• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Bin, Cao Shangjie, Wang Ying, Cui Ying, Yue Hua, Zhang Yanni. Overexpression of LpNAC6 gene in Lilium pumilum enhancing salt tolerance in transgenic tobacco[J]. Journal of Beijing Forestry University, 2020, 42(4): 69-79. DOI: 10.12171/j.1000-1522.20190342
Citation: Liu Bin, Cao Shangjie, Wang Ying, Cui Ying, Yue Hua, Zhang Yanni. Overexpression of LpNAC6 gene in Lilium pumilum enhancing salt tolerance in transgenic tobacco[J]. Journal of Beijing Forestry University, 2020, 42(4): 69-79. DOI: 10.12171/j.1000-1522.20190342

Overexpression of LpNAC6 gene in Lilium pumilum enhancing salt tolerance in transgenic tobacco

More Information
  • Received Date: August 26, 2019
  • Revised Date: December 22, 2019
  • Available Online: April 10, 2020
  • Published Date: April 26, 2020
  • ObjectiveNAC transcription factor is a new kind of transcription factor with many biological functions, which plays an important role in stress response. This paper aims to explore the expression pattern of LpNAC6 gene under stress and its response to salt stress in transgenic tobacco.
    MethodLpNAC6 gene from Lilium pumilum was cloned by homologous cloning and analyzed by bioinformatics softwares. Subcellular localization of LpNAC6 protein was performed by particle bombardment. The expression patterns of LpNAC6 gene in different abiotic stresses and different tissues were analyzed by RT-qPCR. The plant expression vector pBI121-LpNAC6-GFP was constructed, and tobacco was transformed for verifying the function of LpNAC6 gene under salt stress.
    ResultThe LpNAC6 gene was 909 bp in length and encoded 302 amino acids, it had a highly conserved NAM domain and belongs to the NAC gene family. LpNAC6 protein was a hydrophilic protein with no signal peptide and trans-membrane domain. It had 5 glycosylation sites, 20 phosphorylation sites and subcellular localization of LpNAC6 protein in nucleus. The evolutionary relationship between LpNAC6 gene and NAC transcription factor of Gossypium mustelinum was closest. LpNAC6 gene in L. pumilum responded to ABA, drought, low temperature and salt stress. Under salt stress, the activity of SOD, POD, CAT and the contents of chlorophyll, proline and soluble protein in transgenic tobacco overexpressing LpNAC6 gene were significantly higher than those in wild-type.
    ConclusionLpNAC6 gene of L. pumilum can respond to ABA, drought, low temperature and salt stress. Its overexpression can increase the metabolic activity and antioxidant enzyme activity of transgenic tobacco under salt stress, thus enhancing the salt tolerance of tobacco.
  • [1]
    Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290: 2105−2110. doi: 10.1126/science.290.5499.2105
    [2]
    Nuruzzaman M, Manimekalai R, Sharoni A M, et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene, 2010, 465(1−2): 30−44. doi: 10.1016/j.gene.2010.06.008
    [3]
    Pinheiro G L, Marques C S, Costa M D B L, et al. Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response[J]. Gene, 2009, 444(1−2): 10−23. doi: 10.1016/j.gene.2009.05.012
    [4]
    Rushton P J, Bokowiec M T, Laudeman T W, et al. TOBFAC: the database of tobacco transcription factors[J/OL]. BMC Bioinformatics, 2008, 9(1): 53 [2019−07−15]. https://doi.org/10.1186/1471-2105-9-53.
    [5]
    Zhang J, Huang G Q, Zou D, et al. The cotton(Gossypium hirsutum)NAC transcription factor(FSN1)as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers[J]. New Phytologist, 2018, 217(2): 625−640. doi: 10.1111/nph.14864
    [6]
    Huang Q J, Wang Y, Li B, et al. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis[J/OL]. BMC Plant Biology, 2015, 15(1): 268 [2019−07−15]. https://doi.org/10.1186/s12870-015-0644-9.
    [7]
    Tak H, Negi S, Ganapathi T R. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance[J]. Protoplasma, 2017, 254(2): 803−816. doi: 10.1007/s00709-016-0991-x
    [8]
    Nakashima K, Tran L S P, Van Nguyen D, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. The Plant Journal, 2007, 51(4): 617−630. doi: 10.1111/j.1365-313X.2007.03168.x
    [9]
    侯佳, 李发虎, 李龙梅, 等. 野生山丹组织培养体系优化与品种改良研究进展[J]. 中国园艺文摘, 2017, 33(10):67−69, 76. doi: 10.3969/j.issn.1672-0873.2017.10.025

    Hou J, Li F H, Li L M, et al. Advances in tissue culture techniques optimization and variety improvement of wild Lilium pumilum DC.[J]. Chinese Horticulture Abstracts, 2017, 33(10): 67−69, 76. doi: 10.3969/j.issn.1672-0873.2017.10.025
    [10]
    De Clercq I, Vermeirssen V, Van Aken O, et al. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis[J]. The Plant Cell, 2013, 25(9): 3472−3490. doi: 10.1105/tpc.113.117168
    [11]
    刘锴栋, 袁长春, 黎海利, 等. 番荔枝GA20氧化酶基因的克隆与表达分析[J]. 植物生理学报, 2015, 51(10):1697−1705.

    Liu K D, Yuan C C, Li H L, et al. Cloning and expression analysis of GA20-Oxidase gene from sugar apple (Annona squamosa)[J]. Plant Physiology Journal, 2015, 51(10): 1697−1705.
    [12]
    Kamiuchi Y, Yamamoto K, Furutani M, et al. The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development[J/OL]. Frontiers in Plant Science, 2014, 5: 165 [2019−07−15]. https://doi.org/10.3389/fpls.2014.00165.
    [13]
    康桂娟, 曾日中, 聂智毅, 等. 巴西橡胶树NAC转录因子HbNAC1基因的克隆及生物信息学分析[J]. 中国农学通报, 2012, 28(34):1−11. doi: 10.3969/j.issn.1000-6850.2012.34.001

    Kang G J, Zeng R Z, Nie Z Y, et al. Cloning and bioinformatics analysis of a NAC transcription factor HbNAC1 from Hevea brasiliensis[J]. Chinese Agricultural Science Bulletin, 2012, 28(34): 1−11. doi: 10.3969/j.issn.1000-6850.2012.34.001
    [14]
    Furuta K M, Yadav S R, Lehesranta S, et al. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation[J]. Science, 2014, 345: 933−937. doi: 10.1126/science.1253736
    [15]
    Kim S G, Lee S, Seo P J, et al. Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice[J]. Genomics, 2010, 95(1): 56−65. doi: 10.1016/j.ygeno.2009.09.003
    [16]
    Kim S G, Lee A K, Yoon H K, et al. A mem-brane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination[J]. The Plant Journal: for Cell and Molecular Biology, 2008, 55(1): 77−88. doi: 10.1111/j.1365-313X.2008.03493.x
    [17]
    樊金娟, 阮燕晔. 植物生理学实验教程[M]. 北京: 中国农业大学出版社, 2015.

    Fan J J, Ruan Y Y. Experimental course of plant physiology[M]. Beijing: China Agricultural University Press, 2015.
    [18]
    刘萍, 李明军. 植物生理学实验[M]. 北京: 科学出版社, 2016.

    Liu P, Li M J. Experiments of plant physiology[M]. Beijing: Science Press, 2016.
    [19]
    华智锐, 李小玲. 水杨酸浸种对小麦品种‘商麦5226’盐胁迫的缓解效应[J]. 西北农业学报, 2015, 24(9):29−35. doi: 10.7606/j.issn.1004-1389.2015.09.005

    Hua Z R, Li X L. Mitigative effect of seed-soaking by salicylic acid on wheatcultiver of ‘Shangmai 5226’ under salt stress[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(9): 29−35. doi: 10.7606/j.issn.1004-1389.2015.09.005
    [20]
    Zhong R Q, Lee C H, Ye Z H. Functional characterization of poplar wood-associated NAC domain transcription factors[J]. Journal of Plant Physiology, 2010, 152(2): 1044−1055. doi: 10.1104/pp.109.148270
    [21]
    Olsen A N, Ernst H A, Leggio L L, et al. NAC transcription factors: structurally distinct, functionally diverse[J]. Trends in Plant Science, 2005, 10(2): 79−87. doi: 10.1016/j.tplants.2004.12.010
    [22]
    Webster D E, Thomas M C. Post-translational modification of plant-made foreign proteins, glycosylation and beyond[J]. Biotech Advances, 2011, 30(2): 410−418.
    [23]
    段奥其, 冯凯, 刘洁霞, 等. 芹菜NAC转录因子基因AgNAC1的克隆及其对非生物胁迫的响应[J]. 园艺学报, 2018, 45(6):1125−1135.

    Duan A Q, Feng K, Liu J X, et al. Cloning and response to abiotic stress of NAC transcription gene AgNAC1 in Apium graveolens[J]. Acta Horticulturae Sinica, 2018, 45(6): 1125−1135.
    [24]
    樊蕾, 高志英. 番茄SlNAC71基因克隆及表达分析[J]. 分子植物育种, 2018, 16(13):4172−4175.

    Fan L, Gao Z Y. Cloning and expression analysis of SlNAC71 gene in tomato[J]. Molecular Plant Breeding, 2018, 16(13): 4172−4175.
    [25]
    张晓菲, 路信, 段卉, 等. 胡杨NAC转录因子PeNAC045基因的克隆及功能分析[J]. 北京林业大学学报, 2015, 37(6):1−10.

    Zhang X F, Lu X, Duan H, et al. Cloning and functional analysis of PeNAC045 from Populus euphratica[J]. Journal of Beijing Forestry University, 2015, 37(6): 1−10.
    [26]
    袁义杭, 张鹤华, 游韩莉, 等. 青杄PwNAC42基因的克隆及表达模式分析[J]. 生物技术通报, 2018, 34(3):113−120.

    Yuan Y H, Zhang H H, You H L, et al. Cloning and expression analysis of PwNAC42 in Picea wilsonii[J]. Biotechnology Bulletin, 2018, 34(3): 113−120.
    [27]
    王燕飞, 红格日其其格, 王光霞, 等. 中间锦鸡儿CiATAF1基因的亚细胞定位及表达分析[J]. 华北农学报, 2019, 34(3):23−30. doi: 10.7668/hbnxb.201751243

    Wang Y F, Honggeriqiqige, Wang G X, et al. Subcellular localization and expression analysis of CiATAF1 gene in Caragana intermedia[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(3): 23−30. doi: 10.7668/hbnxb.201751243
    [28]
    Zheng X N, Chen B, Lu G J, et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochemical and Biophysical Research Communications, 2008, 379(4): 985−989.
    [29]
    姜红岩, 张蕊, 滕珂, 等. 日本结缕草ZjNAC2基因的克隆、亚细胞定位及表达分析[J]. 草业科学, 2019, 36(6):1553−1562.

    Jiang H Y, Zhang R, Teng K, et al. Molecular cloning, subcellular localization analysis, and expression characterization of ZjNAC2 from Zoysia japonica[J]. Pratacultural Science, 2019, 36(6): 1553−1562.
    [30]
    Zhao J H, Li M Z, Gu D C, et al. Involvement of rice histone deacetylase HDA705 in seed germination and in response to ABA and abiotic stresses[J]. Biochemical and Biophysica Research Communications, 2016, 470(2): 439−444. doi: 10.1016/j.bbrc.2016.01.016
    [31]
    Yong Y B, Zhang Y, Lyu Y M. A stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis[J/OL]. International Journal of Molecular Sciences, 2019, 20(13): 3225 [2019−07−15]. https://doi.org/10.3390/ijms20133225.
    [32]
    Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373−399. doi: 10.1146/annurev.arplant.55.031903.141701
    [33]
    Farhangi-Abriz S, Torabian S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress[J]. Ecotoxicology and Environmental Safety, 2017, 137: 64−70. doi: 10.1016/j.ecoenv.2016.11.029
    [34]
    Zhao X, Yang X W, Pei S Q, et al. The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis[J]. Gene, 2016, 586(1): 158−169. doi: 10.1016/j.gene.2016.04.028
    [35]
    Ma X J, Zhang B, Liu C J, et al. Expression of a populus histone deacetylase gene 84KHDA903 in tobacco enhances drought tolerance[J]. Plant Science, 2017, 265: 1−11. doi: 10.1016/j.plantsci.2017.09.008
    [36]
    Yu X W, Liu Y M, Wang S, et al. CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis[J]. Plant Cell Reports, 2016, 35(3): 613−627. doi: 10.1007/s00299-015-1907-5
  • Related Articles

    [1]Zhang Bo, Lu Kaiyan, Zhang Xiaoyu, Wu Rongling. Root development and genetic regulation in Populus euphratica under salt stress[J]. Journal of Beijing Forestry University, 2025, 47(1): 72-84. DOI: 10.12171/j.1000-1522.20230374
    [2]Feng Lei, Xu Wanli, Tang Guangmu, Zhang Yunshu, Gu Meiying. Characteristics of Lycium ruthenicum adapting to salinization stress after salt tolerance training[J]. Journal of Beijing Forestry University, 2020, 42(12): 83-90. DOI: 10.12171/j.1000-1522.20200123
    [3]Liu Junling, Liang Kehao, Miao Yahui, Hu Anni, Sun Yongjiang, Zhang Lingyun. Characteristics of PwUSP1 in Picea wilsonii and its response to drought and salt stress[J]. Journal of Beijing Forestry University, 2020, 42(10): 62-70. DOI: 10.12171/j.1000-1522.20200063
    [4]Yan Wenhua, Wu Dejun, Yan Liping, Wang Yinhua, Ren Fei, Yan Lin, Liu Jie, Yu Linlin. Comprehensive evaluation of salt tolerance of clones of Fraxinusin spp. seedling stage under salt stress[J]. Journal of Beijing Forestry University, 2019, 41(11): 44-53. DOI: 10.13332/j.1000-1522.20180438
    [5]Zhang Huilong, Wu Xia, Yao Jun, Zhao Nan, Zhao Rui, Li Jinke, Shen Xin, Chen Shaoliang. Overexpression mechanism of PeREM1.3 from Populus euphratica enhancing salt tolerance in transgenic tobacco[J]. Journal of Beijing Forestry University, 2019, 41(1): 1-9. DOI: 10.13332/j.1000-1522.20180338
    [6]Yao Kun, Lian Conglong, Wang Jingjing, Wang Houling, Liu Chao, Yin Weilun, Xia Xinli. PePEX11 functions in regulating antioxidant capacity of Arabidopsis thaliana under salt stress[J]. Journal of Beijing Forestry University, 2018, 40(5): 19-28. DOI: 10.13332/j.1000-1522.20180086
    [7]LI Qiang, YANG Hong-qiang, SHEN Wei. Polyamine content and effects of spermine and spermidine on lipid peroxidation induced by salt stress in Malus hupehensis Rehd.[J]. Journal of Beijing Forestry University, 2011, 33(6): 173-176.
    [8]LI Jing, LIU Qun-lu, TANG Dong-qin, ZHANG Ting-ting. Effects of salt stress and salt leaching on the physiological characteristics of Chaenomeles speciosa[J]. Journal of Beijing Forestry University, 2011, 33(6): 40-46.
    [9]YAN Hui, XIA Xin-li, GAO Rong-fu, YIN Wei-lun. Primary response of plasma membrane potential on root caps of Ammopiptanthus mongolicus and Phaseolus radiatus to salt stress.[J]. Journal of Beijing Forestry University, 2008, 30(6): 16-21.
    [10]SONG Ying-qi, YANG Qian, QIN Gen-ji, QU Li-jia. AtPIP5K2 gene involved in regulating the sensitivity to salt stress of Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2006, 28(5): 78-83.
  • Cited by

    Periodical cited type(4)

    1. 温馨,殷可欣,马思圆,张小萌,赵楠,周晓阳,赵瑞,陈少良. 过表达胡杨PePKS5提高拟南芥耐盐性. 北京林业大学学报. 2024(02): 62-74 . 本站查看
    2. 高鹏飞,高冰,冯郑红,吴建慧. 绢毛委陵菜PsWRKY40的克隆与耐镉功能分析. 园艺学报. 2023(06): 1269-1283 .
    3. 赵瑞,陈少良. 杨树耐盐性调控的离子平衡与活性氧平衡信号网络. 中国科学:生命科学. 2020(02): 167-175 .
    4. 武霞,张一南,赵楠,张莹,赵瑞,李金克,周晓阳,陈少良. 过表达胡杨PeAnn1负调控拟南芥的抗旱性. 北京林业大学学报. 2020(06): 14-25 . 本站查看

    Other cited types(6)

Catalog

    Article views (2826) PDF downloads (66) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return