• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Jianting, Liu Jinhao, Huang Qingqing, Sui Tingting. Design and simulation of woodland chassis imitating goat gait[J]. Journal of Beijing Forestry University, 2021, 43(6): 152-162. DOI: 10.12171/j.1000-1522.20210086
Citation: Zhang Jianting, Liu Jinhao, Huang Qingqing, Sui Tingting. Design and simulation of woodland chassis imitating goat gait[J]. Journal of Beijing Forestry University, 2021, 43(6): 152-162. DOI: 10.12171/j.1000-1522.20210086

Design and simulation of woodland chassis imitating goat gait

More Information
  • Received Date: March 10, 2021
  • Revised Date: April 06, 2021
  • Available Online: May 21, 2021
  • Published Date: June 29, 2021
  •   Objective  The terrain of China’s forest region is more complex, and the performance of woodland chassis determines whether the forest equipment can go up the mountain into the forest, which is the basic problem to be solved in the process of forestry modernization. Compared with wheeled and crawler chassis, the leg independent motion of foot chassis makes foot chassis more flexible and adaptable in the complex terrain environment of forest region. Therefore, the research and development of forest foot chassis for China’s forest environment is of great significance to China’s forestry development.
      Method  In view of the study of gait planning of the forest floor, the general walking gait of goats was analyzed, and the walking step sequence, the relationship between the joint angles and the range of changes were obtained. A woodland chassis was designed, and the structure diagram of the left front leg was analyzed. The working space of the foot end of the chassis was calculated by Monte Carlo method, and whether it can meet the requirements. According to the actual needs, the gait and joint driving of the woodland chassis were determined. The virtual prototype model of the woodland chassis was designed and simplified by ADAMS simulation software. The simulation of the diagonal running gait was carried out. The running performance of the woodland chassis was analyzed by the displacement and speed curve of the mass center of the woodland chassis.
      Result  The movement of the mass center of the woodland chassis in the plane movement was stable in the forward direction, with the forward speed of about 0.2 m/s; the lateral displacement of the chassis mass center was relatively small, and basically advances along the set track; the center of mass fluctuates up and down in the vertical direction, and the fluctuation range accounted for about 1.04% of the total height of the chassis. There was no jumping or tilting of the woodland chassis during the forward process.
      Conclusion  The simulation results show that the gait planning can meet the motion requirements of the woodland chassis, improve the motion stability and terrain adaptability of the woodland chassis, and is safe and reliable, which is suitable for forestry power chassis.
  • [1]
    国家林业局. 中国林业统计年鉴2018[M]. 北京: 中国林业出版社, 2018: 2−3.

    State Forestry Administration. China forestry statistical yearbook 2018[M]. Beijing: China Forestry Publishing House, 2018: 2−3.
    [2]
    沈文娟, 徐婷, 李明诗. 中国三大林区森林破碎化及干扰模式变动分析[J]. 南京林业大学学报(自然科学版), 2013, 37(4):75−79.

    Shen W J, Xu T, Li M S. Spatio-temporal changes in forest fragmentation, disturbance patterns over the three giant forested regions of China[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(4): 75−79.
    [3]
    朱阅. 林用装备底盘研究综述[J]. 林业和草原机械, 2020, 1(2):42−46.

    Zhu Y. A review on the chassis research of forest equipment[J]. Forestry and Grassland Machinery, 2020, 1(2): 42−46.
    [4]
    陈建, 石军锋, 李云伍. 中国西南地区农业机械化现状及发展战略[J]. 农业工程学报, 2003, 19(5):1−6. doi: 10.3321/j.issn:1002-6819.2003.05.001

    Chen J, Shi J F, Li Y W. Present status and developing strategy of agricultural mechanization in Southwest China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(5): 1−6. doi: 10.3321/j.issn:1002-6819.2003.05.001
    [5]
    高焕文, 李问盈, 李洪文. 我国农业机械化的跨世纪展望[J]. 农业工程学报, 2000, 16(2):9−12. doi: 10.3321/j.issn:1002-6819.2000.02.003

    Gao H W, Li W Y, Li H W. Prospects of China agricultural mechanization facing the 21st century[J]. Transactions of the Chinese Society of Agricultural Engineering, 2000, 16(2): 9−12. doi: 10.3321/j.issn:1002-6819.2000.02.003
    [6]
    王鹏飞, 孙立宁, 黄博. 地面移动机器人系统的研究现状与关键技术[J]. 机械设计, 2006, 23(7):1−4. doi: 10.3969/j.issn.1001-2354.2006.07.001

    Wang P F, Sun L N, Huang B. Present situation and key technology of ground mobile robot system[J]. Journal of Machine Design, 2006, 23(7): 1−4. doi: 10.3969/j.issn.1001-2354.2006.07.001
    [7]
    田海波, 方宗德, 古玉锋. 轮腿式机器人越障动力学建模与影响因素分析[J]. 机器人, 2010, 32(3):390−397. doi: 10.3724/SP.J.1218.2010.00390

    Tian H B, Fang Z D, Gu Y F. Dynamic modeling for obstacle negotiation of wheel-legged robot and analysis on its influential factors[J]. Robot, 2010, 32(3): 390−397. doi: 10.3724/SP.J.1218.2010.00390
    [8]
    Li Y B, Li B, Ruan J H, et al. Research of mammal bionic quadruped robots: a review[C]//IEEE. International Conference on Robotics, Automation and Mechatronics. Qingdao: IEEE, 2011: 166−171.
    [9]
    刘静, 赵晓光, 谭民. 腿式机器人的研究综述[J]. 机器人, 2006, 28(1):81−88. doi: 10.3321/j.issn:1002-0446.2006.01.017

    Liu J, Zhao X G, Tan M. Legged robots: a review[J]. Robot, 2006, 28(1): 81−88. doi: 10.3321/j.issn:1002-0446.2006.01.017
    [10]
    宋磊. 四足移动机器人步态规划与足力控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    Song L. Research on gait planning and foot force control of the quadruped robot[D]. Harbin: Harbin Institute of Technology, 2007.
    [11]
    陈君杰, 李攀磊, 韩威, 等. Delta机器人动力学建模与弹性误差分析[J]. 机电工程, 2018, 35(1):33−37. doi: 10.3969/j.issn.1001-4551.2018.01.006

    Chen J J, Li P L, Han W, et al. Dynamics modeling and elastic error analysis of delta robot[J]. Journal of Mechanical & Electrical Engineering, 2018, 35(1): 33−37. doi: 10.3969/j.issn.1001-4551.2018.01.006
    [12]
    Hirose S, Kato K. Study on quadruped walking robot in Tokyo Institute of Technology-past, present and future[C]//Proceedings of the 2000 IEEE lntemational Conference on Robotics & Automation. San Francisco: IEEE, 2000: 414−419.
    [13]
    Raibert M, Blankespoor K, Nelson G, et al. BigDog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41(2): 10822−10825. doi: 10.3182/20080706-5-KR-1001.01833
    [14]
    Wooden D, Malchano M, Blankespoor K, et al. Autonomous navigation for BigDog[C]//IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010: 4736−4741.
    [15]
    Playter R, Buehler M, Raibert M. BigDog[C]//Grant R. Defense and security symposium. Orlando: International Society for Optics and Photonics, 2006: 1−6.
    [16]
    杨钧杰, 孙浩, 王常虹, 等. 四足机器人研究综述[J]. 导航定位与授时, 2019, 6(5):61−73.

    Yang J J, Sun H, Wang C H, et al. An overview of quadruped robots[J]. Navigation Positioning and Timing, 2019, 6(5): 61−73.
    [17]
    罗红艳, 魏莉, 李彰, 等. 仿生四足机器人运动规划与步态转换[J]. 数字制造科学, 2018, 16(1):6−11.

    Luo H Y, Wei L, Li Z, et al. Motion planning and gait transition of bionic quadruped robot[J]. Digital Manufacture Science, 2018, 16(1): 6−11.
    [18]
    邢伯阳, 潘峰, 冯肖雪. 智能决策改进的四足机器人ZMP爬行步态算法[J]. 计算机工程与应用, 2019, 55(22):206−211, 257. doi: 10.3778/j.issn.1002-8331.1808-0082

    Xing B Y, Pan F, Feng X X. Improved ZMP crawling gait algorithm for quadruped robot based on intelligent decision making[J]. Computer Engineering and Applications, 2019, 55(22): 206−211, 257. doi: 10.3778/j.issn.1002-8331.1808-0082
    [19]
    孔垂麟, 姜秀梅, 岳永铭, 等. 四足仿生机器人斜面行走的运动研究[J]. 机械与电子, 2019, 37(7):58−63. doi: 10.3969/j.issn.1001-2257.2019.07.012

    Kong C L, Jiang X M, Yue Y M, et al. Research on the movement of bionic quadruped robot walking on a slope[J]. Machinery & Electronics, 2019, 37(7): 58−63. doi: 10.3969/j.issn.1001-2257.2019.07.012
    [20]
    俞文雅, 陶红武, 曾顺, 等. 四足机器人斜坡对角小跑运动控制研究[J]. 武汉科技大学学报, 2021, 44(1):60−67.

    Yu W Y, Tao H W, Zeng S, et al. Motion control of quadruped robot trotting on a slope[J]. Journal of Wuhan University of Science and Technology, 2021, 44(1): 60−67.
    [21]
    Lee D V, McGuigan M P, Yoo E H, et al. Compliance, actuation, and work characteristics of the goat foreleg and hindleg during level, uphill, and downhill running[J]. Journal of Applied physiology, 2008, 104(1): 130−141. doi: 10.1152/japplphysiol.01090.2006
    [22]
    Biancardi C M, Minetti A E. Gradient limits and safety factor of Alpine ibex (Capra ibex) locomotion[J]. Hystrix, the Italian Journal of Mammalogy, 2017, 28(1): 56−60.
    [23]
    王亚飞. 仿山羊坡地行走四足机器人单腿研究[D]. 洛阳: 河南科技大学, 2019.

    Wang Y F. Study on the single leg of a four-legged robot walking on a slope in imitation of a goat[D]. Luoyang: Henan University of Science and Technology, 2019.
    [24]
    郑莉敏. 头部调节对山羊坡地行走平衡控制的影响研究[D]. 洛阳: 河南科技大学, 2018.

    Zheng L M. Study on influence of regulation on balance control of goats walking on slope[D]. Luoyang: Henan University of Science and Technology, 2018.
    [25]
    钟斌. 仿生岩羊四足机器人机构设计研究[D]. 合肥: 中国科学技术大学, 2018.

    Zhong B. Study on the mechanical design of a blue-sheep inspired quadruped robot[D]. Hefei: University of Science and Technology of China, 2018.
    [26]
    李华师. 四足机器人仿生运动控制理论与方法的研究[D]. 北京: 北京理工大学, 2014.

    Li H S. Biomimetic locomotion control theories and methods of quadruped robot[D]. Beijing: Beijing Institute of Technology, 2014.
    [27]
    王潍, 王劲, 王艳芳, 等. Solid Edge基础应用与实践[M]. 北京: 清华大学出版社, 2011.

    Wang W, Wang J, Wang Y F, et al. Application and practice of Solid Edge[M]. Beijing: Tsinghua University Press, 2011.
    [28]
    张立先. 基于几何代数的机构运动学及特性分析[D]. 秦皇岛: 燕山大学, 2008.

    Zhang L X. Kinematics and character of mechanism based on geometric algebra[D]. Qinhuangdao: Yanshan University, 2008.
    [29]
    田为军. 德国牧羊犬运动特性及其运动模型研究[D]. 长春: 吉林大学, 2011.

    Tian W J. Research on kinetics analysis and simulation of German shepherd dog’s gait[D]. Changchun: Jilin University, 2011.
    [30]
    王立鹏. 液压四足机器人驱动控制与步态规划研究[D]. 北京: 北京理工大学, 2014.

    Wang L P. Research on control and gait planning for a hydraulic quadruped robot[D]. Beijing: Beijing Institute of Technology, 2014.
    [31]
    赵文涛, 李军, 刘志忠. 四足仿生机器人单腿机构工作空间的优化设计[J]. 机械与电子, 2011(7):57−61. doi: 10.3969/j.issn.1001-2257.2011.07.016

    Zhao W T, Li J, Liu Z Z. Mechanical optimization of quadruped bio-robot leg body workspace[J]. Machinery & Electronics, 2011(7): 57−61. doi: 10.3969/j.issn.1001-2257.2011.07.016
    [32]
    赵燕江, 张永德, 姜金刚, 等. 基于Matlab的机器人工作空间求解方法[J]. 机械科学与技术, 2009, 28(12):1657−1661, 1666. doi: 10.3321/j.issn:1003-8728.2009.12.027

    Zhao Y J, Zhang Y D, Jiang J G, et al. A method for solving robot workspace based on Matlab[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(12): 1657−1661, 1666. doi: 10.3321/j.issn:1003-8728.2009.12.027
    [33]
    阮沈勇, 王永利, 桑群芳. MATLAB程序设计[M]. 北京: 电子工业出版社, 2004.

    Ruan S Y, Wang Y L, Sang Q F. MATLAB programming[M]. Beijing: Publishing House of Electronics Industry, 2004.
    [34]
    宋明辉. 基于虚拟样机技术的四足机器人步态规划与研究[D]. 北京: 北京理工大学, 2015.

    Song M H. Gait planning and research of quadruped robot based on virtual prototype technology[D]. Beijing: Beijing Institute of Technology, 2015.
    [35]
    李满天, 蒋振宇, 王鹏飞, 等. 基于多虚拟元件的直腿四足机器人Trot步态控制[J]. 吉林大学学报(工学版), 2015, 45(5):1502−1511.

    Li M T, Jiang Z Y, Wang P F, et al. Trotting gait control of quadruped robot with straight legs based on virtual elements[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(5): 1502−1511.
    [36]
    张越今, 宋健. 多体动力学仿真软件ADAMS理论及应用研讨[J]. 机械科学与技术, 1997, 16(5):753−758, 776. doi: 10.3321/j.issn:1003-8728.1997.05.001

    Zhang Y J, Song J. Modeling theory and application techniques in ADAMS[J]. Mechanical Science and Technology, 1997, 16(5): 753−758, 776. doi: 10.3321/j.issn:1003-8728.1997.05.001
    [37]
    张秀丽. 四足机器人节律运动及环境适应性的生物控制研究[D]. 北京: 清华大学, 2004.

    Zhang X L. Biological-inspired rhythmic motion& environmental adaptability for quadruped robot[D]. Beijing: Tsinghua University, 2004.
  • Related Articles

    [1]Niu Yunming, Jia Guodong, Liu Zihe, Wang Xin, Liu Ziqiang. Soil moisture absorption and utilization of Quercus variabilis in Beijing mountain area[J]. Journal of Beijing Forestry University, 2022, 44(7): 16-24. DOI: 10.12171/j.1000-1522.20210208
    [2]AN Hai-long, LIU Qing-qian, CAO Xue-hui, ZHANG Gang, WANG Hui, LIU Chao, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places[J]. Journal of Beijing Forestry University, 2016, 38(1): 59-66. DOI: 10.13332/j.1000--1522.20150164
    [3]QIN Jing, ZHAO Guang-jie, SHANG Jun-bo, PANG Jiu-yin. Electroconductivity and electromagnetic shielding effect of copper plating poplar veneers[J]. Journal of Beijing Forestry University, 2014, 36(6): 149-153. DOI: 10.13332/j.cnki.jbfu.2014.06.001
    [4]YU Lu, SU De-rong, LIU Yi-shan. Characters of leaf water absorption for three turfgrasses.[J]. Journal of Beijing Forestry University, 2013, 35(3): 97-101.
    [5]ZHANG Yun, CUI Xiao-yang. Nitrogen absorption and assimilation characteristics of Pinus koraiensis seedings in different NH+4/NO-3 ratios[J]. Journal of Beijing Forestry University, 2011, 33(5): 61-64.
    [6]ZHANG Yun, CUI Xiao-yang. NH+4/NO-3 absorption characteristics of Betula platyphylla seedlings[J]. Journal of Beijing Forestry University, 2011, 33(3): 26-30.
    [7]DONG Wen-yi, NIE Li-shui, LI Ji-yue, , SHEN Ying -bai, ZHANG Zhi-yi. Effects of nitrogen forms on the absorption and distribution of nitrogen in Populus tomentosa seedlings using the technique of 15N tracing.[J]. Journal of Beijing Forestry University, 2009, 31(4): 97-101.
    [8]ZHANG Xue-xia, CHEN Li-hua. . Effects of watershed landscape pattern on soil and water loss in the Loess Plateau Region.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 95-102.
    [9]LI Suyan1, HUANG Yu2, ZHANG Jianguo. The effects of fir plantation thinning on soil and water loss.[J]. Journal of Beijing Forestry University, 2008, 30(3): 120-123.
    [10]ZHAI Ming-pu, JIANG San-nai. Dynamics of nutrient absorption in root systems of Populus×xiao zhuanica and Robinia pseudoacacia[J]. Journal of Beijing Forestry University, 2006, 28(2): 29-33.
  • Cited by

    Periodical cited type(9)

    1. 王喜刚,郭成瑾,焦杨,赵沛,田静,张丽荣,沈瑞清. 哈茨木霉M-17厚垣孢子可湿性粉剂的研制及其对马铃薯干腐病的田间防效. 中国生物防治学报. 2024(06): 1319-1330 .
    2. 申云鑫,李铭刚,施竹凤,赵江源,王楠,李者芬,杨明英,陈齐斌,杨佩文. 贝莱斯芽胞杆菌SH-1471可湿性粉剂研制及其对番茄枯萎病的防治效果. 中国生物防治学报. 2023(04): 904-914 .
    3. 薛德星,李美,高兴祥,李健. 生防菌棘孢木霉的分离鉴定及生物学特性研究. 山东农业科学. 2023(10): 118-123 .
    4. 张成,李欣雨,邹艺琴,王睿,侯巨梅,廖文敏,刘铜. 木霉菌Trichoderma brev可湿性粉剂的研制. 农药. 2022(05): 329-335 .
    5. 胡建坤,黄蓉,黄瑞荣,朱植银,王玉,曾钦华. 2种化学杀菌剂与木霉及其组配制剂对辣椒疫病防控效果研究. 生物灾害科学. 2021(04): 460-464 .
    6. 庄新亚,程亮,郭青云. 燕麦镰刀菌GD-2可湿性粉剂研制及对野燕麦的防除效果. 青海大学学报. 2020(03): 9-17+43 .
    7. 遇文婧,宋小双,邓勋,平晓帆,周琦,刘志华. 刺激植物响应蛋白基因Epl1克隆、原核表达及功能初探. 北京林业大学学报. 2018(01): 17-26 . 本站查看
    8. 徐沛东,朱植银,黄加诚,肖永良,谢远芳,魏方林. 新型生物农药棘孢木霉菌防治辣椒疫病应用研究. 生物灾害科学. 2017(03): 172-175 .
    9. 罗洋,滕应,罗绪强,李振高. 里氏木霉FS10-C可湿性粉剂的研制及其促生效果测定. 生物技术通报. 2016(08): 194-199 .

    Other cited types(8)

Catalog

    Article views (1533) PDF downloads (48) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return