• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Huilong, Wu Xia, Yao Jun, Zhao Nan, Zhao Rui, Li Jinke, Shen Xin, Chen Shaoliang. Overexpression mechanism of PeREM1.3 from Populus euphratica enhancing salt tolerance in transgenic tobacco[J]. Journal of Beijing Forestry University, 2019, 41(1): 1-9. DOI: 10.13332/j.1000-1522.20180338
Citation: Zhang Huilong, Wu Xia, Yao Jun, Zhao Nan, Zhao Rui, Li Jinke, Shen Xin, Chen Shaoliang. Overexpression mechanism of PeREM1.3 from Populus euphratica enhancing salt tolerance in transgenic tobacco[J]. Journal of Beijing Forestry University, 2019, 41(1): 1-9. DOI: 10.13332/j.1000-1522.20180338

Overexpression mechanism of PeREM1.3 from Populus euphratica enhancing salt tolerance in transgenic tobacco

More Information
  • Received Date: October 18, 2018
  • Revised Date: November 28, 2018
  • Published Date: December 31, 2018
  • ObjectiveThe tolerance to salt stress, which is a major abiotic stress, is critical to plant survival and productivity. Remorins are plant-specific proteins and play an important role in plant adaptation to adverse environments. In this study, the gene PeREM1.3 coding for a remorin protein was cloned from Populus euphratica, and the role of PeREM1.3 in plant salt tolerance was investigated.
    MethodThe gene constructs 35S::PeREM1.3 was transferred to model plant tobacco to investigate the function of PeREM1.3 in salt tolerance by physiological and biochemical methods.
    ResultStudies showed that PeREM1.3 protein localized on the plasma membrane. The 600 bp full-length of open reading frame (ORF) of PeREM1.3 encoded a putative protein of 199 amino acids. The expression of PeREM1.3 was up-regulated under salt and osmotic stress in Populus euphratica. The results showed that the expression of PeREM1.3 increased the salt tolerance of tobacco. The activities of antioxidant enzymes such as SOD, POD and CAT significantly increased and decreased the ROS level to maintain ROS homeostasis in transgenic lines expressing PeREM1.3 under salt stress. On the other hand, the transcriptional levels of plant stress-resistance related genes, such as SOS1, HAK, NHA1, VAG1 and PMA4, were significantly increased and then maintained the K+/Na+ homeostasis in transgenic plants.
    ConclusionThe above experimental data indicate that remorin protein could maintain ROS and K+/Na+ homeostasis and then enhance plant salt tolerance.
  • [1]
    Jacinto T, Farmer E E, Ryan C A. Purification of potato leaf plasm a membrane protein pp34, a protein phosphorylated in response to oligogalacturonide signals for defense and development[J]. Plant Physiology, 1993, 103: 1393-1397. doi: 10.1104/pp.103.4.1393
    [2]
    Peskan T, Westermann M, Oelmuller R. Identification of low-density triton X-100-insoluble plasma membrane microdomains in higher plants[J]. European Journal of Biochemistry, 2000, 267(24): 6989-6995. doi: 10.1046/j.1432-1327.2000.01776.x
    [3]
    Mongrand S, More L J, Laroche J, et al. Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasm a membrane[J]. Journal of Biological Chemistry, 2004, 279(35): 36277-36286. doi: 10.1074/jbc.M403440200
    [4]
    Kreps J A, Wu Y, Chang H S, et al. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress[J]. Plant Physiology, 2002, 130(4): 2129-2141. doi: 10.1104/pp.008532
    [5]
    Bray E A. Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome[J]. Plant, Cell and Environment, 2002, 25: 153-161. doi: 10.1046/j.1365-3040.2002.00746.x
    [6]
    Reddy A R, Ramakrishna W, Sekhar A, et al. Novel genes are enriched in normalized cDNA libraries from drought-stressed seedlings of rice (Oryza sativa L. subsp. indica cv. Nagina 22)[J]. Genome, 2002, 45: 204-211. doi: 10.1139/g01-114
    [7]
    Lin F, Xu S L, Ni W M, et al. Identification of ABA-responsive genes in rice shoots via cDNA microarray[J]. Cell Research, 2003, 13(1): 59-68. doi: 10.1038/sj.cr.7290151
    [8]
    Malakshah S N, Rezaei M H, Heidary M, et al. Proteomics reveals new salt responsive proteins associated with rice plasma membrane[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(9): 2144-2154. doi: 10.1271/bbb.70027
    [9]
    Gui J, Zheng S, Liu C, et al. OsREM4.1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice[J]. Developmental Cell, 2016, 38: 201-213. doi: 10.1016/j.devcel.2016.06.011
    [10]
    张一南, 王洋, 张会龙, 等.过表达胡杨PeRIN4基因拟南芥提高质膜H+-ATPase活性和耐盐性[J].北京林业大学学报, 2017, 39(11) : 1-8. doi: 10.13332/j.1000-1522.20170124

    Zhang Y N, Wang Y, Zhang H L, et al. Overexpression of PeRIN4 enhanced salinity tolerance through up regulation of PM H+ -ATPase in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2017, 39 (11) :1-8. doi: 10.13332/j.1000-1522.20170124
    [11]
    Sun J, Wang M J, Ding M Q, et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells[J]. Plant, Cell and Environment, 2010, 33: 943-958. doi: 10.1111/pce.2010.33.issue-6
    [12]
    Sun J, Li L S, Liu M Q, et al. Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars[J]. Plant Cell Tissue and Organ Culture, 2010, 103(2): 205-215. doi: 10.1007/s11240-010-9768-7
    [13]
    Ding M Q, Hou P C, Shen X, et al. Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt-resistant and salt-sensitive poplar species[J]. Plant Molecular Biology, 2010, 73: 251-269. doi: 10.1007/s11103-010-9612-9
    [14]
    Chen S L, Polle A. Salinity tolerance of Populus[J]. Plant Biology, 2010, 12 : 317-333. http://d.old.wanfangdata.com.cn/Periodical/bjlydxxb201711001
    [15]
    Sun J, Chen S L, Dai S X, et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species[J]. Plant Physiology, 2009, 149: 1141-1153. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM19028881
    [16]
    Wang R G, Chen S L, Ma H, et al. Genotypic differences in antioxidative stress and salt tolerance of three poplars under salt stress[J]. Frontiers of Forestry in China, 2006, 1: 82-88. doi: 10.1007/s11461-005-0019-8
    [17]
    Kraus T E, Fletcher R A. Paclobutrazol protects wheat seedlings from heat and paraquat injury is detoxification of active oxygen involved[J]. Plant and Cell Physiology, 1994, 35: 45-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002843271
    [18]
    Abbott A G, Ainsworth C C, Flavell R B. Characterization of anther differentiation in cytoplasmic male sterile maize using a specific isozyme system (esterase)[J]. Theoretical and Applied Genetics, 1984, 67: 469-473. doi: 10.1007/BF00263415
    [19]
    Shen Z D, Yao J, Sun J, et al. Populus euphratica HSF binds the promoter of WRKY1 to enhance salt tolerance[J]. Plant Science, 2015, 235: 89-100. doi: 10.1016/j.plantsci.2015.03.006
    [20]
    Sylvain R, Emmanuelle B, David L, et al. Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement[J]. The Plant Cell, 2009, 21:1541-1555. doi: 10.1105/tpc.108.064279
    [21]
    Wang R G, Chen S L, Zhou X Y, et al. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress[J]. Tree Physiology, 2008, 28: 947-957. doi: 10.1093/treephys/28.6.947
    [22]
    Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9: 490-498. doi: 10.1016/j.tplants.2004.08.009
    [23]
    Zhu M, Shabala L, Cuin T A, et al. Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat[J]. Journal of Experimental Botany, 2016, 67: 835-844. doi: 10.1093/jxb/erv493
    [24]
    Zhu J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology, 2003, 6: 441-445. doi: 10.1016/S1369-5266(03)00085-2
    [25]
    Blumwald E. Sodium transport and salt tolerance in plants[J]. Current Opinion in Cell Biology, 2000, 12(4): 431-434. doi: 10.1016/S0955-0674(00)00112-5
    [26]
    Wu C A, Yang G O, Meng Q W, et al. The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress[J]. Plant Cell Physiology, 2004, 45(5):600-607. doi: 10.1093/pcp/pch071
    [27]
    Fukuda A, Nakamura A, Tagiri A, et al. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+ /H+ antiporter from rice[J]. Plant Cell Physiology, 2004, 45(2): 149-159. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM14988485
    [28]
    Takahashi R, Nishio T, Ichizen N, et al. Cloning and functional analysis of the K+ transporter, PhaHAK2, from salt-sensitive and salt-tolerant reed plants[J]. Biotechnology Letters, 2007, 9(3): 501-506. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4682b0e4dbd595aaf9c414773231e657
    [29]
    马挺军, 向远寅, 王沙生.盐胁迫对胡杨液泡膜H+-ATPase水解活性的影响[J].新疆农业大学学报, 2003, 26(2):43-48. doi: 10.3969/j.issn.1007-8614.2003.02.011

    Ma T J, Xiang Y Y, Wang S S. Effects of salt stress on the hydrolytic activity of H+ ATPase from Populus euphratica[J]. Journal of Xinjiang Agricultural University, 2003, 26(2):43-48. doi: 10.3969/j.issn.1007-8614.2003.02.011
    [30]
    Moriau L, Bogaerts P, Jonniaux J L, et al. Identification and characterization of a second plasma membrane H+-ATPase gene subfamily in Nicotiana plumbaginifolia[J]. Plant Molecular Biology, 1993, 21(6):955-963. doi: 10.1007/BF00023594
    [31]
    Wang M J, Wang Y, Sun J, et al. Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis[J]. Plant Physiology and Biochemistry, 2013, 71(2):37-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=585b971772f2d855c1bfb01b4960a634
    [32]
    Shabala S, Cuin T A. Potassium transport and plant salt tolerance[J]. Physiologia Plantarum, 2008, 133(4): 651-669. doi: 10.1111/ppl.2008.133.issue-4
  • Related Articles

    [1]Wang Bing, Cheng Ziyi, Zhang Lei, Zhao Zhijing, Lu Hai, Liu Di. Tobacco overexpression Populus tomentosa mitochondria ascorbate peroxidase improving stress resistance[J]. Journal of Beijing Forestry University, 2020, 42(7): 33-39. DOI: 10.12171/j.1000-1522.20190390
    [2]Liu Bin, Cao Shangjie, Wang Ying, Cui Ying, Yue Hua, Zhang Yanni. Overexpression of LpNAC6 gene in Lilium pumilum enhancing salt tolerance in transgenic tobacco[J]. Journal of Beijing Forestry University, 2020, 42(4): 69-79. DOI: 10.12171/j.1000-1522.20190342
    [3]Lü Wei, Sun Yuhan, Zhang Huaxin, Yang Qingshan, Li Juan, Chen Shouyi, Zhang Wanke, Li Yun. Pollen vigor and detection of exogenous genes of litter for transgenic triploid Populus tomentosa[J]. Journal of Beijing Forestry University, 2019, 41(7): 91-100. DOI: 10.13332/j.1000-1522.20190105
    [4]Jiang Jing, Li Xiaoyuan, Wang Chu, Wang Fang, Jiang Jing. Evaluation of salt tolerant performance of BpCHS3 transgenic plants in Betula platyphylla[J]. Journal of Beijing Forestry University, 2019, 41(4): 1-7. DOI: 10.13332/j.1000-1522.20180224
    [5]ZHANG Yi-nan, WANG Yang, ZHANG Hui-long, YAO Jun, DENG Jia-yin, ZHAO Rui, SHEN Xin, CHEN Shao-liang. Over-expression of PeRIN4 enhanced salinity tolerance through up-regulation of PM H+-ATPase in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2017, 39(11): 1-8. DOI: 10.13332/j.1000-1522.20170124
    [6]JIANG Xue-ru, PENG Jin-gen, GUO Ling, GAO Rong-fu, LIU Yan. Relationship between winter leaf reddening and carotenoids, reactive oxygen species in Buxus microphylla L[J]. Journal of Beijing Forestry University, 2015, 37(6): 93-99. DOI: 10.13332/j.1000-1522.20140258
    [7]JING Xiao-shu, SUN Yuan-ling, XIANG Min, QIAN Ze-yong, LANG Tao, ZHAO Rui, SHEN Xin, CHEN Shao-liang. Overexpression of KcTrxf in tobacco enhances salt tolerance through the regulation of ROS homeostasis under NaCl stress[J]. Journal of Beijing Forestry University, 2015, 37(6): 17-26. DOI: 10.13332/j.1000-1522.20150010
    [8]SUN Li-yang, LI Jing, YUAN Hu-wei, YAO Jing-han1, LI Wei, CHEN Xiao-yang. Expression analysis of Bt-BADH-GA20ox-rolB multigenes in transgenic tobacco plants[J]. Journal of Beijing Forestry University, 2011, 33(5): 86-90.
    [9]LI Hai-xia, ZHANG Zhi-yi, ZHANG Qian, AN Xin-min, LI Yan, LIU Ting-ting.. Transformation of tobaccos with a TIR-NBS-LRR gene isolated from Populus tomentosa Carr.[J]. Journal of Beijing Forestry University, 2009, 31(1): 73-78.
    [10]QI Chun-hui, HAN Lie-bao, LIANG Xiao-hong, CENG Hui-ming, LIU Jun. Transgenic Zoysia japonica plants obtained by biolistic bombardment transformation[J]. Journal of Beijing Forestry University, 2006, 28(3): 71-75.
  • Cited by

    Periodical cited type(4)

    1. 温馨,殷可欣,马思圆,张小萌,赵楠,周晓阳,赵瑞,陈少良. 过表达胡杨PePKS5提高拟南芥耐盐性. 北京林业大学学报. 2024(02): 62-74 . 本站查看
    2. 高鹏飞,高冰,冯郑红,吴建慧. 绢毛委陵菜PsWRKY40的克隆与耐镉功能分析. 园艺学报. 2023(06): 1269-1283 .
    3. 赵瑞,陈少良. 杨树耐盐性调控的离子平衡与活性氧平衡信号网络. 中国科学:生命科学. 2020(02): 167-175 .
    4. 武霞,张一南,赵楠,张莹,赵瑞,李金克,周晓阳,陈少良. 过表达胡杨PeAnn1负调控拟南芥的抗旱性. 北京林业大学学报. 2020(06): 14-25 . 本站查看

    Other cited types(6)

Catalog

    Article views (2122) PDF downloads (66) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return