• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Huang Qingyang, Xie Lihong, Cao Hongjie, Yang Fan, Ni Hongwei. Variation characteristics of leaf functional traits of Populus davidiana in Wudalianchi Volcano, northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 81-89. DOI: 10.12171/j.1000-1522.20200089
Citation: Huang Qingyang, Xie Lihong, Cao Hongjie, Yang Fan, Ni Hongwei. Variation characteristics of leaf functional traits of Populus davidiana in Wudalianchi Volcano, northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 81-89. DOI: 10.12171/j.1000-1522.20200089

Variation characteristics of leaf functional traits of Populus davidiana in Wudalianchi Volcano, northeastern China

More Information
  • Received Date: August 12, 2020
  • Revised Date: September 22, 2020
  • Available Online: January 24, 2021
  • Published Date: February 23, 2021
  •   Objective  Considering the leaf functional traits of Populus davidiana in Wudalianchi Volcano of northeastern China, thus we can recognize the adaptation of plant to volcanic environment and their resource utilization strategies to slopes, so as to provide reference for plant adaptation mechanism in special habitat and micro terrain habitat.
      Method  The variations of leaf traits of P. davidiana in different slopes and ages of volcanoes were studied, such as leaf area (LS), leaf thickness (LT), specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), and leaf nitrogen phosphorus ratio (LNP), further the correlation and principal components of leaf functional characters were analyzed.
      Result  (1) Except for LCC, other leaf functional characters were significantly different between north and south slopes. LT, LDMC, LNC and LNP of the south slope were higher than those of the north slope, while LS, LCC and LPC of the south slope were smaller than those of the north slope. (2) There were significant differences in SLA, LCC and LPC between new and old volcanoes, but not in old volcanoes. (3) LT and LDMC were negatively correlated on the south and north slopes, LNP and LNC were positively correlated, LNP and LPC were negatively correlated on the south slopes, north slopes and volcanoes. (4) In volcanic environment, LNP, LPC, LNC and LS play an important role in the differentiation of leaf functional traits.
      Conclusion  The variation of functional traits of P. davidiana is related to the particularity of volcanic eruption in Wudalianchi Volcano, P. davidiana adapts to the north-south slope environment by adjusting its functional traits to form different survival strategies, and the growth of P. davidiana is mainly limited by nitrogen in Wudalianchi. The volcanic forest ecosystem is a special environment, studying the volcanic vegetation succession and plant functional properties needs to be further discussed in combination with the special situation of volcanic eruption.
  • [1]
    Mcintyre S, Lavorel S, Landsberg J, et al. Disturbance response in vegetation: towards a global perspective on functional traits[J]. Journal of Vegetation Science, 1999, 10(5): 621−630. doi: 10.2307/3237077.
    [2]
    Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335−380. doi: 10.1071/BT02124.
    [3]
    Sack L, Scoffoni C, John G P, et al. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis[J]. Journal of Experimental Botany, 2013, 64(13): 4053−4080. doi: 10.1093/jxb/ert316.
    [4]
    Prach K, Pyšek P, Řehounková K. Role of substrate and landscape context in early succession: an experimental approach[J]. Perspectives in Plant Ecology Evolution and Systematics, 2014, 16(4): 174−179. doi: 10.1016/j.ppees.2014.05.002.
    [5]
    周胜男, 梁宇, 贺红士, 等. 火山喷发后植被演替的影响因子[J]. 生态学杂志, 2016, 35(1):234−242.

    Zhou S N, Liang Y, He H S, et al. Factors affecting vegetation succession after volcano eruptions[J]. Chinese Journal of Ecology, 2016, 35(1): 234−242.
    [6]
    谢立红, 曹宏杰, 黄庆阳, 等. 五大连池新期火山熔岩台地3种共有植物的叶功能性状及其相互关系[J]. 西北植物学报, 2018, 38(5):967−975. doi: 10.7606/j.issn.1000-4025.2018.05.0967.

    Xie L H, Cao H J, Huang Q Y, et al. Leaf functional traits and interrelationships of 3 plant species in lava plateau of new volcanic of Wudalianchi[J]. Acta Botanica Boreali Occidentalia Sinica, 2018, 38(5): 967−975. doi: 10.7606/j.issn.1000-4025.2018.05.0967.
    [7]
    盘远方, 陈兴彬, 姜勇, 等. 桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应[J]. 生态学报, 2018, 38(5):1581−1589.

    Pan Y F, Chen X B, Jiang Y, et al. Changes in leaf functional traits and soil environmental factors in response to slope gradient in karst hills of Guilin[J]. Acta Ecologica Sinica, 2018, 38(5): 1581−1589.
    [8]
    陈莹婷, 许振柱. 植物叶经济谱的研究进展[J]. 植物生态学报, 2014, 38(10):1135−1153. doi: 10.3724/SP.J.1258.2014.00108.

    Chen Y T, Xu Z Z. Review on research of leaf economics spectrum[J]. Chinese Journal of Plant Ecology, 2014, 38(10): 1135−1153. doi: 10.3724/SP.J.1258.2014.00108.
    [9]
    刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4):325−339. doi: 10.1360/N052014-00244.

    Liu X J, Ma K P. Plant functional taits concepts, applications and future directions[J]. Scientia Sinica (Vitae), 2015, 45(4): 325−339. doi: 10.1360/N052014-00244.
    [10]
    Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101.
    [11]
    王瑞丽, 于贵瑞, 何念鹏, 等. 气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律:以长白山为例[J]. 生态学报, 2016, 36(8):2175−2184.

    Wang R L, Yu G R, He N P, et al. Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain[J]. Acta Ecologica Sinica, 2016, 36(8): 2175−2184.
    [12]
    胡耀升, 么旭阳, 刘艳红, 等. 长白山不同演替阶段森林植物功能性状及其与地形因子间的关系[J]. 生态学报, 2014, 34(20):5915−5924.

    Hu Y S, Yao X Y, Liu Y H, et al. The functional traits of forests at different succession stages and their relationship to terrain factors in Changbai Mountains[J]. Acta Ecologica Sinica, 2014, 34(20): 5915−5924.
    [13]
    钟悦鸣, 王文娟, 王健铭, 等. 极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应[J]. 北京林业大学学报, 2019, 41(10):20−29.

    Zhong Y M, Wang W J, Wang J M, et al. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20−29.
    [14]
    Julie M, Mcgill B J, Lechowicz M J. How do traits vary across ecological scales? A case for trait-based ecology[J]. Ecology Letters, 2010, 13(7): 838−848. doi: 10.1111/j.1461-0248.2010.01476.x.
    [15]
    Mcgill B J. Exploring predictions of abundance from body mass using hierarchical comparative approaches[J]. American Naturalist, 2008, 172(1): 88−101. doi: 10.1086/588044.
    [16]
    Cornwell W, Ackerly D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California[J]. Ecological Monographs, 2009, 79(1): 109−126. doi: 10.1890/07-1134.1.
    [17]
    董雪, 辛智鸣, 李永华, 等. 沙冬青(Ammopiptanthus mongolicus)叶性状对环境因子的响应[J]. 中国沙漠, 2019, 39(6):126−134.

    Dong X, Xin Z M, Li Y H, et al. Responses of Ammopiptanthus mongolicus leaf traits to environmental factors[J]. Journal of Desert Research, 2019, 39(6): 126−134.
    [18]
    刘广路, 范少辉, 蔡春菊, 等. 毛竹向撂荒地扩展过程中叶功能性状变化[J]. 南京林业大学学报(自然科学版), 2017, 41(2):41−46.

    Liu G L, Fan S H, Cai C J, et al. Adaptive strategies of leaf functional traits of Moso bamboo during its expansion to Chinese fir forests[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(2): 41−46.
    [19]
    欧晓岚, 刘艳红. 不同坡向及径级油松异龄叶的功能性状[J]. 南京林业大学学报 (自然科学版), 2017, 41(4):80−88.

    Ou X L, Liu Y H. Effect of age, slope aspects and diameter classes on leaf functional traits of Pinus tabuliformis in Songshan, Beijing[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(4): 80−88.
    [20]
    王雪艳, 曹建军, 张小芳, 等. 地形因子对黄土高原山杏叶片功能性状的影响[J]. 应用生态学报, 2019, 30(8):2591−2599.

    Wang X Y, Cao J J, Zhang X F, et al. Effects of topographic factors on leaf traits of apricot in the Loess Plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2591−2599.
    [21]
    福英, 白学良, 张乐, 等. 五大连池火山熔岩地貌苔藓植物对土壤养分积累的作用[J]. 生态学报, 2015, 35(10):3288−3297.

    Fu Y, Bai X L, Zhang L, et al. The effect of bryophytes on nutrient accumulation in surface soil in the Wudalianchi Volcanic area[J]. Acta Ecologica Sinica, 2015, 35(10): 3288−3297.
    [22]
    周志强, 徐丽娇, 张玉红, 等. 黑龙江五大连池的生态价值分析[J]. 生物多样性, 2011, 19(1):63−70. doi: 10.3724/SP.J.1003.2011.08262.

    Zhou Z Q, Xu L J, Zhang Y H, et al. An analysis of the ecological value of Wudalianchi, Heilongjiang Province, China[J]. Biodiversity Science, 2011, 19(1): 63−70. doi: 10.3724/SP.J.1003.2011.08262.
    [23]
    黄庆阳, 曹宏杰, 王立民, 等. 五大连池火山熔岩台地植物多样性与土壤养分的关系[J]. 浙江农林大学学报, 2019, 36(1):80−87. doi: 10.11833/j.issn.2095-0756.2019.01.011.

    Huang Q Y, Cao H J, Wang L M, et al. Species diversity and soil nutrients in lava platforms of Wudalianchi Volcanoes, China[J]. Journal of Zhejiang A& F University, 2019, 36(1): 80−87. doi: 10.11833/j.issn.2095-0756.2019.01.011.
    [24]
    黄庆阳, 曹宏杰, 谢立红, 等. 五大连池火山熔岩台地草本层物种多样性及环境解释[J]. 生物多样性, 2020, 28(6):658−667. doi: 10.17520/biods.2019371.

    Huang Q Y, Cao H J, Xie L H, et al. Species diversity and environmental interpretation of herb layer in lava platform of Wudalianchi, China[J]. Biodiversity Science, 2020, 28(6): 658−667. doi: 10.17520/biods.2019371.
    [25]
    谢立红, 黄庆阳, 曹宏杰, 等. 五大连池火山色木槭叶功能性状特征[J]. 生物多样性, 2019, 27(3):286−296. doi: 10.17520/biods.2018300.

    Xie L H, Huang Q Y, Cao H J, et al. Leaf functional traits of Acer mono in Wudalianchi Volcano, China[J]. Biodiversity Science, 2019, 27(3): 286−296. doi: 10.17520/biods.2018300.
    [26]
    Tomimatsu H, Hori Y. Effect of soil moisture on leaf ecophysiology of Parasenecio yatabei, a summer-green herb in a cool-temperate forest understory in Japan[J]. Journal of Plant Research, 2008, 121(1): 43−53. doi: 10.1007/s10265-007-0122-z
    [27]
    刘旻霞, 马建祖. 阴阳坡植物功能性状与环境因子的变化特征[J]. 水土保持研究, 2013, 20(1):11−13.

    Liu M X, Ma J Z. Feature variations of plant functional traits and environmental factor in south-and north-facing slope[J]. Research of Soil and Water Conservation, 2013, 20(1): 11−13.
    [28]
    刘玉平, 刘贵峰, 达福白乙拉, 等. 地形因子对大青沟自然保护区不同森林群落叶性状的影响[J]. 林业科学, 2017, 53(3):154−162. doi: 10.11707/j.1001-7488.20170317.

    Liu Y P, Liu G F, Dafubaiyila, et al. Effects of topographic factors on leaf traits of dominant species in different forest communities in Daqinggou Nature Reserves[J]. Scientia Silvae Sinicae, 2017, 53(3): 154−162. doi: 10.11707/j.1001-7488.20170317.
    [29]
    刘旻霞, 马建祖. 甘南高寒草甸植物功能性状和土壤因子对坡向的响应[J]. 应用生态学报, 2012, 23(12):3295−3300.

    Liu M X, Ma J Z. Responses of plant functional traits and soil factors to slope aspect in alpine meadow of south Gansu, Northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(12): 3295−3300.
    [30]
    Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423−434. doi: 10.1046/j.0269-8463.2001.00542.x.
    [31]
    施宇, 温仲明, 龚时慧. 黄土丘陵区植物叶片与细根功能性状关系及其变化[J]. 生态学报, 2011, 31(22):164−173.

    Shi Y, Wen Z M, Gong S H. Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River Basin, Shaanxi Province, China[J]. Acta Ecologica Sinica, 2011, 31(22): 164−173.
    [32]
    戚德辉, 温仲明, 杨士梭, 等. 基于功能性状的铁杆蒿对环境变化的响应与适应[J]. 应用生态学报, 2015, 26(7):1921−1927.

    Qi D H, Wen Z M, Yang S S, et al. Trait-based responses and adaptation of Artemisia sacrorum to environmental changes[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 1921−1927.
    [33]
    Güsewell S. N: P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243−266.
    [34]
    Garnier E, Shipley B, Roumet C, et al. A tsandardized protocol for the determination of specific leaf area and leaf dry matter content[J]. Functional Ecology, 2001, 15(5): 688−695. doi: 10.1046/j.0269-8463.2001.00563.x.
    [35]
    Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12): 1135−1142. doi: 10.1111/j.1461-0248.2007.01113.x.
    [36]
    Hallik L, Niinemets L, Wright I J. Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in northern hemisphere temperate woody flora?[J]. New Phytologist, 2009, 184(1): 257−274. doi: 10.1111/j.1469-8137.2009.02918.x
    [37]
    陈洪洲, 刘永顺, 高峰. 五大连池老黑山火山的两次喷发活动[J]. 自然灾害学报, 2004, 13(1):94−99. doi: 10.3969/j.issn.1004-4574.2004.01.015.

    Chen H Z, Liu Y S, Gao F. Two-stage eruptions of Laoheishan Volcano in Wudalianchi[J]. Journal of Natural Disasters, 2004, 13(1): 94−99. doi: 10.3969/j.issn.1004-4574.2004.01.015.
    [38]
    刘金环, 曾德慧, don Koo Lee. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J]. 生态学杂志, 2006, 25(8):921−925. doi: 10.3321/j.issn:1000-4890.2006.08.010.

    Liu J H, Zeng D H, don Koo L. Leaf traits and their interrelationships of main plant species in southeast Horqin Sandy Land[J]. Chinese Journal of Ecology, 2006, 25(8): 921−925. doi: 10.3321/j.issn:1000-4890.2006.08.010.
    [39]
    吴统贵, 陈步峰, 肖以华, 等. 珠江三角洲3种典型森林类型乔木叶片生态化学计量学[J]. 植物生态学报, 2010, 34(1):58−63. doi: 10.3773/j.issn.1005-264x.2010.01.009.

    Wu T G, Chen B F, Xiao Y H, et al. Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 58−63. doi: 10.3773/j.issn.1005-264x.2010.01.009.
    [40]
    朱弘, 朱淑霞, 李涌福, 等. 尾叶樱桃天然种群叶表型性状变异研究[J]. 植物生态学报, 2018, 42(12):1168−1178. doi: 10.17521/cjpe.2018.0196.

    Zhu H, Zhu S X, Li Y F, et al. Leaf phenotypic variation in natural populations of Cerasus dielsiana[J]. Chinese Journal of Plant Ecology, 2018, 42(12): 1168−1178. doi: 10.17521/cjpe.2018.0196.
    [41]
    Saenger P, West P W. Phenotypic variation of the mangrove species Avicennia marina (Forssk.) Vierh. from seven provenances around Australia[J]. Aquatic Botany, 2018, 149: 28−32. doi: 10.1016/j.aquabot.2018.05.004.
  • Related Articles

    [1]Feng Xuejing, Ma Ling, Yang Shuang, Bo Wenhao, Chen Xuexun, Pang Xiaoming. Construction of genetic transformation system of ‘Jingzao 39’ callus[J]. Journal of Beijing Forestry University, 2024, 46(10): 74-80. DOI: 10.12171/j.1000-1522.20240055
    [2]PANG Hong-dong, XIANG Lin, ZHAO Kai-ge, LI Xiang, YANG Nan, CHEN Long-qing. Genetic transformation and functional characterization of Chimonanthus praecox SAMT gene in tobacco[J]. Journal of Beijing Forestry University, 2014, 36(5): 117-122. DOI: 10.13332/j.cnki.jbfu.2014.05.019
    [3]LI Yan, ZHAO De-gang. Ipt gene promoting shoot regeneration in genetic transformation of Eucommia ulmoides Oliv[J]. Journal of Beijing Forestry University, 2011, 33(6): 90-93.
    [4]ZENG Xiao-fang, ZHAO De-gang. Factors affecting transformation of Zanthoxylum piperitum DC. var. inerme Makino via Agrobacterium tumefaciens.[J]. Journal of Beijing Forestry University, 2011, 33(6): 80-85.
    [5]ZHAO Ling-li, SHI Shao-chuan, SUN Jia-qi, ZHANG Qi-xiang, GAO Yi-ke. Transformation of ground-cover Chrysanthemum with HsfA2 gene isolated from Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2011, 33(5): 97-102.
    [6]LONG Cui, PANG Xiao-ming, CAO Guan-lin, LIU Ying, ZHANG Zhi-yi. A study on the efficient protocol for transforming MdSPDS1 gene into Populus tomentosa Carr.[J]. Journal of Beijing Forestry University, 2010, 32(5): 21-26.
    [7]YU Lai, AN Xin-min, CAO Guan-lin, CHEN Zhong, ZHANG Zhi-yi. Genetic transformation of Populus tomentosa Carr. with sterility construct of PtAP3[J]. Journal of Beijing Forestry University, 2010, 32(5): 15-20.
    [8]QIN Ai-guang, LUO Xiao-fang. Transformation of transcription factor DREB1C gene into the fast-growing black locust mediated with Agrobacterium tumefaciens[J]. Journal of Beijing Forestry University, 2007, 29(6): 29-34. DOI: 10.13332/j.1000-1522.2007.06.011
    [9]LI Hui, CHEN Xiao-yang, LI Yun, LI Wei, DING Xia. Optimization of antibiotic concentration in genetic transformation of Populus alba[J]. Journal of Beijing Forestry University, 2005, 27(5): 118-121.
    [10]GAO Li-ping, BAO Man-zhu. Optimization of Agrobacterium-mediated transformation of Rosa hybrida[J]. Journal of Beijing Forestry University, 2005, 27(4): 60-64.

Catalog

    Article views (1860) PDF downloads (52) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return