• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yan Min, Zuo Hejun, Guo Yue, Jia Guangpu, Qiao Shuo, Xi Cheng. Wind tunnel simulation of complex deformation law on retaining wall under aeolian sand environment[J]. Journal of Beijing Forestry University, 2021, 43(5): 108-117. DOI: 10.12171/j.1000-1522.20200339
Citation: Yan Min, Zuo Hejun, Guo Yue, Jia Guangpu, Qiao Shuo, Xi Cheng. Wind tunnel simulation of complex deformation law on retaining wall under aeolian sand environment[J]. Journal of Beijing Forestry University, 2021, 43(5): 108-117. DOI: 10.12171/j.1000-1522.20200339

Wind tunnel simulation of complex deformation law on retaining wall under aeolian sand environment

More Information
  • Received Date: November 08, 2020
  • Revised Date: January 19, 2021
  • Available Online: April 19, 2021
  • Published Date: May 26, 2021
  •   Objective  Wind and sand protection is one of the key engineering issues in the construction and maintenance of human infrastructure in arid environment. This paper aims to find out the complex law of wind and sand migration, and to select the appropriate setting parameters of special wind and sand protection system.
      Method  Wind tunnel simulation was used to study the variation of wind velocity field, sand flow structure and sand interception ratio/permeability under different wind direction angles.
      Result  (1) The height of 4 times barrier on the windward side model was always the inflection point of the sharp change of the airflow, and did not change with the indicated wind speed. When the indicated wind speed was less than 10 m/s, the leeward area of weak wind or calm wind area increased with the indicated wind speed, and the opposite law was presented when the indicated wind speed was greater than 12 m/s. Under the action of the same indication wind speed, the effective protection range increased gradually with the increase of wind direction angle. (2) The windward sediment mainly concentrated at 0−10 cm near the surface, accounting for 85.31% of the total sediment transport. The leeward sediment transport under different wind direction angle measures mainly concentrated in the range of 20−30 cm height, accounting for 71.25%, 88.75%, 85.25% and 86.00% of the total sediment transport, respectively. (3) Sand interception in leeward layer at 0−10 cm height increased with the increase of indicated wind speed, and reached the maximum at the included angle of 75°, averaging 95.64%. The sand transport in the 10−30 cm height layer had an increasing trend with the increase of indicated wind speed, and the maximum was 81.09% on average when the included angle was 45°.
      Conclusion  The variation of indicated wind speed has no significant influence on the variation law of the airflow velocity field of retaining wall, but has a greater influence on the leeward side of the weak wind area or the range of the calm wind area, and the effective protection range is the best at 75°. The sand transport on the windward side gradually decreases with the increase of height, while that on the leeward side climb up and then decline with the increase of height. The wind angle should be set at about 75° as a measure to prevent wind and sand.
  • [1]
    Xie S B, Qu J J, Pang Y J. Dynamic wind differences in the formation of sand hazards at high and low altitude railway sections[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2017, 169: 39−46.
    [2]
    Zhao W Z, Hu G L, Zhang Z H, et al. Shielding effect of oasis-protection systems composed of various forms of wind break on sand fixation in an arid region: a case study in the Hexi Corridor, northwest China[J]. Ecological Engineering, 2008, 33(2): 119−125. doi: 10.1016/j.ecoleng.2008.02.010
    [3]
    屈建军, 刘贤万, 雷加强, 等. 尼龙网栅栏防沙效应的风洞模拟实验[J]. 中国沙漠, 2001(3):62−66. doi: 10.3321/j.issn:1000-694X.2001.01.012

    Qu J J, Liu X W, Lei J Q, et al. Simulation experiments on sand-arresting effect of nylon net fence in wind tunnel[J]. Journal of Desert Research, 2001(3): 62−66. doi: 10.3321/j.issn:1000-694X.2001.01.012
    [4]
    Xiao J H, Yao Z Y, Qu J J. Influence of Golmud-Lhasa section of Qinghai-Tibet Railway on blown sand transport[J]. Chinese Geographical Science, 2015, 25: 39−50. doi: 10.1007/s11769-014-0722-1
    [5]
    Zhang C L, Li Q, Zhou N, et al. Field observations of wind profiles and sand fluxes above the windward slope of a sand dune before and after the establishment of semi-buried straw checkerboard barriers[J]. Aeolian Research, 2016, 20: 59−70. doi: 10.1016/j.aeolia.2015.11.003
    [6]
    Zhang S, Ding G D, Yu M H, et al. Effect of straw checkerboards on wind proofing, sand fixation, and ecological restoration in shifting sandy land[J/OL]. Environmental Research and Public Health, 2018, 15(10): 2184 [2018−10−06]. https://doi.org/10.3390/ijerph15102184.
    [7]
    Xu X L, Zhang K L, Kong Y P, et al. Effectiveness of erosion control measures along the Qinghai-Tibet Highway, Tibet Plateau, China[J]. Transportation Research Part D: Transport and Environment, 2006, 11(4): 302−309. doi: 10.1016/j.trd.2006.06.001
    [8]
    Dong Z, Li H L, Wang J, et al. Wind tunnel test on effect of controlling windand deposited sand of geogrid sand-barrier[J]. Journal of Soil and Water Conservation, 2007, 5: 35−39.
    [9]
    程建军, 蒋富强, 杨印海, 等. 戈壁铁路沿线风沙灾害特征与挡风沙措施及功效研究[J]. 中国铁道科学, 2010, 31(5):15−20.

    Cheng J J, Jiang F Q, Yang Y H, et al. Study on the hazard characteristics of the drifting sand along the railway in Gobi area and the efficacy of the control engineering measures[J]. China Railway Science, 2010, 31(5): 15−20.
    [10]
    Zhang K, Qu J, Liao K, et al. Damage by wind-blown sand and its control along Qinghai-Tibet railway in China[J]. Aeolian Research, 2010, 1: 143−146. doi: 10.1016/j.aeolia.2009.10.001
    [11]
    Cheng J J, Xue C X. The sand-damage-prevention engineering system for the railway in the desert region of the Qinghai-Tibet Plateau[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 125: 30−37. doi: 10.1016/j.jweia.2013.11.016
    [12]
    韩致文, 王涛, 董治宝, 等. 风沙危害防治的主要工程措施及其机理[J]. 地理科学进展, 2004(1):13−21. doi: 10.11820/dlkxjz.2004.01.002

    Han Z W, Wang T, Dong Z B, et al. Main engineering measurements and mechanism of blown sand hazard control[J]. Progress in Geography, 2004(1): 13−21. doi: 10.11820/dlkxjz.2004.01.002
    [13]
    Zhang C L, Zou X Y, Pan X H, et al. Near-surface airflow field and aerodynamic characteristics of the railway-protection system in the Shapotou region and their significance[J]. Journal of Arid Environments, 2007, 71: 169−187. doi: 10.1016/j.jaridenv.2007.03.006
    [14]
    Li B, Sherman D J. Aerodynamics and morphodynamics of sand fences: a review[J]. Aeolian Research, 2015, 17: 33−48. doi: 10.1016/j.aeolia.2014.11.005
    [15]
    Luca B, Davide F, Aandrea L G. Solid barriers for windblown sand mitigation: aerodynamic behavior and conceptual design guidelines[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2018, 173: 79−90.
    [16]
    屈建军, 喻文波, 秦晓波. HDPE功能性固沙障防风效应试验[J]. 中国沙漠, 2014, 34(5):1185−1193.

    Qu J J, Yu W B, Qin X B. Wind-protecting efficiency of HDPE functional sand-fixing barriers[J]. Journal of Desert Research, 2014, 34(5): 1185−1193.
    [17]
    何志辉, 李生宇, 王海峰, 等. 塔克拉玛干沙漠4种结构尼龙阻沙网的防风阻沙效益对比[J]. 干旱区研究, 2014, 31(2):369−374.

    He Z H, Li S Y, Wang H F, et al. Comparison of wind prevention and sand blocking effects of 4 types of sand blocking nylon nets in the central Taklimakan Desert[J]. Arid Zone Research, 2014, 31(2): 369−374.
    [18]
    李凯崇, 石龙, 孔令伟, 等. 兰新高铁沿线不同挡沙措施防护效果评价[J]. 铁道工程学报, 2017, 34(3):11−14, 21. doi: 10.3969/j.issn.1006-2106.2017.03.003

    Li K C, Shi L, Kong L W, et al. Protection effect of different kinds of sand-barriers along Lanzhou-Xinjiang High-Speed Railway[J]. Journal of Railway Engineering Society, 2017, 34(3): 11−14, 21. doi: 10.3969/j.issn.1006-2106.2017.03.003
    [19]
    辛文栋. 风区高速铁路路基沙害防治研究与设计[J]. 铁道工程学报, 2015, 32(10):61−65, 72. doi: 10.3969/j.issn.1006-2106.2015.10.011

    Xin W D. Sand disaster prevention research and design for high speed railway subgrade in the wind zone[J]. Journal of Railway Engineering Society, 2015, 32(10): 61−65, 72. doi: 10.3969/j.issn.1006-2106.2015.10.011
    [20]
    袁鑫鑫, 王海峰, 雷加强, 等. 不同间距双排尼龙阻沙网防风效应的风洞模拟[J]. 中国沙漠, 2016, 36(5):1238−1246.

    Yuan X X, Wang H F, Lei J Q, et al. Wind tunnel simulation of windbreak effect of double-row nylon net fence with different interval[J]. Journal of Desert Research, 2016, 36(5): 1238−1246.
    [21]
    Baines W. Effects of velocity distribution on wind loads and flow patterns on buildings [C]// Proceedings of the symposium on wind effects on buildings and structures. Teddington: National Physical Laboratories, 1963: 198−225.
    [22]
    Good M C, Joubert P N. The form drag of two-dimensional bluff-plates immersed in turbulent boundary layers[J]. Journal of Fluid Mechanics, 1968, 31(3): 547−582. doi: 10.1017/S0022112068000327
    [23]
    Luca B, Marko H, Lorenzo R. Windblown sand along railway infrastructures: a review of challenges and mitigation measures[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2018, 177: 340−365.
    [24]
    张克存, 屈建军, 牛清河, 等. 青藏铁路沿线砾石方格固沙机理风洞模拟研究[J]. 地球科学进展, 2010, 25(3):284−289.

    Zhang K C, Qu J J, Niu Q H, et al. Simulative research on the mechanism of rocky checkerboard sand barriers along Qinghai-Tibet Railway in wind tunnel[J]. Advances in Earth Science, 2010, 25(3): 284−289.
    [25]
    韩致文, 陈广庭, 胡英娣, 等. 塔里木沙漠公路防沙体系建设几个问题的探讨[J]. 干旱区资源与环境, 2000, 14(2):35−40. doi: 10.3969/j.issn.1003-7578.2000.02.007

    Han Z W, Chen G T, Hu Y T, et al. Discussion on problems about construction of sand-controlling systems along desert highway in Tarim Basin, Taklimakan Desert[J]. Journal of Arid Land Resources and Environment, 2000, 14(2): 35−40. doi: 10.3969/j.issn.1003-7578.2000.02.007
    [26]
    吴望一. 流体力学[M]. 北京: 北京大学出版社, 1982.

    Wu W Y. Hydromechanics[M]. Beijing: Peking University Press, 1982.
    [27]
    Liu H Y, Hou Z F, Chen Z, et al. Effects of standing stubble on the interception of soil erosion particles[J]. Land Degradation & Development, 2019, 30(3): 1−9.
    [28]
    Mcewan I K, Willetts B B. Adaptation of the near-surface wind to the development of sand transport[J]. Journal of Fluid Mechanics, 1993, 252: 99−101. doi: 10.1017/S0022112093003684
    [29]
    Liu X P, Dong Z B. Experimental investigation of concentration profile of a blowing sand cloud[J]. Geomorphology, 2004, 60(3): 371−381.
    [30]
    Dong Z B, Wang H T, Zhang X H, et al. Height profile of particle concentration in an aeolian saltating cloud: a wind tunnel investigation by PIV MSD[J]. Geophysical Research Letters, 2004, 30(19): 1−4.
    [31]
    李凯崇, 薛春晓, 刘贺业, 等. 不同类型挡沙措施风沙防护机理的风洞实验研究[J]. 铁道工程学报, 2015, 32(1):17−21. doi: 10.3969/j.issn.1006-2106.2015.01.004

    Li K C, Xue C X, Liu H Y, et al. Wind tunnel test on sand-preventing mechanism of different kinds of sand-barriers[J]. Journal of Railway Engineering Society, 2015, 32(1): 17−21. doi: 10.3969/j.issn.1006-2106.2015.01.004
    [32]
    左合君. 临策铁路防沙明洞防风阻沙机理及对风沙环境的影响[D]. 呼和浩特: 内蒙古农业大学, 2013.

    Zuo H J. The impact of opencut tunnel on wind and sand resistance and its around environment in Lin-Ce Railway[D]. Hohhot: Inner Mongolia Agricultural University, 2013.
  • Related Articles

    [1]Chen Tingqiao, Yuan Tao, Xie Mengyu, Tang Ying, Zeng Xiuli. Development of secondary branches and apical buds of Paeonia ludlowii under cultivated conditions[J]. Journal of Beijing Forestry University, 2022, 44(6): 106-114. DOI: 10.12171/j.1000-1522.20210144
    [2]LIU Jin-chun, MA Ye, TAO Jian-ping, GAO Kai-min, LIANG Qian-hui. Effects of AM fungus on root growth of Lonicera japonica under alternate dry and wet conditions in karst regions of southwestern China.[J]. Journal of Beijing Forestry University, 2015, 37(10): 110-116. DOI: 10.13332/j.1000-1522.20150057
    [3]CHEN Jie, XIE Jing, TANG Ming. Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of Amorpha fruticosa under water stress.[J]. Journal of Beijing Forestry University, 2014, 36(6): 142-148. DOI: 10.13332/j.cnki.jbfu.2014.06.026
    [4]WEI Bao, DING Guo-dong, WU Bin, ZHANG Yu-qing, BAO Yan-feng, GAO Guang-lei1, SHI Hui-shu, ZHAO Jin-hong. Windbreak mechanism under different shrub cover conditions.[J]. Journal of Beijing Forestry University, 2013, 35(5): 73-78.
    [5]XU Yan, YU Xue-jun, GAO Yan, GAO Pei-jun, ZHANG Ru-min. Effects of NO on seed germination and seedling growth of Haloxylon ammodendron under osmosis stress[J]. Journal of Beijing Forestry University, 2011, 33(6): 65-69.
    [6]MENG Fan-juan, WANG Jian-zhong, HUANG Feng-lan, WANG Yan-jie. Ultrastructure of mesophyll cells in two Robinia pseudoacacia hybrids under NaCl stress.[J]. Journal of Beijing Forestry University, 2010, 32(4): 97-102.
    [7]WANG Jin-li, LIANG Wen-yan, CHEN Li. Separation and purification of microcystin-LR.[J]. Journal of Beijing Forestry University, 2010, 32(2): 184-188.
    [8]XIA Songhua, LI Li, LI Jian-zhang.. Ureaformaldehyde resin modified by nanoTiO2 under ultrasonic treatment[J]. Journal of Beijing Forestry University, 2009, 31(4): 123-129.
    [9]WANG Xing-zu, CHENG Xiang, ZHENG Hui, SUN De-zhi. Autocatalysis in biological decolorization of Reactive Black 5 under anaerobic condition.[J]. Journal of Beijing Forestry University, 2009, 31(3): 135-139.
    [10]ZHENG Yong-hong, , LIANG Er-yuan, ZHU Hai-feng, SHAO Xue-mei. Response of radial growth of Qilian juniper to climatic change under different habitats[J]. Journal of Beijing Forestry University, 2008, 30(3): 7-12.
  • Cited by

    Periodical cited type(8)

    1. 杨灿,范习健,张九于. SSFYOLO:一种面向复杂森林场景的树干检测算法. 北京林业大学学报. 2025(02): 132-142 . 本站查看
    2. 刘伟起,刘洪杰,史璐,杨欣,李建平,王鹏飞. 电动果园作业平台结构设计与试验. 农机化研究. 2024(01): 75-83 .
    3. 刘伟起,刘洪杰,史璐,杨欣,李建平,王鹏飞. 履带式果园作业平台结构稳定性分析与研究. 农机化研究. 2024(04): 42-47 .
    4. 郭昊生,马蓉,张垚鑫,李子迎. 丫形欠驱动库尔勒香梨采摘机械手的设计与仿真分析. 农机化研究. 2023(01): 110-117 .
    5. 虞浪,俞高红,吴浩宇,孙福兴,钱孟波. 欠驱动关节型柑橘采摘末端执行器设计与试验. 农业工程学报. 2023(17): 29-38 .
    6. 于泳超,康峰,郑永军,吕昊暾,王亚雄. 果园高位自动调平作业平台设计及仿真. 北京林业大学学报. 2021(02): 150-159 . 本站查看
    7. 曹琨,张姗姗. 基于机器视觉的蔬果辅助采摘装置系统设计与优化. 食品工业. 2021(05): 362-366 .
    8. 董杰,赵元豪,尚宁宁,蒋创宇,赵秒. 一种旋转式欠驱动自适应水果采摘器. 科学技术创新. 2019(13): 155-156 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return