• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
He Xin, Ma Wenxu, Zhao Tiantian, Yang Xiaohong, Ma Qinghua, Liang Lisong, Wang Guixi, Yang Zhen. Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial[J]. Journal of Beijing Forestry University, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350
Citation: He Xin, Ma Wenxu, Zhao Tiantian, Yang Xiaohong, Ma Qinghua, Liang Lisong, Wang Guixi, Yang Zhen. Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial[J]. Journal of Beijing Forestry University, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350

Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial

More Information
  • Received Date: September 05, 2021
  • Revised Date: November 19, 2021
  • Accepted Date: December 01, 2022
  • Available Online: April 05, 2023
  • Published Date: April 24, 2023
  •   Objective  This paper aims to discuss the historical distribution changes of Corylus heterophylla complex (Corylus heterophylla, Corylus kweichowensis, Corylus yunnanensis) since the last interglacial, and understand the response mechanism of its geographical distribution to environmental evolution, so as to provide reference for clarifying the evolutionary relationship of three species, and also provide scientific basis for resource protection and development.
      Method  Based on the distribution data of the three species of C. heterophylla complex and the corresponding environmental variables, MaxEnt model and ArcGIS software were used to simulate their potential distribution in the last interglacial, last glacial maximum, mid-Holocene and modern times to explore its historical distribution changes; then, the distribution areas of three related species in different periods were superimposed to speculate their ice age refuge, which was verified by hazel pollen data. Finally, the niche differentiation among the three related species was detected by principal component analysis, and the main environmental impact factors were comprehensively evaluated.
      Result  On the whole, the contribution of the first two environmental factors affecting the distribution of C. heterophylla and C. kweichowensis was similar, while the first two main environmental factors of C. yunnanensis were related to water. Compared with temperature, water had a more important impact on the distribution of the three tree species. In terms of the suitable areas, C. heterophylla of northern China experienced glacial contraction and interglacial expansion during the quaternary, whereas C. kweichowensis and C. yunnanensis of southern China presented population expansion even during the last glacial maximum. The refuges of the three related species obtained after overlapping of the suitable areas were in good agreement with the palynological results.
      Conclusion  This study accurately simulates the distribution changes of C. heterophylla complex in four historical periods, explores its ecological differentiation, and speculates on its biological refuge, which provides some scientific basis for the conservation and management of the resources in China under the background of future climate change.
  • [1]
    张宇和, 柳鎏, 梁维坚. 中国果树志 板栗 榛子卷[M]. 北京: 中国林业出版社, 2005.

    Zhang Y H, Liu L, Liang W J. China fruit’s monograph: Chinese chestnut and Chinese hazelnut volume[M]. Beijing: China Forestry Publishing House, 2005.
    [2]
    王艳梅, 翟明普, 马天晓, 等. 榛属7种植物与虎榛微卫星测序及分析[J]. 华中农业大学学报, 2009, 28(1): 5−10. doi: 10.3321/j.issn:1000-2421.2009.01.002

    Wang Y M, Zhai M P, Ma T X, et al. Sequences and homology analysis of SSR from Corylus and Ostryopsis davidiana Decne[J]. Journal of Huazhong Agricultural University, 2009, 28(1): 5−10. doi: 10.3321/j.issn:1000-2421.2009.01.002
    [3]
    张鹏飞, 张福花, 张茹, 等. 山西省榛属植物居群的SSR遗传多样性研究[J]. 植物科学学报, 2014, 32(2): 131−138.

    Zhang P F, Zhang F H, Zhang R, et al. Genetic diversity of hazel populations in Shaanxi Province based on SSR markers[J]. Plant Science Journal, 2014, 32(2): 131−138.
    [4]
    赵爽, 苏淑钗, 陈志钢, 等. 基于SSR的辽宁铁岭地区平榛遗传多样性与居群遗传结构分析[J]. 果树学报, 2016, 33(1): 24−33. doi: 10.13925/j.cnki.gsxb.20150187

    Zhao S, Su S C, Chen Z G, et al. An assessment of the genetic diversity and population genetic structure concerning the Corylus heterophylla Fisch grown in the Tieling District of Liaoning Province, using SSR markers[J]. Journal of Fruit Science, 2016, 33(1): 24−33. doi: 10.13925/j.cnki.gsxb.20150187
    [5]
    李沛琼. 中国植物志: 桦木科[M]. 北京: 科学出版社, 1979.

    Li P Q. Flora of China: Betulaceae[M]. Beijing: Science Press, 1979.
    [6]
    梁维坚. 关于川榛分类地位的商榷及新变种[J]. 植物研究, 1988, 8(4): 115−117.

    Liang W J. On classification of Sichuan filbert and its new variety[J]. Bulletin of Botanical Research, 1988, 8(4): 115−117.
    [7]
    宗建伟. 中国三个主要榛种居群遗传多样性及榛属植物种间亲缘关系研究[D]. 北京: 中国林业科学研究院, 2016.

    Zong J W. Study on population genetic diversity of three Chinese Corylus species and the phylogentic relationship of Corylus species[D]. Beijing: Chinese Academy of Forestry, 2016.
    [8]
    王陆军. 大别山川榛种质资源多样性评价研究[D]. 北京: 中国林业科学研究院, 2018.

    Wang L J. Study on evaluation of germplasm diversity of Corylus kweichowensis Hu. in Dabie Mountains[D]. Beijing: Chinese Academy of Forestry, 2018.
    [9]
    王泽亮, 郑永琴, 苏玲, 等. 滇榛(Corylus yunnanensis)SSR引物的筛选[J]. 四川林业科技, 2017, 38(6): 55−58.

    Wang Z L, Zheng Y Q, Su L, et al. Screening of SSR Markers in Corylus yunnanensis[J]. Journal of Sichuan Forestry Science and Technology, 2017, 38(6): 55−58.
    [10]
    唐燕, 赵儒楠, 任钢, 等. 基于MaxEnt模型的中华枸杞潜在分布预测及其重要影响因子分析[J]. 北京林业大学学报, 2021, 43(6): 23−32. doi: 10.12171/j.1000-1522.20200103

    Tang Y, Zhao R N, Ren G, et al. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors[J]. Journal of Beijing Forestry University, 2021, 43(6): 23−32. doi: 10.12171/j.1000-1522.20200103
    [11]
    黄睿智, 于涛, 赵辉, 等. 气候变化背景下濒危植物梓叶槭在中国适生分布区预测[J]. 北京林业大学学报, 2021, 43(5): 33−43. doi: 10.12171/j.1000-1522.20200254

    Huang R Z, Yu T, Zhao H, et al. Prediction of suitable distribution area of the endangered plantAcer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33−43. doi: 10.12171/j.1000-1522.20200254
    [12]
    徐振朋. 荒漠区裸果木种群分布与性状适应特征研究[D]. 呼和浩特: 内蒙古农业大学, 2017.

    Xu Z P. Study on the response and adaptation of Gymnocarpos przewalskii to habitat difference[D]. Hohhot: Inner Mongolia Agricultural University, 2017.
    [13]
    文检. 基于GIS和有效成分的藏药品质区划研究[D]. 成都: 成都中医药大学, 2017.

    Wen J. Quality division of Tibetan medicine based on GIS and effective component[D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2017.
    [14]
    王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4): 365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005

    Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodiversity Science, 2007, 15(4): 365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005
    [15]
    Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3-4): 231−259. doi: 10.1016/j.ecolmodel.2005.03.026
    [16]
    Carnaval A C, Moritz C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest[J]. Journal of Biogeography, 2010, 35(7): 1187−1201.
    [17]
    张爱平, 王毅, 熊勤犁, 等. 末次间冰期以来3种云杉属植物的历史分布变迁及避难所[J]. 应用生态学报, 2018, 29(7): 2411−2421.

    Zhang A P, Wang Y, Xiong Q L, et al. Distribution changes and refugia of three spruce taxa since the last interglacial[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2411−2421.
    [18]
    王婧如, 王明浩, 张晓玮, 等. 同倍体杂交物种紫果云杉的生态位分化及其未来潜在分布区预测[J]. 林业科学, 2018, 54(6): 63−72. doi: 10.11707/j.1001-7488.20180608

    Wang J R, Wang M H, Zhang X W, et al. The ecological divergence and projection of future potential distribution of homoploid hybrid species Picea purpurea[J]. Scientia Silvae Sinicae, 2018, 54(6): 63−72. doi: 10.11707/j.1001-7488.20180608
    [19]
    刘有民, 王桂增. 秦岭地区第四纪冰川地质研究[C]// 中国地质科学院. 中国地质科学院天津地质矿产研究所文集(14). 北京: 地质出版社, 1987: 2−3, 5−108.

    Liu Y M, Wang G Z. Research on quaternary glacier geology in Qinling Area[C]// Chinese Academy of Geological Sciences. Collected works of Tianjin Institute of Geology and Mineral Resources of Chinese Academy of Geological Sciences (14). Beijing: Geology Press, 1987: 2−3, 5−108.
    [20]
    程玉芬. 2.6万年以来黄土高原中北部的植被和气候变化[D]. 北京: 中国地质大学, 2011.

    Cheng Y F. Vegetation and climate changes in the middle and northern Loess Plateau over the past 26000 Years[D]. Beijing: China University of Geosciences, 2011.
    [21]
    赵红艳, 周道玮. 吉林省敦化地区晚全新世泥炭沼泽孢粉组合特征及古植被[J]. 应用生态学报, 2006, 17(2): 197−200. doi: 10.3321/j.issn:1001-9332.2006.02.007

    Zhao H Y, Zhou D W. Pollen assemblage and palaeo-vegetation of late holocene fen in Dunhua of Jilin Province[J]. Chinese Journal of Applied Ecology, 2006, 17(2): 197−200. doi: 10.3321/j.issn:1001-9332.2006.02.007
    [22]
    袁绍敏, 孙湘君. 据花粉分析推论东北长白山西麓一万年来植被与环境[J]. 植物学报, 1990, 32(7): 558−567.

    Yuan S M, Sun X J. The vegetational and environmental history at the west foot of Changbai Mountain, northeast China during the last 10000 years[J]. Acta Botanica Sinica, 1990, 32(7): 558−567.
    [23]
    蒋雪中, 羊向东, 王苏民, 等. 云南鹤庆盆地末次盛冰期的孢粉记录与古季风[J]. 微体古生物学报, 2001, 18(3): 263−267. doi: 10.3969/j.issn.1000-0674.2001.03.006

    Jiang X Z, Yang X D, Wang S M, et al. The last glacier maximal pollen record in the lake sediments from ancient Heqing Lake and its significance for palaeomonsoon[J]. Acta Micropalaeontologica Sinica, 2001, 18(3): 263−267. doi: 10.3969/j.issn.1000-0674.2001.03.006
    [24]
    孙世英, 张嘉尔. 湖南大坪泥炭矿孢粉组合及其形成环境[J]. 南京师大学报(自然科学版), 1984(4): 86−92.

    Sun S Y, Zhang J E. Sporo-pollen assemblage and its formation environment in Daping Peat Mine, Hunan[J]. Journal of Nanjing Normal University (Natural Science Edition), 1984(4): 86−92.
    [25]
    杜荣荣, 陈敬安, 曾艳, 等. 贵州白鹇湖沉积物中孢粉记录的5.5 kaB.P. 以来的气候变化[J]. 生态学报, 2013, 33(12): 3783−3791. doi: 10.5846/stxb201206120845

    Du R R, Chen J A, Zeng Y, et al. Climate change recorded mainly by pollen from baixian lake during the last 5.5 kaB.P[J]. Acta Ecologica Sinica, 2013, 33(12): 3783−3791. doi: 10.5846/stxb201206120845
    [26]
    雷国良. 用孢粉分析探讨贵州西部风景区域全新世气候环境变迁[J]. 贵州科学, 1990, 8(4): 41−51.

    Lei G L. Discussion on holocene climate and environment changes in scenic regions of western Guizhou by sporopollen analysis[J]. Guizhou Science, 1990, 8(4): 41−51.
    [27]
    朱诚, 马春梅, 张文卿, 等. 神农架大九湖15.753 kaB.P.以来的孢粉记录和环境演变[J]. 第四纪研究, 2006, 26(5): 814−826. doi: 10.3321/j.issn:1001-7410.2006.05.017

    Zhu C, Ma C M, Zhang W Q, et al. Pollen record from Dajiuhu Basin of Shennongjia and environmental changes since 15.753 kaB.P[J]. Quaternary Sciences, 2006, 26(5): 814−826. doi: 10.3321/j.issn:1001-7410.2006.05.017
    [28]
    顾明光, 陈忠大, 卢成忠, 等. 浙江湘湖地区全新世孢粉记录及其古气候意义[J]. 中国地质, 2006, 33(5): 1144−1148.

    Gu M G, Chen Z D, Lu C Z, et al. Holocene sporopollen records in the Xianghu Area, Zhejiang and their palaeoclimatic significance[J]. Geology in China, 2006, 33(5): 1144−1148.
    [29]
    杨肖肖, 孔昭宸, 姜文英, 等. 末次盛冰期以来渭源黄土剖面的孢粉记录[J]. 地球环境学报, 2012, 3(2): 819−825. doi: 10.7515/JEE201202008

    Yang X X, Kong Z C, Jiang W Y, et al. Pollen record for the Weiyuan loess section since the last glacial maximum[J]. Journal of Earth Environment, 2012, 3(2): 819−825. doi: 10.7515/JEE201202008
    [30]
    刘俊峰. 陕西关中黄土地层中第一层古土壤的孢粉组合及其意义[J]. 西北大学学报(自然科学版), 1989, 19(1): 77−80.

    Liu J F. The sporo-pollen assemblage and their signifcance of the first layer paleosol in the loess strata of Guanzhong, Shaanxi Province[J]. Journal of Northwest University (Natural Science Edition), 1989, 19(1): 77−80.
    [31]
    孙湘君, 宋长青, 玉琫瑜, 等. 黄土高原南缘10万年以来的植被−陕西渭南黄土剖面的花粉记录[J]. 科学通报, 1995, 40(13): 1222−1224. doi: 10.3321/j.issn:0023-074X.1995.13.020

    Sun X J, Song C Q, Yu B Y, et al. Vegetation in the south margin of the Loess Plateau since 100, 000 years: pollen records of the loess section in Weinan, Shaanxi[J]. Chinese Science Bulletin, 1995, 40(13): 1222−1224. doi: 10.3321/j.issn:0023-074X.1995.13.020
    [32]
    马明志, 邵晶, 杨利平, 等. 2008—2017陕西史前考古综述[J]. 考古与文物, 2018(5): 10−40. doi: 10.3969/j.issn.1000-7830.2018.05.002

    Ma M Z, Shao J, Yang L P, et al. A summary of prehistoric archaeology in Shaanxi from 2008 to 2017[J]. Archaeology and Cultural Relics, 2018(5): 10−40. doi: 10.3969/j.issn.1000-7830.2018.05.002
    [33]
    刘和林, 李承彪, 陈乐尧. 川西南布拖县西溪河火烈湖孢粉组合特征与距今2.2万年以来古气候分析[J]. 四川林业科技, 2003, 24(2): 1−5. doi: 10.3969/j.issn.1003-5508.2003.02.001

    Liu H L, Li C B, Chen L Y. Researches on combinative characteristics of spore-pollens and analysis of ancient climate in Huolie Lake since 22 thousand years ago[J]. Journal of Sichuan Forestry Science and Technology, 2003, 24(2): 1−5. doi: 10.3969/j.issn.1003-5508.2003.02.001
    [34]
    杨振. 榛属系统发育基因组学与平榛物种复合体的遗传分化研究[D]. 北京: 中国林业科学研究院, 2019.

    Yang Z. Phylogenomics of the genus Corylus and genetic differentiation of C. heterophylla species complex[D]. Beijing: Chinese Academy of Forestry, 2019.
    [35]
    郑浩田. 末次间冰期以来黄土堆积序列宽频带磁化率的空间特征及其古气候意义[D]. 西安: 中国科学院研究生院(地球环境研究所), 2016.

    Zheng H T. The spatial characteristics and palaeoclimatic implications of the broadband magnetic susceptibility of the loess sequence since the last interglacial[D]. Xi’an: Institute of Earth Environment, Chinese Academy of Sciences, 2016.
    [36]
    Zeng Y F, Zhang J G, Abuduhamiti B, et al. Phylogeographic patterns of the desert poplar in northwest China shaped by both geology and climatic oscillations[J]. BMC Evolutionary Biology, 2018, 18(1): 1−14. doi: 10.1186/s12862-017-1072-2
    [37]
    应凌霄, 刘晔, 陈绍田, 等. 气候变化情景下基于最大熵模型的中国西南地区清香木潜在分布格局模拟[J]. 生物多样性, 2016, 24(4): 453−461. doi: 10.17520/biods.2015246

    Ying L X, Liu Y, Chen S T, et al. Simulation of the potential range of Pistacia weinmannifolia in southwest China with climate, change based on the maximum-entropy(MaxEnt) model[J]. Biodiversity Science, 2016, 24(4): 453−461. doi: 10.17520/biods.2015246
    [38]
    王璐, 许晓岗, 李垚. 末次盛冰期以来陀螺果潜在地理分布格局变迁预测[J]. 生态学杂志, 2018, 37(1): 278−286.

    Wang L, Xu X G, Li Y. Prediction of potential geographical distribution pattern change for Melliodendron xylocarpum Handel-Mazzetti since the last glacial maximum[J]. Chinese Journal of Ecology, 2018, 37(1): 278−286.
    [39]
    管毕财, 陈微, 刘想, 等. 四照花物种分布格局模拟及冰期避难所推测[J]. 西北植物学报, 2016, 36(12): 2541−2547. doi: 10.7606/j.issn.1000-4025.2016.12.2541

    Guan B C, Chen W, Liu X, et al. Distribution pattern and glacial refugia of Cornus kousa subsp. chinensis based on MaxEnt model and GIS[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(12): 2541−2547. doi: 10.7606/j.issn.1000-4025.2016.12.2541
    [40]
    邹旭, 彭冶, 王璐, 等. 末次盛冰期以来气候变化对中国山荆子分布格局的影响[J]. 植物科学学报, 2018, 36(5): 676−686. doi: 10.11913/PSJ.2095-0837.2018.50676

    Zou X, Peng Y, Wang L, et al. Impact of climate change on the distribution pattern of Malus baccata (L. ) Borkh. in China since the last glacial maximum[J]. Plant Science Journal, 2018, 36(5): 676−686. doi: 10.11913/PSJ.2095-0837.2018.50676
    [41]
    李文庆, 徐洲锋, 史鸣明, 等. 不同气候情景下四子柳的亚洲潜在地理分布格局变化预测[J]. 生态学报, 2019, 39(9): 3224−3234.

    Li W Q, Xu Z F, Shi M M, et al. Prediction of potential geographical distribution patterns of Salix tetrasperma Roxb. in Asia under different climate scenarios[J]. Acta Ecologica Sinica, 2019, 39(9): 3224−3234.
    [42]
    姜大膀, 梁潇云. 末次盛冰期东亚气候的成因检测[J]. 第四纪研究, 2008, 28(3): 491−501. doi: 10.3321/j.issn:1001-7410.2008.03.014

    Jiang D B, Liang X Y. Attribution of east asian climate at the last glacial maximum[J]. Quaternary Sciences, 2008, 28(3): 491−501. doi: 10.3321/j.issn:1001-7410.2008.03.014
    [43]
    刘煜. 末次冰期冰盛期和中全新世中国地区气候变化的数值研究[D]. 南京: 南京信息工程大学, 2008.

    Liu Y. Simulations of climate changes over China in LGM and mid-holocene[D]. Nanjing: Nanjing University of Information Science and Technology, 2008.
    [44]
    于革, 陈星, 刘健, 等. 末次盛冰期东亚气候的模拟和诊断初探[J]. 科学通报, 1998, 45(20): 2153−2159.

    Yu G, Chen X, Liu J, et al. A preliminary study on the simulation and diagnosis of east Asian climate during the last glacial maximum[J]. Chinese Science Bulletin, 1998, 45(20): 2153−2159.
    [45]
    吕燕. 中国南方亚热带山地10−40 ka BP古植被与古气候特征探讨[D]. 南京: 南京师范大学, 2014.

    Lü Y. Discussion on the characteristics of paleovegetation and paleoclimate in the subtropical mountainous region of southern China at 10−40 ka BP[D]. Nanjing: Nanjing Normal University, 2014.
    [46]
    Tzedakis P C, Lawson I T, Frogley M R, et al. Buffered tree population changes in a quaternary refugium: evolutionary implications[J]. Science, 2002, 297: 2044−2047. doi: 10.1126/science.1073083
    [47]
    沈浪, 陈小勇, 李媛媛. 生物冰期避难所与冰期后的重新扩散[J]. 生态学报, 2002, 22(11): 1983−1990. doi: 10.3321/j.issn:1000-0933.2002.11.026

    Shen L, Chen X Y, Li Y Y. Glacial refugia and postglacial recolonization patterns of organisms[J]. Acta Ecologica Sinica, 2002, 22(11): 1983−1990. doi: 10.3321/j.issn:1000-0933.2002.11.026
    [48]
    胡忠俊, 张镱锂, 刘林山, 等. 生物避难所及其识别方法评述[J]. 生态学杂志, 2013, 32(12): 3397−3406. doi: 10.13292/j.1000-4890.2013.0518

    Hu Z J, Zhang Y L, Liu L S, et al. Refugia and their identification methods: a review[J]. Chinese Journal of Ecology, 2013, 32(12): 3397−3406. doi: 10.13292/j.1000-4890.2013.0518
    [49]
    Stewart J R, Lister A M, Barnes I, et al. Refugia revisited: individualistic responses of species in space and time[J]. Proceedings of the Royal Society B Biological Sciences, 2009, 277: 661−671.
    [50]
    赵淑君, 程捷, 尹功明, 等. 北京平原区中更新世以来的孢粉组合及其古气候意义[J]. 古地理学报, 2008, 10(6): 637−646. doi: 10.7605/gdlxb.2008.06.008

    Zhao S J, Cheng J, Yin G M, et al. Palynological assemblages and paleoclimatic significance in Beijing Plain area since the middle pleistocene[J]. Journal of Palaeogeography, 2008, 10(6): 637−646. doi: 10.7605/gdlxb.2008.06.008
    [51]
    王社江, 鹿化煜. 秦岭地区更新世黄土地层中的旧石器埋藏与环境[J]. 中国科学: 地球科学, 2016, 46(7): 881−890.

    Wang S J, Lu H Y. Taphonomic and paleoenvironmental issues of the pleistocene loessic paleolithic sites in the Qinling Mountains, central China[J]. Scientia Sinica (Terrae), 2016, 46(7): 881−890.
    [52]
    陈生云, 吴桂莉, 张得钧, 等. 高山植物条纹狭蕊龙胆的分子亲缘地理学研究[J]. 植物分类学报, 2008, 46(4): 573−585.

    Chen S Y, Wu G L, Zhang D J, et al. Molecular phylogeography of alpine plant Metagentiana striata (Gentianaceae)[J]. Journal of Systematics and Evolution, 2008, 46(4): 573−585.
    [53]
    Gao L M, Mller M, Zhang X, et al. High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam[J]. Molecular Ecology, 2007, 16(22): 4684−4698. doi: 10.1111/j.1365-294X.2007.03537.x
    [54]
    Wang F Y, Gong X, Hu C M, et al. Phylogeography of an alpine species Primula secundiflora inferred from the chloroplast DNA sequence variation[J]. Journal of Systematics and Evolution, 2008, 46(1): 13−22.
    [55]
    刘丽波. 四川螺髻山第四纪冰川与环境[D]. 大连: 辽宁师范大学, 2015.

    Liu L B. Sichuan Luoji Mountain quaternary glacier and environment[D]. Dalian: Liaoning Normal University, 2015.
    [56]
    Zhao T, Wang G, Ma Q, et al. Multilocus data reveal deep phylogenetic relationships and intercontinental biogeography of the Eurasian-North American genus Corylus (Betulaceae)[J]. Molecular Phylogenetics and Evolution, 2020, 142: 106658. doi: 10.1016/j.ympev.2019.106658
  • Related Articles

    [1]Feng Xuejing, Ma Ling, Yang Shuang, Bo Wenhao, Chen Xuexun, Pang Xiaoming. Construction of genetic transformation system of ‘Jingzao 39’ callus[J]. Journal of Beijing Forestry University, 2024, 46(10): 74-80. DOI: 10.12171/j.1000-1522.20240055
    [2]PANG Hong-dong, XIANG Lin, ZHAO Kai-ge, LI Xiang, YANG Nan, CHEN Long-qing. Genetic transformation and functional characterization of Chimonanthus praecox SAMT gene in tobacco[J]. Journal of Beijing Forestry University, 2014, 36(5): 117-122. DOI: 10.13332/j.cnki.jbfu.2014.05.019
    [3]LI Yan, ZHAO De-gang. Ipt gene promoting shoot regeneration in genetic transformation of Eucommia ulmoides Oliv[J]. Journal of Beijing Forestry University, 2011, 33(6): 90-93.
    [4]ZENG Xiao-fang, ZHAO De-gang. Factors affecting transformation of Zanthoxylum piperitum DC. var. inerme Makino via Agrobacterium tumefaciens.[J]. Journal of Beijing Forestry University, 2011, 33(6): 80-85.
    [5]ZHAO Ling-li, SHI Shao-chuan, SUN Jia-qi, ZHANG Qi-xiang, GAO Yi-ke. Transformation of ground-cover Chrysanthemum with HsfA2 gene isolated from Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2011, 33(5): 97-102.
    [6]LONG Cui, PANG Xiao-ming, CAO Guan-lin, LIU Ying, ZHANG Zhi-yi. A study on the efficient protocol for transforming MdSPDS1 gene into Populus tomentosa Carr.[J]. Journal of Beijing Forestry University, 2010, 32(5): 21-26.
    [7]YU Lai, AN Xin-min, CAO Guan-lin, CHEN Zhong, ZHANG Zhi-yi. Genetic transformation of Populus tomentosa Carr. with sterility construct of PtAP3[J]. Journal of Beijing Forestry University, 2010, 32(5): 15-20.
    [8]QIN Ai-guang, LUO Xiao-fang. Transformation of transcription factor DREB1C gene into the fast-growing black locust mediated with Agrobacterium tumefaciens[J]. Journal of Beijing Forestry University, 2007, 29(6): 29-34. DOI: 10.13332/j.1000-1522.2007.06.011
    [9]LI Hui, CHEN Xiao-yang, LI Yun, LI Wei, DING Xia. Optimization of antibiotic concentration in genetic transformation of Populus alba[J]. Journal of Beijing Forestry University, 2005, 27(5): 118-121.
    [10]GAO Li-ping, BAO Man-zhu. Optimization of Agrobacterium-mediated transformation of Rosa hybrida[J]. Journal of Beijing Forestry University, 2005, 27(4): 60-64.
  • Cited by

    Periodical cited type(8)

    1. 罗茂,关志华,颜幼春,柴莹莹,刘佳琪,张佳敏,王忠红. 模拟根际生境下青甘韭生长与品质的差异分析. 高原农业. 2025(01): 65-72+132 .
    2. 黄小辉,吴焦焦,王玉书,冯大兰,孙向阳. 不同供氮水平的核桃幼苗生长及叶绿素荧光特性. 南京林业大学学报(自然科学版). 2022(02): 119-126 .
    3. 郑伟,师筝,龙美,廖允成. 黄绿叶突变体冀麦5265yg的光合生理特性分析. 中国农业科学. 2021(21): 4539-4551 .
    4. 王佳敏,宋海燕,陈金艺,张静,李素慧,陶建平,刘锦春. 多年生黑麦草对干旱胁迫下喀斯特异质生境的生长响应策略. 生态学报. 2020(13): 4566-4572 .
    5. 王生云,陶永明,司剑华. 不同配方轻基质对鳞皮云杉生长及光合参数的影响. 浙江林业科技. 2019(02): 50-55 .
    6. 乐佳兴,田秋玲,吴焦焦,高岚,张文,刘芸. 无患子幼苗的生长和光合特性对重庆低山丘陵区不同生境的响应. 北京林业大学学报. 2019(06): 75-85 . 本站查看
    7. 戴前莉,黄小辉,黄馨,唐龙波,朱恒星. 不同生境条件下凤丹生长及光合特性比较. 西南大学学报(自然科学版). 2018(09): 53-58 .
    8. 陶永明,司剑华. 不同轻基质配方对川西云杉幼苗生长的影响. 浙江林业科技. 2017(04): 66-70 .

    Other cited types(5)

Catalog

    Article views (558) PDF downloads (71) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return