• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Chang, Lu Qi, Wang Shengcai, Chen Mengyuan, Xing Shaohua, Wang Qingchun, Yang Jun. Effects of forest gaps on spatial distribution and growth of Phellodendron amurense saplings[J]. Journal of Beijing Forestry University, 2024, 46(2): 9-17. DOI: 10.12171/j.1000-1522.20220030
Citation: Liu Chang, Lu Qi, Wang Shengcai, Chen Mengyuan, Xing Shaohua, Wang Qingchun, Yang Jun. Effects of forest gaps on spatial distribution and growth of Phellodendron amurense saplings[J]. Journal of Beijing Forestry University, 2024, 46(2): 9-17. DOI: 10.12171/j.1000-1522.20220030

Effects of forest gaps on spatial distribution and growth of Phellodendron amurense saplings

More Information
  • Received Date: January 16, 2022
  • Revised Date: December 22, 2023
  • Accepted Date: December 24, 2023
  • Available Online: December 26, 2023
  • Objective 

    Forest gaps have an important impact on the regeneration of understory saplings by increasing the complexity of stand spatial structure and the heterogeneity of understory habitat. Phellodendron amurense is a national key protected wild plant in China. Analysing the correlation between growth status as well as spatial distribution of understory Ph. amurense saplings and the spatial structure of forest gaps is helpful to explore adaptability of Ph. amurense to understory habitat, which is of great significance to promote the regeneration of Ph. amurense population.

    Method 

    Ph. amurense sapling data were collected in 2021, which were planted under the natural forest of Baihuashan Nature Reserve in 2014, and we also obtained the point cloud data of forest gaps by backpack LiDAR. We assessed the effects of spatial structure of forest gaps on the spatial distribution patterns and the growth status of Ph. amurense saplings using spatial point pattern analysis, habitat association analysis and ANOVA.

    Result 

    (1) Under natural conditions, the survival rate of Ph. amurense saplings after 7 years was 19.25%. All of the saplings showed an aggregated distribution under the condition of completely excluding the dispersal limitation. (2) The heterogeneity of understory habitat caused by the forest gaps was main reason for the formation of spatial distribution patterns of Ph. amurense saplings. The distribution of Ph. amurense saplings had a significant positive association with the distribution area of the canopy edge, while it had a significant negative association with the canopy area. (3) The basal diameter of Ph. amurense saplings was significantly higher at the edge of forest gap than in the canopy area and the center of gap (P<0.01), and there was no significant difference between the canopy area and the center of gap. The crown width and height of Ph. amurense saplings showed a significant gradient change (P<0.05), with the edge of forest gap> crown area> the center of forest gap.

    Conclusion 

    The results show that the spatial distribution pattern and growth status of Ph. amurense saplings are significantly affected by forest gaps. Ph. amurense saplings prefer the habitat conditions under the canopy edge, and may be inhibited by the forest gaps and forest canopy.

  • [1]
    Runkle J R. Pattern of disturbance in some old-growth mesic forests of eastern north America[J]. Ecology, 1982, 63(5): 1533−1546. doi: 10.2307/1938878
    [2]
    Zhang C Y, Zhao Y Z, Zhao X H, et al. Species-habitat associations in a northern temperate forest in China[J]. Silva Fennica, 2012, 46: 501−519.
    [3]
    殷东生, 沈海龙. 森林植物耐荫性及其形态和生理适应性研究进展[J]. 应用生态学报, 2016, 27(8): 2687−2698.

    Yin D S, Shen H L. Shade tolerance and the adaptability of forest plants in morphology and physiology: a review[J]. Chinese Journal of Applied Ecology, 2016, 27(8): 2687−2698.
    [4]
    de Avila A L, Schwartz G, Ruschel A R, et al. Recruitment, growth and recovery of commercial tree species over 30 years following logging and thinning in a tropical rain forest[J]. Forest Ecology and Management, 2017, 385: 225−235. doi: 10.1016/j.foreco.2016.11.039
    [5]
    Petritan I C, von Lupke B, Petritan A M. Effects of root trenching of overstorey Norway spruce ( Picea abies) on growth and biomass of underplanted beech ( Fagus sylvatica) and Douglas fir ( Pseudotsuga menziesii) saplings[J]. European Journal of Forest Research, 2011, 130(5): 813−828. doi: 10.1007/s10342-010-0473-1
    [6]
    Vickers L A, Larsen D R, Knapp B O, et al. The impact of overstory density on sapling height growth in the Missouri Ozarks: implications for interspecific differentiation during canopy recruitment[J]. Canadian Journal of Forest Research, 2014, 44(11): 1320−1330. doi: 10.1139/cjfr-2014-0237
    [7]
    Watt A S. Pattern and process in the plant community[J]. Journal of Ecology, 1947, 35(1/2): 1−22. doi: 10.2307/2256497
    [8]
    Agyeman V K, Swaine M D, Thompson J. Responses of tropical forest tree seedlings to irradiance and the derivation of a light response index[J]. Journal of Ecology, 1999, 87(5): 815−827. doi: 10.1046/j.1365-2745.1999.00400.x
    [9]
    王成, 庞学勇, 包维楷. 低强度林窗式疏伐对云杉人工纯林地表微气候和土壤养分的短期影响[J]. 应用生态学报, 2010, 21(3): 541−548.

    Wang C, Pang X Y, Bao W K. Short term effects of low in tensity thinning siulated by gap on ground microclimate and soil nutrients of pure spruce plantation[J]. Chinese Journal of Applied Ecology, 2010, 21(3): 541−548.
    [10]
    成钢, 张丹, 王伟亮, 等. 植物间化感作用机理研究进展[J]. 福建林业科技, 2015, 42(1): 246−250.

    Cheng G, Zhang D, Wang W L, et al. Advances in research on the allelopathic of plants[J]. Journal of Fujian Forestry Science and Technology, 2015, 42(1): 246−250.
    [11]
    Muscolo A, Bagnato S, Sidari M, et al. A review of the roles of forest canopy gaps[J]. Journal of Forestry Research, 2014, 25(4): 725−736. doi: 10.1007/s11676-014-0521-7
    [12]
    Kerstin W, Florian J, David W. Do spatial effects play a role in the spatial distribution of desert-dwelling Acacia raddiana?[J]. Journal of Vegetation Science, 2000, 11(4): 473−484. doi: 10.2307/3246577
    [13]
    He F, Duncan R P. Density-dependent effects on tree survival in an old-growth douglas fir forest[J]. Journal of Ecology, 2000, 88(4): 676−688. doi: 10.1046/j.1365-2745.2000.00482.x
    [14]
    de Lima R A F, Prado P I, Martini A M A, et al. Improving methods in gap ecology: revisiting size and shape distributions using a model selection approach[J]. Journal of Vegetation Science, 2013, 24(3): 484−495. doi: 10.1111/j.1654-1103.2012.01483.x
    [15]
    中国科学院中国植物志编辑委员会. 中国植物志 第43卷第2册芸香科[M]. 北京: 科学出版社, 1990: 2−100.

    Flora of China Editorial Committee of Chinese Academy of Sciences. Flora reipublicae Popularis sinicae[M]. Beijing: Science Press, 1990: 2−100.
    [16]
    郭庆华, 陈林海. 激光雷达数据处理方法: LiDAR360教程[M]. 北京: 高等教育出版社, 2020.

    Guo Q H, Chen L H. LiDAR data processing: LiDAR360 tutorial[M]. Beijing: Higher Education Press, 2020.
    [17]
    Goulamoussene Y, Bedeau C, Descroix L, et al. Environmental control of natural gap size distribution in tropical forests[J]. Biogeosciences, 2017, 14(2): 353−364. doi: 10.5194/bg-14-353-2017
    [18]
    He Z S, Wang L J, Jiang L, et al. Effect of microenvironment on species distribution patterns in the regeneration layer of forest gaps and non-gaps in a subtropical natural forest, China[J]. Forests, 2019, 10(2): 90. doi: 10.3390/f10020090
    [19]
    Zhu C Y, Zhu J J, Wang G G, et al. Dynamics of gaps and large openings in a secondary forest of Northeast China over 50years[J]. Annals of Forest Science, 2019, 76(3): 72. doi: 10.1007/s13595-019-0844-9
    [20]
    臧润国, 徐化成. 林隙(GAP)干扰研究进展[J]. 林业科学, 1998, 34(1): 92−100.

    Zang R G, Xu H C. Advances in forest gap disturbance research[J]. Scientia Silvae Sinicae, 1998, 34(1): 92−100.
    [21]
    Pedersen B S, Howard J L. The influence of canopy gaps on overstory tree and forest growth rates in a mature mixed-age, mixed-species forest[J]. Forest Ecology and Management, 2004, 196(2−3): 351−366. doi: 10.1016/j.foreco.2004.03.031
    [22]
    Omelko A, Ukhvatkina O, Zhmerenetsky A. Disturbance history and natural regeneration of an old-growth Korean pine-broadleaved forest in the Sikhote-Alin mountain range, southeastern Russia[J]. Forest Ecology and Management, 2016, 360: 221−234. doi: 10.1016/j.foreco.2015.10.036
    [23]
    Ripley B D. The second-order analysis of stationary point processes[J]. Journal of Applied Probability, 1976, 13(2): 255−266. doi: 10.2307/3212829
    [24]
    王本洋, 余世孝. 种群分布格局的多尺度分析[J]. 植物生态学报, 2005, 29(2): 235−241. doi: 10.17521/cjpe.2005.0030

    Wang B Y, Yu S X. Multi-scale analyses of population distribution patterns[J]. Chinese Journal of Plant Ecology, 2005, 29(2): 235−241. doi: 10.17521/cjpe.2005.0030
    [25]
    Wiegand T, Moloney K A. Rings, circles, and null-models for point pattern analysis in ecology[J]. Oikos, 2004, 104(2): 209−229. doi: 10.1111/j.0030-1299.2004.12497.x
    [26]
    Fangliang H, Legendre P, Lafrankie J V. Distribution patterns of tree species in a Malaysia tropical rain forest[J]. Journal of Vegetation Science, 1997, 8(1): 105−114. doi: 10.2307/3237248
    [27]
    张树梓. 海南岛热带天然老龄林物种多样性维持机制研究[D]. 北京: 中国林业科学研究院, 2017.

    Zhang S Z. Study on the maintenance mechanisms of species diversity in the natural old growth tropical forests on Hainan Island, China[D]. Beijing: Chinese Academy of Forestry, 2017.
    [28]
    郝珉辉, 张忠辉, 赵珊珊, 等. 吉林蛟河针阔混交林树木生长的空间关联格局[J]. 生态学报, 2017, 37(6): 1922−1930.

    Hao M H, Zhang Z H, Zhao S S, et al. Spatial autocorrelation patterns of tree growth in a coniferous and broad-leaved mixed forest in Jiaohe of Jilin Province[J]. Acta Ecologica Sinica, 2017, 37(6): 1922−1930.
    [29]
    Legendre P, Mi X C, Ren H B, et al. Partitioning beta diversity in a subtropical broad-leaved forest of China[J]. Ecology, 2009, 90(3): 663−674. doi: 10.1890/07-1880.1
    [30]
    Zuleta D, Russo S E, Barona A, et al. Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon[J]. Plant and Soil, 2020, 450: 133−149. doi: 10.1007/s11104-018-3878-0
    [31]
    王婷, 任思远, 袁志良, 等. 密度制约对宝天曼落叶阔叶林锐齿栎死亡前后分布格局的影响[J]. 生物多样性, 2014, 22(4): 449−457. doi: 10.3724/SP.J.1003.2014.14101

    Wang T, Ren S Y, Yuan Z L, et al. Effects of density dependence on the spatial patterns of Quercus aliena var. acuteserrata trees in deciduous broad-leaved forest in the Baotianman Nature Reserve, central China[J]. Biodiversity Science, 2014, 22(4): 449−457. doi: 10.3724/SP.J.1003.2014.14101
    [32]
    Lin Y C, Chang L W, Yang K C, et al. Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation[J]. Oecologia, 2011, 165(1): 175−184. doi: 10.1007/s00442-010-1718-x
    [33]
    Getzin S, Wiegand T, Wiegand K, et al. Heterogeneity influences spatial patterns and demographics in forest stands[J]. Journal of Ecology, 2008, 96(4): 807−820. doi: 10.1111/j.1365-2745.2008.01377.x
    [34]
    Chazdon R L, Pearcy R W. The importance of sunflecks for forest understory plants[J]. Bioscience, 1991, 41(11): 760−766. doi: 10.2307/1311725
    [35]
    Charles D C, Julie S D, William J P, et al. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests[J]. Canadian Journal of Forest Research, 1990, 20(5): 620−631. doi: 10.1139/x90-084
    [36]
    李霞, 于涛, 阎秀峰. 光强对黄檗幼苗生长及抗氧化酶活性的影响[J]. 东北林业大学学报, 2008, 35(1): 25−27.

    Li X, Yu T, Yan X F. Effects of light intensity on growth and antioxidant enzyme activities of Amur corktree seedings[J]. Journal of Northeast Forestry University, 2008, 35(1): 25−27.
    [37]
    张玲, 张东来. 遮荫条件下黄檗生长和生理响应的性别差异研究[J]. 植物研究, 2020, 40(5): 1−8.

    Zhang L, Zhang D L. Gender differences in growth and physiological respond of Phellodendron amurense Rupr. in condition of overshadow[J]. Bulletin of Botanical Research, 2020, 40(5): 1−8.
    [38]
    Potts M D, Ashton P S, Kaufman L S, et al. Habitat patterns in tropical rain forests: a comparison of 105 plots in Northwest Borneo[J]. Ecology, 2002, 83(10): 2782−2797. doi: 10.1890/0012-9658(2002)083[2782:HPITRF]2.0.CO;2
    [39]
    王进欣, 张一平. 林窗微环境异质性及物种的响应[J]. 南京林业大学学报(自然科学版), 2002, 26(1): 69−74.

    Wang J X, Zhang Y P. A review on within-gap micro-environmental heterogeneity and species’ response[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2002, 26(1): 69−74.
    [40]
    Paquette A, Bouchard A, Cogliastro A. Survival and growth of under-planted trees: a meta-analysis across four biomes[J]. Ecological Applications, 2006, 16(4): 1575−1589. doi: 10.1890/1051-0761(2006)016[1575:SAGOUT]2.0.CO;2
    [41]
    Swaine M D, Whitmore T C. On the definition of ecological species groups in tropical rain forests[J]. Vegetatio, 1988, 75: 81−86. doi: 10.1007/BF00044629
    [42]
    黄治昊, 周鑫, 张孝然, 等. 北京地区黄檗分布与环境因子的关系[J]. 植物科学学报, 2017, 35(1): 56−63.

    Huang Z H, Zhou X, Zhang X R, et al. Relationship between the distribution of Phellodendron amurense and environmental factors in the Beijing area[J]. Plant Science Journal, 2017, 35(1): 56−63.
    [43]
    李静贤. 北京山区野生黄檗数量特征研究[D]. 北京: 北京林业大学, 2013.

    Li J X. Study on quantitative characteristics of wild Phellodendron amurense in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2013.
    [44]
    Whitmore T C. Canopy gaps and the two major groups of forest trees[J]. Ecology, 1989, 70: 536−538. doi: 10.2307/1940195
  • Related Articles

    [1]Xu Fangze, Sun Hailong, Shi Jingning, He Danni, Wang Fuzeng, Xiang Wei. Spatial pattern analysis of dominant tree species saplings in spruce-fir coniferous and broadleaved mixed forests based on Ripley L function[J]. Journal of Beijing Forestry University, 2024, 46(10): 1-10. DOI: 10.12171/j.1000-1522.20230237
    [2]Zhou Lai, Cheng Xiaofang, Zhang Mengtao. Effects of forest gaps on understory species diversity of Larix principis-rupprechtii natural secondary forest[J]. Journal of Beijing Forestry University, 2024, 46(6): 48-56. DOI: 10.12171/j.1000-1522.20220223
    [3]An Ran, Xu Fangze, Deng Xiangpeng, Zhao Shanchao, Xiang Wei. Effects of gap size on regeneration of saplings in Picea schrenkiana in Xinjiang of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(11): 23-32. DOI: 10.12171/j.1000-1522.20230116
    [4]Chen Shiyou, Jiang Chunqian, Bai Yanfeng, Wang Hui, He Yunhe. Niche of dominant species in shrub layer of Pinus massoniana secondary forest at the initial stage of forest gap[J]. Journal of Beijing Forestry University, 2023, 45(7): 27-35. DOI: 10.12171/j.1000-1522.20220084
    [5]Li Hui, Yang Hua, Xie Rong. Canopy characteristics in gaps and its relationship with seedlings and saplings in a spruce-fir forest in the Changbai Mountain area of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 54-62. DOI: 10.12171/j.1000-1522.20200131
    [6]Wang Xuelin, Liu Jinfu, He Zhongsheng, Wu Zeyan, Jiang Lan, Zhu Jing, Xing Cong, Gu Xinguang. Seasonal dynamics of functional diversity of soil microbial communities in Castanopsis kawakamii forest gaps[J]. Journal of Beijing Forestry University, 2020, 42(7): 77-88. DOI: 10.12171/j.1000-1522.20200052
    [7]Shi Mengmeng, Yang Hua, Wang Quanjun, Yang Chao. Spatial distribution and association of seedlings and saplings in a spruce-fir forest in the Changbai Mountains area of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(4): 1-11. DOI: 10.12171/j.1000-1522.20190071
    [8]LU Jun, ZHANG Hui-ru, LEI Xiang-dong, YANG Ying-jun, WANG Quan-jun. Height-diameter models for saplings in a spruce-fir mixed forest in Changbai Mountains.[J]. Journal of Beijing Forestry University, 2015, 37(11): 10-25. DOI: 10.13332/j.1000-1522.20140429
    [9]FAN Chun-nan, PANG Sheng-jiang, ZHENG Jin-ping, LI Bing, GUO Zhong-ling. Biomass estimating models of saplings for 14 species in Changbaishan Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2013, 35(2): 1-9.
    [10]LIU Jin-fu, HONG Wei, LI Jun-qing. Characteristics of gaps renewal in Castanopsis kawakamii forests[J]. Journal of Beijing Forestry University, 2006, 28(3): 14-19.

Catalog

    Article views (291) PDF downloads (63) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return