Environment Science, 2020, 39(9): 1946−1956. doi: 10.11654/jaes.2020-0283
    [3]
    Fang Y, Ma R T, An S S, et al. Heidaigou opencast coal mine: soil enzyme activities and soil physical and chemical properties under different vegetation restoration[J]. Environmental Science, 2016, 37(3): 1121−1127.
    [4]
    张艳, 赵廷宁, 史常青, 等. 坡面植被恢复过程中植被与土壤特征评价[J]. 农业工程学报, 2013, 29(3): 124−131.

    Zhang Y, Zhao T N, Shi C Q, et al. Evaluation of vegetation and soil characteristics during slope vegetation recovery procedure[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 124−131.
    [5]
    张中世. 铁矿废弃地不同生态恢复模式对土壤理化性质的影响[J]. 林业勘察设计, 2020, 40(4): 20−23. doi: 10.3969/j.issn.1004-2180.2020.04.005

    Zhang Z S. Influence of different ecological restoration modes on soil physical and chemical characteristic in abandon area of iron mine[J]. Forestry Prospect and Design, 2020, 40(4): 20−23. doi: 10.3969/j.issn.1004-2180.2020.04.005
    [6]
    安俊珍, 蔡崇法, 罗进选, 等. 蛇屋山金矿生态环境损害与尾矿植被恢复模式[J]. 中国水土保持科学, 2013, 11(2): 77−83. doi: 10.3969/j.issn.1672-3007.2013.02.013

    An J Z, Cai C F, Luo J X, et al. Damage on eco-environment and re-vegetation patterns of tailings in Shewushan Gold Mine[J]. Science of Soil and Water Conservation, 2013, 11(2): 77−83. doi: 10.3969/j.issn.1672-3007.2013.02.013
    [7]
    Zang Y J. Chongqing mine ecological restoration and management research[J]. Advanced Materials Research, 2013, 864−867: 1307−1310. doi: 10.4028/www.scientific.net/AMR.864-867.1307
    [8]
    郝喆, 曹明杰, 杨青潮. 尾矿库生态退化区修复效果评价[J]. 矿业研究与开发, 2019, 39(10): 143−147.

    Hao Z, Cao M J, Yang Q C. Evaluation on remediation effect of ecological degradation area of tailings pond[J]. Mining Research and Development, 2019, 39(10): 143−147.
    [9]
    潘德成, 宋品玉, 吴祥云, 等. 矿区废弃地不同植被模式生态稳定性评价[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(8): 1076−1080.

    Pan D C, Song P Y, Wu X Y, et al. Ecosystem stability evaluation of different vegetation modes in mining wasteland[J]. Journal of Liaoning Technical University (Natural Science), 2013, 32(8): 1076−1080.
    [10]
    彭东海, 侯晓龙, 何宗明, 等. 金尾矿废弃地不同植被恢复模式群落特征[J]. 水土保持研究, 2016, 23(1): 50−55.

    Peng D H, Hou X L, He Z M, et al. Community characteristics of different vegetation restoration patterns in abandoned gold tailings land[J]. Research of Soil and Water Conservation, 2016, 23(1): 50−55.
    [11]
    Qin F R, Zhang S Y, Xia Y S, et al. Investigation of dominant plants and analysis of ecological restoration potential in Lailishan tin tailings[J]. Environmental Science, 2021, 42(8): 3962−3970.
    [12]
    闫烨琛, 赵廷宁, 张艳, 等. 不同植物恢复措施对采石矿废弃地土壤物理性质的改良效果及评价[J]. 浙江农林大学学报, 2019, 36(6): 1062−1068. doi: 10.11833/j.issn.2095-0756.2019.06.002

    Yan Y C, Zhao T N, Zhang Y, et al. Improvements and evaluation of soil physical properties with different plant types in an abandoned quarry[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1062−1068. doi: 10.11833/j.issn.2095-0756.2019.06.002
    [13]
    Courtney R, Xue S G. Rehabilitation of bauxite residue to support soil development and grassland establishment[J]. Journal of Central South University, 2019, 26(2): 353−360. doi: 10.1007/s11771-019-4007-9
    [14]
    Li P J, Sun T H, Gong Z Q, et al. An approach to the theoretical meaning of ecological remediation of contaminated soil[J]. Chinese Journal of Applied Ecology, 2006, 17(4): 747−750.
    [15]
    Guo W, Zhao R X, Zhang J, et al. Distribution characteristic and assessment of soil heavy metal pollution in the iron mining of Baotou in Inner Mongolia[J]. Environmental Science, 2011, 32(10): 3099−3105.
    [16]
    An X L, Zhou Q X. Bioaccumulation of heavy metals in macrofungi and its application in ecological remediation[J]. The Journal of Applied Ecology, 2007, 18(8): 1897−1902.
    [17]
    侯永莉, 曹明杰, 郝喆. 铁矿排土场不同基质改良方法下生态修复效果评价[J]. 有色金属工程, 2020, 10(6): 114−119. doi: 10.3969/j.issn.2095-1744.2020.06.017

    Hou Y L, Cao M J, Hao Z. Effect evaluation of ecological restoration under different matrix improvement methods in iron ore dump[J]. Nonferrous Metals Engineering, 2020, 10(6): 114−119. doi: 10.3969/j.issn.2095-1744.2020.06.017
    [18]
    李想, 张宝娟, 李继泉, 等. 保水剂与有机肥配施对铁尾矿理化性质的改良作用[J]. 应用生态学报, 2017, 28(2): 554−562.

    Li X, Zhang B J, Li J Q, et al. Effects of combined application of water retention agent and organic fertilizer on physic-chemical properties of iron tailings[J]. Chinese Journal of Applied Ecology, 2017, 28(2): 554−562.
    [19]
    周艳, 陈樯, 邓绍坡, 等. 西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价[J]. 环境科学, 2018, 39(6): 2884−2892.

    Zhou Y, Chen Q, Deng S P, et al. Principal component analysis and ecological risk assessment of heavy metals in farmland soils around a Pb-Zn mine in southwestern China[J]. Environmental Science, 2018, 39(6): 2884−2892.
    [20]
    张桂莲, 张金屯, 郭逍宇. 运用模糊排序研究露天矿区人工植被土壤主要化学成分的变化[J]. 北京林业大学学报, 2004, 26(6): 30−35. doi: 10.3321/j.issn:1000-1522.2004.06.006

    Zhang G L, Zhang J T, Guo X Y. Primary chemical composition variation in soil of artifical vegetation in open mine by fuzzy set ordination[J]. Journal of Beijing Forestry University, 2004, 26(6): 30−35. doi: 10.3321/j.issn:1000-1522.2004.06.006
    [21]
    贺祥, 林振山, 刘会玉, 等. 基于灰色关联模型对江苏省PM2.5浓度影响因素的分析[J]. 地理学报, 2016, 71(7): 1119−1129. doi: 10.11821/dlxb201607003

    He X, Lin Z S, Liu H Y, et al. Analysis of the driving factors of PM2.5 in Jiangsu Province based on grey correlation model[J]. Acta Geographica Sinica, 2016, 71(7): 1119−1129. doi: 10.11821/dlxb201607003
    [22]
    Krishnan A R, Kasim M M, Hamid R, et al. A modified CRITIC method to estimate the objective weights of decision criteria[J]. Symmetry-Basel, 2021, 13(6): 1321−1333.
    [23]
    赵耀, 王百田. 晋西黄土区不同林地植物多样性研究[J]. 北京林业大学学报, 2018, 40(9): 45−54.

    Zhao Y, Wang B T. Plant diversity of different forestland in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2018, 40(9): 45−54.
    [24]
    王卓. 安太保露天矿复垦地草本群落多样性及影响因素研究[D]. 太谷: 山西农业大学, 2015.

    Wang Z. Study on herbaceous community diversity and its influencing factors in the reclaimed land of Antaibao Open-pit Mine[D]. Taigu: Shanxi Agricultural University, 2015.
    [25]
    闫升. 张宣矿区干排铁尾矿不同植被恢复模式生态效益评价[D]. 北京: 北京林业大学, 2020.

    Yan S. Ecological benefit evaluation of different vegetation restoration models for dry-discharged iron tailings in Zhangxuan Mining Area[D]. Beijing: Beijing Forestry University, 2020.
    [26]
    刘平, 马履一, 贾黎明, 等. 北京低山油松人工林径阶结构及林下植物多样性特征[J]. 北京林业大学学报, 2011, 33(3): 57−63.

    Liu P, Ma L Y, Jia L M, et al. Diameter structure and understory diversity in Chinese pine plantations in Beijing low mountain areas[J]. Journal of Beijing Forestry University, 2011, 33(3): 57−63.
    [27]
    魏彦波, 程艳霞, 李金功, 等. 植物多样性促进种支配局域空间多样性结构[J]. 北京林业大学学报, 2014, 4(6): 66−72.

    Wei Y B, Cheng Y X, Li J G, et al. Plant diversity accumulators govern local spatial diversity[J]. Journal of Beijing Forestry University, 2014, 4(6): 66−72.
    [28]
    白中科, 师学义, 周伟, 等. 人工如何支持引导生态系统自然修复[J]. 中国土地科学, 2020, 34(9): 1−9. doi: 10.11994/zgtdkx.20200918.123606

    Bai Z K, Shi X Y, Zhou W, et al. How does artificiality support and guide the natural restoration of ecosystems[J]. China Land Science, 2020, 34(9): 1−9. doi: 10.11994/zgtdkx.20200918.123606
    [29]
    黄仲德. 矿山开采对生态环境的影响及矿区生态修复分析[J]. 中国资源综合利用, 2020, 38(10): 134−136. doi: 10.3969/j.issn.1008-9500.2020.10.037

    Huang Z D. Impact of mine Mining on ecological environment and analysis of ecological restoration in mining area[J]. China Resources Comprehensive Utilization, 2020, 38(10): 134−136. doi: 10.3969/j.issn.1008-9500.2020.10.037
    [30]
    Ruan C J, Li D Q. Community characteristics of Hippophae rhamnoides forest and water and nutrient condition of the woodland in loess hilly region[J]. Chinese Journal of Applied Ecology, 2002, 13(9): 1061−1064.
    [31]
    刘敏, 吴得荣, 张向峰. 三种水保树种枯落物保水功能[J]. 水土保持研究, 2014, 21(1): 81−84.

    Liu M, Wu D R, Zhang X F. Water conserving function of litter of three water conservation tree species[J]. Research of Soil and Water Conservation, 2014, 21(1): 81−84.
    [32]
    韩煜, 赵伟, 张淇翔, 等. 不同植被恢复模式下矿山废弃地的恢复效果研究[J]. 水土保持研究, 2018, 25(1): 120−125.

    Han Y, Zhao W, Zhang Q X, et al. Effects of different vegetation patterns on ecological restoration in mining wasteland[J]. Research of Soil and Water Conservation, 2018, 25(1): 120−125.
    [33]
    任余艳, 韩易良, 刘朝霞, 等. 毛乌素沙地立地类型划分与抗逆树种筛选[J]. 干旱区资源与环境, 2021, 35(1): 135−140.

    Ren Y Y, Han Y L, Liu Z X, et al. Classification of Mu Us Sandy Land stands and the election of resistant tree species[J]. Journal of Arid Land Resources and Environment, 2021, 35(1): 135−140.
    [34]
    Hardtle W, von Oheimb G, Friedel A, et al. Relationship between pH-value and nutrient availability in forest soils: the consequence for the use of ecograms in forest ecology [J]. Flora, 2004, 199(2): 134−142.
    [35]
    胡婵娟, 郭雷. 植被恢复的生态效应研究进展[J]. 生态环境学报, 2012, 21(9): 1640−1646. doi: 10.3969/j.issn.1674-5906.2012.09.023

    Hu C J, Guo L. Advances in the research of ecological effects of vegetation restoration[J]. Journal of Ecological Environment, 2012, 21(9): 1640−1646. doi: 10.3969/j.issn.1674-5906.2012.09.023
    [36]
    龚雪蛟, 秦琳, 刘飞, 等. 有机类肥料对土壤养分含量的影响[J]. 应用生态学报, 2020, 31(4): 1403−1416. doi: 10.13287/j.1001-9332.202004.025

    Gong X J, Qin L, Liu F, et al. Effects of organic manure on soil nutrient content: a review[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1403−1416. doi: 10.13287/j.1001-9332.202004.025
    [37]
    李宜浓, 周晓梅, 张乃莉, 等. 陆地生态系统混合凋落物分解研究进展[J]. 生态学报, 2016, 36(16): 4977−4987.

    Li Y N, Zhou X M, Zhang N L, et al. The research of mixed litter effects on litter decomposition in terrestrial ecosystems[J]. Acta Ecologica Sinica, 2016, 36(16): 4977−4987.
    [38]
    周月杰, 苏芳莉, 郭成久, 等. 铁矸石山生态修复初期土壤主要特征分析[J]. 现代农业科学, 2008, 15(11): 44−46.

    Zhou Y J, Su F L, Guo C J, et al. Analysis of the main characteristics of the soil in the waste iron ecological restoration in the early[J]. Modern Agricultural Science, 2008, 15(11): 44−46.
    [39]
    任晓旭, 蔡体久, 王笑峰. 不同植被恢复模式对矿区废弃地土壤养分的影响[J]. 北京林业大学学报, 2010, 32(4): 151−154.

    Ren X X, Cai T J, Wang X F. Effects of vegetation restoration models on soil nutrients in an abandoned quarry[J]. Journal of Beijing Forestry University, 2010, 32(4): 151−154.
    [40]
    王浩, 黄晨璐, 杨方社, 等. 砒砂岩区沙棘根系的生境适应性[J]. 应用生态学报, 2019, 30(1): 157−164.

    Wang H, Huang C L, Yang F S, et al. Root habitat flexibility of seabuckthorn in the Pisha sandstone area[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 157−164.
    [41]
    闫升, 杨建英, 史常青, 等. 基于AHP-PCA的铁尾矿不同植被恢复模式土壤养分评价[J]. 中国水土保持科学, 2019, 17(6): 111−118.

    Yan S, Yang J Y, Shi C Q, et al. Soil nutrient evaluation of iron tailings in different vegetation restoration modes based on AHP-PCA[J]. Science of Soil and Water Conservation, 2019, 17(6): 111−118.
  • Cited by

    Periodical cited type(15)

    1. 李雪,朱宾宾,满秀玲. 温度和水分对寒温带典型森林类型土壤有机碳矿化的影响. 东北林业大学学报. 2025(02): 127-136 .
    2. 王军,满秀玲. 去除凋落物和草毡层对寒温带典型森林土壤活性有机碳的短期影响. 水土保持研究. 2024(01): 168-177 .
    3. 刘巧娟,张之松,满秀玲,高明磊,赵佳龙. 寒温带多年冻土区不同林龄白桦林土壤酶活性动态特征. 东北林业大学学报. 2024(03): 125-131 .
    4. 祝顺万,刘利霞,胡雪凡,代伟,王月容,李芳. 华北落叶松混交林林下植物群落特征对间伐的响应. 森林工程. 2024(03): 47-55 .
    5. 刘贝贝,蔡体久. 大兴安岭北部主要森林类型土壤活性碳组分及碳库稳定性变化特征. 水土保持学报. 2024(06): 203-213 .
    6. 沈健,何宗明,董强,林宇,郜士垒. 滨海防护林土壤CO_2排放和土壤因子对计划火烧的响应. 水土保持学报. 2023(01): 254-261 .
    7. 沈健,何宗明,董强,郜士垒,曹光球,林宇,黄政. 滨海沙地两种防护林土壤呼吸月际动态及影响因素. 应用与环境生物学报. 2023(02): 432-439 .
    8. 王军,满秀玲. 去除凋落物和草毡层对寒温带典型森林土壤氮素的短期影响. 森林工程. 2023(04): 1-9 .
    9. 刘思琪,满秀玲,张頔,徐志鹏. 寒温带4种乔木树种不同径级根系分解及碳氮释放动态. 北京林业大学学报. 2023(07): 36-46 . 本站查看
    10. 沈健,何宗明,董强,林宇,郜士垒. 尾巨桉人工林火烧迹地土壤呼吸组分特征及其与土壤因子的关系. 生态学杂志. 2023(07): 1537-1547 .
    11. 沈健,何宗明,董强,郜士垒,林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响. 植物生态学报. 2023(07): 1032-1042 .
    12. 沈健,何宗明,董强,郜士垒,林宇,石焱. 不同处理方式下湿地松人工林土壤呼吸及温度敏感性变化. 西北林学院学报. 2023(05): 10-18 .
    13. 田慧敏,刘彦春,刘世荣. 暖温带麻栎林凋落物调节土壤碳排放通量对降雨脉冲的响应. 生态学报. 2022(10): 3889-3896 .
    14. 张茹,马秀枝,杜金玲,李长生,梁芝,吴天龙. 模拟增温对大兴安岭兴安落叶松林土壤CO_2通量的影响. 东北林业大学学报. 2022(08): 83-88 .
    15. 张扬,张秋良,李小梅,代海燕,王飞. 兴安落叶松林生长季碳交换对气候变化的响应. 西部林业科学. 2021(05): 73-80+89 .

    Other cited types(4)

Catalog

    Article views (1023) PDF downloads (124) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return