• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
An Ran, Xu Fangze, Deng Xiangpeng, Zhao Shanchao, Xiang Wei. Effects of gap size on regeneration of saplings in Picea schrenkiana in Xinjiang of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(11): 23-32. DOI: 10.12171/j.1000-1522.20230116
Citation: An Ran, Xu Fangze, Deng Xiangpeng, Zhao Shanchao, Xiang Wei. Effects of gap size on regeneration of saplings in Picea schrenkiana in Xinjiang of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(11): 23-32. DOI: 10.12171/j.1000-1522.20230116

Effects of gap size on regeneration of saplings in Picea schrenkiana in Xinjiang of northwestern China

More Information
  • Received Date: May 17, 2023
  • Revised Date: July 12, 2023
  • Available Online: November 08, 2023
  • Objective 

    This paper aims to clarify the effects of gap size on regeneration of saplings of Picea schrenkiana in Xinjiang of northwestern China, and to explore the spatial distribution of saplings under different gap sizes, so as to provide theoretical basis for regeneration of saplings in gaps of P. schrenkiana.

    Method 

    We investigated the density, growth indexes and spatial location of saplings of 49 gaps in three sample plots (1 ha). Kernel density estimation method and spatial point pattern analysis method were used to analyze the influence of different forest gap sizes on sapling regeneration and spatial distribution patterns within gaps.

    Result 

    (1) The density and growth indexes (DBH, tree height, crown width) of saplings were significantly affected by different gap area grades (P < 0.05), but the ground diameter was not significantly affected. The density of saplings was the highest in gap class Ⅰ (< 20 m2). The maximum growth indexes of saplings appeared mostly in gap class Ⅱ(2 040 m2). (2) Saplings mainly concentrated under canopy of gap class Ⅰ(< 20 m2), gap class Ⅱ(20−40 m2) and gap class Ⅲ(40−90 m2) in northeast and under canopy in southeast. Saplings gradually moved from gap edge to gap center with the increase of gap class. (3) The distribution of saplings was random at gap scale, and with the increase of gap scale, the distribution changed from random to aggregated, and then tended to random again.

    Conclusion 

    Gap size has significant effect on regeneration of Picea schrenkiana, which smaller than 20 m2 is helpful to the survival of saplings, and 20−40 m2 is helpful to the growth of saplings. Saplings are concentrated under canopy of the northeast and under the canopy in the southeast of the gap. The growth index is the best, which indicates that these two directions are helpful to the growth of saplings. Therefore, gap size can be expanded to 20−40 m2 along these directions to promote the regeneration growth of saplings.

  • [1]
    周来, 张梦弢. 华北落叶松天然林林隙冠层特征对更新的影响[J]. 西北林学院学报, 2023, 38(5): 67−72.

    Zhou L, Zhang M T. Effect of gap canopy characteristics on stand regeneration of Larix principis-rupprechtii natural forest[J]. Journal of Northwest Forestry University, 2023, 38(5): 67−72.
    [2]
    刘炬, 李永宁. 华北落叶松林隙冠层结构和光环境与云杉幼树生长的关系[J]. 东北林业大学学报, 2023, 51(10): 8−12.

    Liu J, Li Y N. Relationship between canopy structure and light enviroment over gaps of Larix principis-rupprechtii and growth of picea asperata[J]. Journal of Northeast Forestry University, 2023, 51(10): 8−12.
    [3]
    Wang Z, Yang H, Dong B, et al. Effects of canopy gap size on growth and spatial patterns of Chinese pine ( Pinus tabulaeformis) regeneration[J]. Forest Ecology and Management, 2017, 385: 46−56. doi: 10.1016/j.foreco.2016.11.022
    [4]
    Fownes J H, Harrington R A. Seedling response to gaps: separating effects of light and nitrogen[J]. Forest Ecology and Management, 2004, 203(1−3): 297−310. doi: 10.1016/j.foreco.2004.07.044
    [5]
    李晖, 杨华, 谢榕. 长白山云冷杉林林隙冠层特征及与幼苗幼树的关系[J]. 北京林业大学学报, 2021, 43(7): 54−62.

    Li H, Yang H, Xie R. Canopy characteristics in gaps and its relationship with seedlings and saplings in a sprucefir forest in the Changbai Mountain area of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 54−62.
    [6]
    Powers M D, Pregitzer K S, Palik B J. Physiological performance of three pine species provides evidence for gap partitioning[J]. Forest Ecology and Management, 2008, 256(12): 2127−2135. doi: 10.1016/j.foreco.2008.08.003
    [7]
    Kern C C, Montgomery R A, Reich P B, et al. Harvest-created canopy gaps increase species and functional trait diversity of the forest ground-layer community[J]. Forest Science, 2014, 60(2): 335−344. doi: 10.5849/forsci.13-015
    [8]
    Runkle J R. Gap regeneration in some old-growth forests of the eastern united states[J]. Ecology, 1981, 62(4): 1041−1051. doi: 10.2307/1937003
    [9]
    龙翠玲, 余世孝. 茂兰喀斯特森林林隙幼苗出现的时空格局[J]. 云南植物研究, 2007, 29(5): 569−574.

    Long C L, Yu S X. The temporal and spatial patterns of seedling emergence in gaps of karst forest in maolan nature reserve, guizhou province[J]. Acta Botanica Yunnanica, 2007, 29(5): 569−574.
    [10]
    宋新章, 李冬生, 肖文发, 等. 长白山区次生阔叶林采伐林隙更新研究[J]. 林业科学研究, 2007, 20(3): 302−306.

    Song X Z, Li D S, Xiao W F, et al. Study on logging gaps regeneration in secondary broad-leaved forest in Changbai Mountain[J]. Forest Research, 2007, 20(3): 302−306.
    [11]
    李兵兵, 秦琰, 刘亚茜, 等. 燕山山地油松人工林林隙大小对更新的影响[J]. 林业科学, 2012, 48(6): 147−151.

    Li B B, Qin Y, Liu Y X, et al. Effects of gap size on regeneration of Pinus tabulaeformis plantation in the Yanshan Mountain[J]. Scientia Silvae Sinicae, 2012, 48(6): 147−151.
    [12]
    Spies T A, Franklin J F. Gap characteristics and vegetation response in coniferous forests of the pacific northwest[J]. Ecology, 1989, 70(3): 543−545.
    [13]
    贺丹妮, 杨华, 温静, 等. 长白山云冷杉针阔混交林不同林隙下幼苗幼树密度及空间分布[J]. 应用生态学报, 2020, 31(6): 1916−1922.

    He D N, Yang H, Wen J, et al. Density and spatial distribution of seedlings and saplings in different gap sizes of a spruce-fir mixed stand in Changbai Mountains, China[J]. Chinese Journal of Applied Ecology, 2020, 31(6): 1916−1922.
    [14]
    张宇, 魏曦, 梁文俊, 等. 林隙大小对华北落叶松人工林林下更新动态的影响[J]. 林业科学研究, 2022, 35(4): 84−92.

    Zhang Y, Wei X, Liang W J, et al. Effects of gap size on regeneration dynamics of Larix principis-rupprechtii forest[J]. Forest Research, 2022, 35(4): 84−92.
    [15]
    王立权. 新疆天山云杉群落结构特征研究[D]. 保定: 河北农业大学, 2006.

    Wang L Q. Study on the structural characteristics of Picea schrenkiana var. tianschanica communities in Xinjiang[D]. Baoding: Agricultural University of Hebei, 2006.
    [16]
    郭仲军, 黄继红, 路兴慧, 等. 基于第七次森林资源清查的新疆天然林生态系统服务功能[J]. 生态科学, 2015, 34(4): 118−124.

    Guo Z J, Huang J H, Lu X H, et al. Nature tree ecosystem services evaluation in Xinjiang based on the seventh national forest assessment data[J]. Ecological Science, 2015, 34(4): 118−124.
    [17]
    邓祥鹏, 许芳泽, 赵善超, 等. 基于贝叶斯法的新疆天山云杉树高−胸径模型研究[J]. 北京林业大学学报, 2023, 45(1): 11−20.

    Deng X P, Xu F Z, Zhao S C, et al. Tree height-DBH model for Picea schrenkiana in Tianshan Mountain, Xinjiang of northwestern China based on Bayesian method[J]. Journal of Beijing Forestry University, 2023, 45(1): 11−20.
    [18]
    Parzen E. On estimation of a probability density function and mode[J]. Annals of Mathematical Statistics, 1962, 33(3): 1065−1076. doi: 10.1214/aoms/1177704472
    [19]
    Rosenblatt M. Remarks on some non-parametric estimates of a density function[J]. Annals of Mathematical Statistics, 1956, 27: 832−837. doi: 10.1214/aoms/1177728190
    [20]
    Pelissier R, Goreaud F. Ads package for R: a fast unbiased implementation of the K-function family for studying spatial point patterns in irregular-shaped sampling windows[J]. Journal of Statistical Software, 2015, 63(6): 1−18.
    [21]
    Baddeley A, Turner R. Spatstat: an R package for analyzing spatial point patterns[J]. Journal of Statistical Software, 2005, 12(6): 1−42.
    [22]
    Ripley B D. Modelling spatial patterns[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(2): 172−192.
    [23]
    Besag J E. Discussion on Dr Ripley’s paper[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(2): 192−212.
    [24]
    龙翠玲. 茂兰喀斯特森林林隙大小对树种更新的影响[J]. 南京林业大学学报(自然科学版), 2008, 32(2): 34−38.

    Long C L. Effects of gap size on regeneration of karst forest in Maolan Natural Reserve of Guizhou Province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2008, 32(2): 34−38.
    [25]
    彭建松, 柴勇, 孟广涛, 等. 云南金沙江流域云南松天然林林隙更新研究[J]. 西北林学院学报, 2005, 20(2): 114−117.

    Peng J S, Chai Y, Meng G T, et al. A study on the gap phase regeneration in the natural forest of Pinus yunnanensis along the reaches of Jinshajiang in Yunnan Province[J]. Journal of Northwest Forestry University, 2005, 20(2): 114−117.
    [26]
    黄传响. 长白山云冷杉针阔混交林林隙小气候及其更新研究[D]. 北京: 北京林业大学, 2011.

    Huang C X. Study on microcliamte and regeneration of gaps in spruce-fir mixed stand in Changbai Mountains[D]. Beijing: Beijing Forestry University, 2011.
    [27]
    Condit R S, Ashton P S, Baker P J, et al. Spatial patterns in the distribution of tropical tree species[J]. Science, 2000, 288: 1414−1418. doi: 10.1126/science.288.5470.1414
    [28]
    李进, 石晓东, 高润梅, 等. 华北落叶松天然次生林更新及影响因素[J]. 森林与环境学报, 2020, 40(6): 588−596.

    Li J, Shi X D, Gao R M, et al. Regeneration and affecting factors of Larix principis-rupprechtii natural secondary forests[J]. Journal of Forest and Environment, 2020, 40(6): 588−596.
    [29]
    王丽霞, 段文标, 陈立新, 等. 红松阔叶混交林林隙大小对土壤水分空间异质性的影响[J]. 应用生态学报, 2013, 24(1): 17−24.

    Wang L X, Duan W B, Chen L X, et al. Effects of gap size on the spatial heterogeneity of soil water in Pinus koraiensis-dominated broad-leaved mixed forest[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 17−24.
    [30]
    Cordero I, Jiménez M D, Delgado J A, et al. Spatial and demographic structure of tara stands ( Caesalpinia spinosa) in Peru: influence of present and past forest management[J]. Forest Ecology and Management, 2016, 377: 71−82. doi: 10.1016/j.foreco.2016.06.034
    [31]
    Wang Z, Yang H, Wang D, et al. Spatial distribution and growth association of regeneration in gaps of Chinese pine ( Pinus tabuliformis Carr.) plantation in northern China[J]. Forest Ecology and Management, 2019, 432: 387−399.
    [32]
    Sarah K, Poznanovic A J, Poznanovic C R, et al. Spatial pat-terning of underrepresented tree species in canopy gaps 9 years after group selection cutting[J]. Forest Ecology and Management, 2014, 331: 1−11. doi: 10.1016/j.foreco.2014.06.029
    [33]
    刘云, 侯世全, 李明辉, 等. 两种不同干扰方式下的天山云杉更新格局[J]. 北京林业大学学报, 2005, 27(1): 47−50.

    Liu Y, Hou S Q, Li M H, et al. Regeneration pattern of Picea schrenkiana var. tianschanica forest under two different disturbances[J]. Journal of Beijing Forestry University, 2005, 27(1): 47−50.
    [34]
    王智斌. 冠层林隙面积对油松和华北落叶松更新苗生长和空间分布的影响[D]. 北京: 北京林业大学, 2017.

    Wang Z B. Effects of canopy gap size on growth and spatial patterns of regeneration of Pinus tabulaeformis and Larix principis-rupprechtii[D]. Beijing: Beijing Forestry University, 2017.
    [35]
    尤海舟, 刘兴良, 缪宁, 等. 川滇高山栎种群不同海拔空间格局的尺度效应及个体间空间关联[J]. 生态学报, 2010, 30(15): 4004−4011.

    You H Z, Liu X L, Miu N, et al. Individual association and scale effect of spatial pattern of Quercus aquifolioides populations along the elevation gradients[J]. Acta Ecologica Sinica, 2010, 30(15): 4004−4011.
    [36]
    Dong B, Ma L, Jia Z, et al. Response of natural recruitment to gap size in Chinese pine plantation[J]. Advance Journal of Food Science and Technology, 2013, 5(11): 1466−1472. doi: 10.19026/ajfst.5.3368
    [37]
    樊登星, 余新晓. 北京山区栓皮栎林优势种群点格局分析[J]. 生态学报, 2016, 36(2): 318−325.

    Fan D X, Yu X X. Spatial point pattern analysis of Quercus variabilis and Pinus tabulaeformis populations in a mountainous area of Beijing[J]. Acta Ecologica Sinica, 2016, 36(2): 318−325.
  • Related Articles

    [1]Gao Yonglong, Sun Yanli, Xu Mingze, Liu Shan. Variation characteristics in leaf functional traits of woody plants in deciduous broadleaved forest community in Baihua Mountain of Beijing[J]. Journal of Beijing Forestry University, 2024, 46(4): 40-51. DOI: 10.12171/j.1000-1522.20220462
    [2]Xie Shuwen, Jin Guangze, Liu Zhili. Variations and trade-offs of twig-leaf traits for Betula platyphylla with different diameter classes in Xiaoxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(12): 32-40. DOI: 10.12171/j.1000-1522.20210463
    [3]Wang Yongteng, Huang Zhihao, Wang Jun, Zhang Tong, Lang Lihua, Sun Guoming, Cui Guofa. Survival pressure of endangered species Phellodendron amurense[J]. Journal of Beijing Forestry University, 2021, 43(1): 49-57. DOI: 10.12171/j.1000-1522.20200130
    [4]Wei Liping, Han Yanying, Dabuqiong, Gong Wenfeng, Deng Gongfu, Hu Jie. Analysis on phenotypic variation and germplasm resource selection of wild Amygdalus mira in Tibet of southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(7): 48-57. DOI: 10.12171/j.1000-1522.20190422
    [5]Li Jinhang, Zhu Jiyou, Catherine Mhae B. Jandug, Zhao Kai, Xu Chengyang. Relationship between leaf functional trait variation of Cotinus coggygria seedling and location geographical-climatic factors under drought stress[J]. Journal of Beijing Forestry University, 2020, 42(2): 68-78. DOI: 10.12171/j.1000-1522.20190079
    [6]DU Qing-xin, LIU Pan-feng, QING Jun, WEI Yan-xiu, DU Hong-yan.. Variation and probability grading of main quantitative traits of male flowers for Eucommia ulmoides germplasm.[J]. Journal of Beijing Forestry University, 2016, 38(11): 42-49. DOI: 10.13332/j.1000-1522.20160031
    [7]ZHANG Zi-jie, YANG Shan-xun, ZENG Yan-jiang, WANG Rong-gang, WANG Li-ming, PANG Xiao-ming, LI Yue. Variation within clones and families and superior individual selection in different cultivars of Camellia oleifera‘Ruanzhi’.[J]. Journal of Beijing Forestry University, 2016, 38(10): 59-68. DOI: 10.13332/j.1000-1522.20160104
    [8]LIANG De-yang, JIN Yun-zhe, ZHAO Guang-hao, DONG Yuan-hai, LENG Wei-wei, CHEN Chang-lin, WANG Huan, ZHAO Xi-yang. Variance analyses of growth and wood characteristics of 50 Pinus koraiensis clones[J]. Journal of Beijing Forestry University, 2016, 38(6): 51-59. DOI: 10.13332/j.1000-1522.20150465
    [9]ZHANG Zhen, ZHANG Han-guo, ZHOU Yu, LIU Ling, YU Hong-ying, WANG Xu, FENG Wan-ju. Variation of seed characters in Korean pine (Pinus koraiensis ) multi-clonal populations[J]. Journal of Beijing Forestry University, 2015, 37(2): 67-78. DOI: 10.13332/j.cnki.jbfu.2015.02.020
    [10]HUANG Jia-cong, HE Jun, YIN Rui-ping, WAN Xiao-jun, GUO Jun, XIN Cheng-lian, GONG Fa-ping, LI Yue. Variations of fruit and seed traits of natural and artificial populations in Camellia reticulata L[J]. Journal of Beijing Forestry University, 2010, 32(5): 94-101.
  • Cited by

    Periodical cited type(14)

    1. 李一,潘立本,赵雯,穆立蔷,韩文静. 蒙古栎叶片功能性状变化特征及影响因素. 东北林业大学学报. 2024(03): 10-15 .
    2. 白岩松,张雨鉴,秦倩倩,孙兴悦,刘艳红. 大兴安岭典型灌木叶片功能性状对环境因子的响应. 生态学杂志. 2024(01): 131-139 .
    3. 郭文芳,陈艳梅,高飞,王佳乐. 太行山7种药用植物性状特征及其对土壤因子的响应. 环境工程技术学报. 2024(02): 612-621 .
    4. 欧芷阳,郑威,庞世龙,何峰,申文辉,谭一波,陈始贵. 广西猫儿山优势木本植物叶功能性状关联性沿海拔梯度的变化规律. 生态科学. 2024(02): 95-101 .
    5. 周会萍,姜金矜,黄艳丽,庄静静. 两种生活型木本植物叶功能性状变异特征研究. 沈阳农业大学学报. 2024(03): 298-305 .
    6. 冯浩育,陈思帆,索奥丽,龚俊伟,陈锋,刘晓东. 不同火烈度下山西太岳山油松林灌木层物种多样性和叶功能性状. 北京林业大学学报. 2024(06): 38-47 . 本站查看
    7. 谢立红,黄庆阳,曹宏杰,杨帆,王继丰,杨立宾. 五大连池火山黑桦叶性状对生境因子的响应. 中南林业科技大学学报. 2024(05): 112-124 .
    8. 谢立红,黄庆阳,曹宏杰,王继丰,王建波,倪红伟. 五大连池火山蒙古栎种群空间分布格局. 生态与农村环境学报. 2023(07): 896-906 .
    9. 黄庆阳,谢立红,曹宏杰,王立民,杨帆,王继丰,刘赢男,倪红伟. 细菌对五大连池火山森林凋落物早期分解的影响. 应用生态学报. 2023(07): 1941-1948 .
    10. 刘爱林,张往祥,刘陈妤,高亮,杨晓倩,周婷,崔珺. 7种樟科植物叶功能性状及其对土壤因子的响应. 福建农业学报. 2023(12): 1428-1436 .
    11. 杨巧,朱润军,杨畅宇,李仕杰,程希平. 基于树形结构的木棉叶功能性状差异性研究. 生态学报. 2022(07): 2834-2842 .
    12. 王佳欢,刘彦林,曹鹤,杨新兵,赵迎雪,陈一凡,史宝胜. 采石场高陡岩壁坡向对葛藤叶形态及光合特征的影响. 东北林业大学学报. 2022(05): 47-51+75 .
    13. 顾泽,王博,陈思帆,王忆文,索奥丽,刘晓东,陈锋. 不同火烈度火烧迹地内油松叶功能性状的变化. 应用生态学报. 2022(06): 1497-1504 .
    14. 谢立红,黄庆阳,曹宏杰,杨帆,王继丰,王建波,倪红伟. 五大连池火山蒙古栎种群结构及动态特征. 浙江农林大学学报. 2022(05): 960-970 .

    Other cited types(6)

Catalog

    Article views (351) PDF downloads (45) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return