• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Fengyuan, Su Yuanhang, Liu Binhui. Response characteristics of NDVI to asymmetric diurnal temperature increase and precipitation changes during the forest growing season in Northeast China[J]. Journal of Beijing Forestry University, 2023, 45(2): 34-48. DOI: 10.12171/j.1000-1522.20210396
Citation: Zhang Fengyuan, Su Yuanhang, Liu Binhui. Response characteristics of NDVI to asymmetric diurnal temperature increase and precipitation changes during the forest growing season in Northeast China[J]. Journal of Beijing Forestry University, 2023, 45(2): 34-48. DOI: 10.12171/j.1000-1522.20210396

Response characteristics of NDVI to asymmetric diurnal temperature increase and precipitation changes during the forest growing season in Northeast China

More Information
  • Received Date: October 06, 2021
  • Revised Date: March 27, 2022
  • Accepted Date: September 20, 2022
  • Available Online: September 22, 2022
  • Published Date: February 24, 2023
  •   Objective  The vast forest zone in Northeast China is an important ecological barrier of China. In this paper, changes of growing season NDVI and its response to climate change for forest in Northeast China (northeast forest) was studied in order to provide scientific basis and guidance for forestry establishment and protection in this region under the background of diurnal asymmetric warming.
      Method  Based on the SPOT Vegetation NDVI, different vegetation types’ spatial distribution, monthly precipitation and monthly temperature data from 2000 to 2019, using trend analysis, Hurst index and coefficient correlation analysis method, this paper investigates the spatial and temporal changing characteristics of growing season NDVI and its response to climate change for forest in Northeast China under the background diurnal asymmetric increase.
      Result  (1)In recent 20 years, growing season NDVI for forest in Northeast China generally showed an increasing trend, with the growth rate of 0.035 per ten years. The mixed forest showed the highest increase rate, reached 0.037 per ten years, the broadleaved forest showed the smallest increase rate. Northeast forests are mainly improved, accounting for 55.59% of the total area. Another 43.84% of the forests remained basically unchanged, and only 0.57% of the regional forests were degraded. (2)For the whole growing season, NDVI was significantly affected by minimum temperature and precipitation, and was weakly related to maximum temperature, at the same time, minimum temperature and precipitation in the growing season showed an obvious increasing trend, and maximum temperature had no obvious change, which contributed the increase of NDVI in northeast forest during growing season obviously under the background of diurnal asymmetric warming. Different forest types had varied responses characteristics: among the three forest types, coniferous forest growth was mainly affected by minimum temperature; broadleaved forest growth was mainly affected by precipitation and minimum temperature; mixed forest growth was most sensitive to precipitation. (3)For the monthly response characteristics, the NDVI in the early growing season (from April to May) was mainly affected by the maximum temperature and the minimum temperature, and the temperature sensitivity decreased gradually with the increase of temperature. At the end of the growing season (from September to October), it was jointly controlled by the minimum temperature and precipitation, and the precipitation sensitivity was higher in the mid growing season (from June to August). The sensitivity of NDVI to precipitation and temperature showed obvious time lag characteristics. (4) Future trend analysis indicated that the forest in Northeast China will change from improvement to degradation, around 71.94% of all forest will at risk of degradation, especially in areas with severe climate change regions.
      Conclusion  Diurnal asymmetric warming and differential response of NDVI to the maximum and minimum temperature lead to the asymmetric effect of daytime and nighttime temperature on the change of NDVI for forest in Northeast China. From 2000 to 2019, the growing season NDVI for forest in Northeast China has been increasing, but will be at risk of degradation in future.
  • [1]
    吕宪国. 湿地科学研究进展及研究方向[J]. 中国科学院院刊, 2002(3): 170−172. doi: 10.3969/j.issn.1000-3045.2002.03.004

    Lü X G. A review and prospect for wetland science[J]. Bulletin of Chinese Academy of Sciences, 2002(3): 170−172. doi: 10.3969/j.issn.1000-3045.2002.03.004
    [2]
    王小霞, 刘志华, 焦珂伟. 2000—2017年东北森林NDVI时空动态及其驱动因子[J]. 生态学杂志, 2020, 39(9): 2878−2886.

    Wang X X, Liu Z H, Jiao K W. Spatiotemporal dynamics of normalized difference vegetation index (NDVI) and its drivers in forested region of Northeast China during 2000−2017[J]. Chinese Journal of Ecology, 2020, 39(9): 2878−2886.
    [3]
    陈发虎, 傅伯杰, 夏军, 等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学:地球科学, 2019, 49(11): 1659−1696.

    Chen F H, Fu B J, Xia J, et al. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects[J]. Science China Earth Sciences, 2019, 49(11): 1659−1696.
    [4]
    Pan Y D, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333: 988−993. doi: 10.1126/science.1201609
    [5]
    IPCC. Climate change 2007: synthesis report: an assessment of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2007.
    [6]
    曹云, 钱永兰, 孙应龙, 等. 基于MODIS NDVI的西南森林植被时空变化特征及其气候响应分析[J]. 生态环境学报, 2020, 29(5): 857−865.

    Cao Y, Qian Y L, Sun Y L, et al. Spatial-temporal variations of forest vegetation and climatic driving force analysis in Southwest China based on MODIS NDVI and climate data[J]. Ecology and Environmental Sciences, 2020, 29(5): 857−865.
    [7]
    张园, 袁凤辉, 王安志, 等. 2001—2018年长白山自然保护区生长季NDVI变化特征及其对气候变化的响应[J]. 应用生态学报, 2020, 31(4): 1213−1222.

    Zhang Y, Yuan F H, Wang A Z, et al. Variation characteristics of NDVI and its response to climatic change in the growing season of Changbai Mountain Nature Reserve during 2001 and 2008[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1213−1222.
    [8]
    苏京志, 温敏, 丁一汇, 等. 全球变暖趋缓研究进展[J]. 大气科学, 2016, 40(6): 1143−1153.

    Su J Z, Wen M, Ding Y H, et al. Hiatus of global warming: a review[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(6): 1143−1153.
    [9]
    秘鲁. 植被绿化对北半球中高纬度干旱半干旱区温度变化的影响[D]. 兰州: 兰州大学, 2020.

    Mi L. Impact of vegetation greening on temperature change in arid and semi-arid regions in the Northern Hemisphere[D]. Lanzhou: Lanzhou University, 2020.
    [10]
    苑丹阳, 赵慧颖, 李宗善, 等. 伊春地区红松和红皮云杉径向生长对气候变化的响应[J]. 生态学报, 2020, 40(4): 1150−1160.

    Yuan D Y, Zhao H Y, Li Z S, et al. Radial growth of Pinus koraiensis and Picea koraiensis response to climate change in Yichun City, Heilongjiang Province[J]. Acta Ecologica Sinica, 2020, 40(4): 1150−1160.
    [11]
    Zhao S D, Yan X D, Yang S H, et al. Simulating responses of Northeastern China forests to potential climate change[J]. Journal of Forestry Research, 1998, 9(3): 166−172. doi: 10.1007/BF02910063
    [12]
    苏金娟, 王晓春. 张广才岭北部三大硬阔树木生长−气候关系的时空变异[J]. 生态学报, 2017, 37(5): 1484−1495.

    Su J J, Wang X C. Spatio-temporal variations in climate-growth relationships of three hardwood tree species across the north Zhangguangcai Mountains, northeast China[J]. Acta Ecologica Sinica, 2017, 37(5): 1484−1495.
    [13]
    张佳琦, 张勃, 马彬, 等. 三江平原NDVI时空变化及其对气候变化的响应[J]. 中国沙漠, 2019, 39(3): 206−213.

    Zhang J Q, Zhang B, Ma B, et al. Spatial-temporal variation of NDVI in Sanjiang Plain and its response to climate change[J]. Journal of Desert Research, 2019, 39(3): 206−213.
    [14]
    罗玲, 王宗明, 宋开山, 等. 1982—2003年中国东北地区不同类型植被NDVI与气候因子的关系研究[J]. 西北植物学报, 2009, 29(4): 800−808. doi: 10.3321/j.issn:1000-4025.2009.04.024

    Luo L, Wang Z M, Song K S, et al. Research on the correlation between NDVI and climatic factors of different vegetations in the Northeast China[J]. Journal of Northwest Flora, 2009, 29(4): 800−808. doi: 10.3321/j.issn:1000-4025.2009.04.024
    [15]
    赵杰, 刘雪佳, 杜自强, 等. 昼夜增温速率的不对称性对新疆地区植被动态的影响[J]. 中国环境科学, 2017, 37(6): 2316−2321. doi: 10.3969/j.issn.1000-6923.2017.06.040

    Zhao J, Liu X J, Du Z Q, et al. Effect of the asymmetric diurnal-warming on vegetation dynamics in Xinjiang[J]. China Environmental Science, 2017, 37(6): 2316−2321. doi: 10.3969/j.issn.1000-6923.2017.06.040
    [16]
    神祥金, 吴正方, 杜海波. 东北地区植被NDVI变化及对气象因子的响应[J]. 东北师大学报(自然科学版), 2013, 45(1): 123−130.

    Shen X J, Wu Z F, Du H B. Variation of vegetation in the Northeast China and its response to meteorological factors[J]. Journal of Northeast University (Natural Science Edition), 2013, 45(1): 123−130.
    [17]
    刘向培, 刘烈霜, 史小康, 等. 中国东北植被动态变化及其与气候因子的关系[J]. 大气科学学报, 2015, 38(2): 222−231.

    Liu X P, Liu L S, Shi X K, et al. Dynamic variation of vegetation over Northeast China and its relationship with climate factors[J]. Transactions of Atmospheric Sciences, 2015, 38(2): 222−231.
    [18]
    史娜娜, 全占军, 韩煜, 等. 东北林草交错区植被NDVI时空特征及其与气候因子关系分析[J]. 水土保持研究, 2016, 23(5): 175−182.

    Shi N N, Quan Z J, Han Y, et al. Spatial and temporal characteristics of NDVI and its relationship with climate factors in the northeast forest grass ecotone[J]. Soil and Water Conservation Research, 2016, 23(5): 175−182.
    [19]
    罗新兰, 李英歌, 殷红, 等. 东北地区植被NDVI对不同时间尺度SPEI的响应[J]. 生态学杂志, 2020, 39(2): 412−421.

    Luo X L, Li Y G, Yin H, et al. Response of NDVI to SPEI at different temporal scales in Northeast China[J]. Chinese Journal of Ecology, 2020, 39(2): 412−421.
    [20]
    Wang J M, Xi Z X, He X J, et al. Contrasting temporal variations in responses of leaf unfolding to daytime and nighttime warming[J]. Global Change Biology, 2021, 27(20): 5084−5093. doi: 10.1111/gcb.15777
    [21]
    Easterling D R, Horton B, Jones P D, et al. Maximum and minimum temperature trends for the globe[J]. Science, 1997, 277: 364−367. doi: 10.1126/science.277.5324.364
    [22]
    Shen X J, Liu B H, Li G D, et al. Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(23): 163−179. doi: 10.1002/2014JD022326
    [23]
    王鸽, 韩琳, 张昱. 东北地区地表NDVI的时空变化规律[J]. 北京林业大学学报, 2012, 34(6): 86−91.

    Wang G, Han L, Zhang Y. Temporal variation and spatial distribution of NDVI in northeastern China[J]. Journal of Beijing Forestry University, 2012, 34(6): 86−91.
    [24]
    赵俊芳, 延晓冬, 贾根锁. 1981—2002年中国东北地区森林生态系统碳储量的模拟[J]. 应用生态学报, 2009, 20(2): 241−249.

    Zhao J F, Yan X D, Jia G S. Simulation of carbon stocks of forest ecosystems in Northeast China from 1981 to 2002[J]. Chinese Journal of Applied Ecology, 2009, 20(2): 241−249.
    [25]
    程肖侠, 延晓冬. 气候变化对中国大兴安岭森林演替动态的影响[J]. 生态学杂志, 2007, 26(8): 1277−1284.

    Cheng X X, Yan X D. Effects of global climate change on forest succession in Daxing’anling of Northeast China[J]. Chinese Journal of Ecology, 2007, 26(8): 1277−1284.
    [26]
    孙滨峰, 赵红, 逯非, 等. 东北森林带森林生态系统固碳服务空间特征及其影响因素[J]. 生态学报, 2018, 38(14): 4975−4983.

    Sun B F, Zhao H, Lu F, et al. Spatial and temporal patterns of carbon sequestration in the northeastern forest regions and its impact factors analysis[J]. Acta Ecologica Sinica, 2018, 38(14): 4975−4983.
    [27]
    Chu H S, Venevsky S, Wu C, et al. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015[J]. Science of the Total Environment, 2019, 650(2): 2051−2062.
    [28]
    包刚, 包玉海, 覃志豪, 等. 近10年蒙古高原植被覆盖变化及其对气候的季节响应[J]. 地理科学, 2013, 33(5): 613−621.

    Bao G, Bao Y H, Qin Z H, et al. Vegetation cover changes in Mongolian Plateau and its response to seasonal climate changes in recent 10 years[J]. Scientia Geographica Sinica, 2013, 33(5): 613−621.
    [29]
    神祥金, 姜明, 吕宪国, 等. 中国草本沼泽植被地上生物量及其空间分布格局[J]. 中国科学: 地球科学, 2021, 51(8): 1306−1316.

    Shen X J, Jiang M, Lü X G, et al. Aboveground biomass and its spatial distribution pattern of herbaceous marsh vegetation in China[J]. Science China Earth Sciences, 2021, 51(8): 1306−1316.
    [30]
    贾京伟, 牛健植, 蔺星娜, 等. 洋河流域NDVI时空变化及驱动力分析[J]. 北京林业大学学报, 2019, 41(2): 106−115.

    Jia J W, Niu J Z, Lin X N, et al. Temporal and spatial variations of NDVI and its driving factors in the Yanghe Watershed of northern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 106−115.
    [31]
    神祥金, 张佳琦, 吕宪国. 青藏高原沼泽湿地植被NDVI时空变化及其对气候变化的响应[J]. 生态学报, 2020, 40(18): 6259−6268.

    Shen X J, Zhang J Q, Lü X G. Spatio-temporal change of marshes NDVI and its response to climate change in the Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2020, 40(18): 6259−6268.
    [32]
    谢平, 陈广才, 雷红富. 基于Hurst系数的水文变异分析方法[J]. 应用基础与工程科学学报, 2009, 17(1): 32−39.

    Xie P, Chen G C, Lei H F. Hydrological alteration analysis method based on Hurst coefficient[J]. Journal of Basic Science and Engineering, 2009, 17(1): 32−39.
    [33]
    江田汉, 邓莲堂. Hurst指数估计中存在的若干问题: 以在气候变化研究中的应用为例[J]. 地理科学, 2004,24(2): 177−182. doi: 10.3969/j.issn.1000-0690.2004.02.008

    Jiang T H, Deng L T. Some problems in estimating a Hurst exponent: a case study of applicatings to climatic change[J]. Scientia Geographica Sinica, 2004,24(2): 177−182. doi: 10.3969/j.issn.1000-0690.2004.02.008
    [34]
    严恩萍, 林辉, 党永峰, 等. 2000—2012年京津风沙源治理区植被覆盖时空演变特征[J]. 生态学报, 2014, 34(17): 5007−5020.

    Yan E P, Lin H, Dang Y F, et al. The spatiotemporal changes of vegetation cover in Beijing-Tianjin sandstorm source control region during 2000−2012[J]. Acta Ecologica Sinica, 2014, 34(17): 5007−5020.
    [35]
    袁丽华, 蒋卫国, 申文明, 等. 2000—2010年黄河流域植被覆盖的时空变化[J]. 生态学报, 2013, 33(24): 7798−7806.

    Yuan L H, Jiang W G, Shen W M, et al. The spatiotemporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010[J]. Acta Ecologica Sincica, 2013, 33(24): 7798−7806.
    [36]
    刘炜, 焦树林, 李银久, 等. 喀斯特地表植被覆盖变化及其与气候因子相关性分析[J]. 水土保持研究, 2021, 28(3): 203−215.

    Liu W, Jiao S L, Li Y J, et al. Analysis on the correlation between vegetation cover of land surface and climatic factors in karst area[J]. Soil and Water Conservation Research, 2021, 28(3): 203−215.
    [37]
    Fensholt R, Rasmussen K, Nielsen T T, et al. Evaluation of earth observation based long term vegetation trends: intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data[J]. Remote Sensing of Environment, 2009, 113(9): 1886−1898. doi: 10.1016/j.rse.2009.04.004
    [38]
    张佳琦. 东北林草交错区NPP的时空变化特征及影响因子分析[D]. 兰州: 西北师范大学, 2019.

    Zhang J Q. Temporal and spatial variation characteristics and influencing factors of NPP in the northeast forest and grass interlaced area[D]. Lanzhou: Northwest Normal University, 2019.
    [39]
    郭金停, 胡远满, 熊在平, 等. 中国东北多年冻土区植被生长季NDVI时空变化及其对气候变化的响应[J]. 应用生态学报, 2017, 28(8): 2413−2422.

    Guo J T, Hu Y M, Xiong Z P, et al. Spatiotemporal variations of growing-season NDVI and response to climate change in permafrost zone of Northeast China[J]. Chinese Journal of Applied Ecology, 2017, 28(8): 2413−2422.
    [40]
    杨尚武, 张勃. 基于SPOT NDVI的甘肃河东植被覆盖变化及其对气候因子的响应[J]. 生态学杂志, 2014, 33(2): 455−461.

    Yang S W, Zhang B. Vegetation cover change and its response to climatic factors using SPOT NDVI in Hedong of Gansu Province[J]. Chinese Journal of Ecology, 2014, 33(2): 455−461.
    [41]
    张斯屿. 东北天然林保护工程森林态系统服务功能变化评估(1992—2015)[D]. 长春: 中国科学院东北地理与农业生态研究所, 2019.

    Zhang S Y. Change assessment of forest ecosystem services for Northeast Natural Forest Protection Project (1992−2015)[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2019.
    [42]
    张婷, 薛东剑, 段金亮, 等. 2000—2019嘉陵江流域植被覆盖时空变化特征及气候响应分析[J]. 长江流域资源与环境, 2021, 30(5): 1110−1120.

    Zhang T, Xue D J, Duan J L, et al. Spatio-temporal variation characteristics and climate response analysis of vegetation coverage in Jialing River Basin from 2000 to 2019[J]. Resources and Environment in the Yangtze Basin, 2021, 30(5): 1110−1120.
    [43]
    Hari P, Kulmala L. Boreal forest and climate change[M]. Dordrecht: Springer, 2008.
    [44]
    肖辉林. 森林衰退与全球气候变化[J]. 生态学报, 1994,14(4): 430−436.

    Xiao H L. Forest decline and the global climate change[J]. Acta Ecologica Sinica, 1994,14(4): 430−436.
    [45]
    Li M Y, Fang L D, Duan C Y, et al. Greater risk of hydraulic failure due to increased drought threatens pine plantations in Horqin Sandy Land of northern China[J/OL]. Forest Ecology and Management, 2020, 461: 117980 [2021−12−15]. https://doi.org/10.1016/j.foreco.2020.117980.
    [46]
    姚启超, 王晓春, 肖兴威. 小兴安岭红皮云杉年轮-气候关系及其衰退原因[J]. 应用生态学报, 2015, 26(7): 1935−1944.

    Yao Q C, Wang X C, Xiao X W. Climate-growth relationships of Picea koraiensis and causes of its recent decline in Xiaoxing’an Mountains, China[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 1935−1944.
    [47]
    任国玉, 周薇. 辽东半岛本世纪气温变化的初步研究[J]. 气象学报, 1994, 52(4): 493−498.

    Ren G Y, Zhou W. A preliminary study on temperature change since 1905 over Liaodong Peninsula, Northeastern China[J]. Acta Meteorologica Sinica, 1994, 52(4): 493−498.
    [48]
    金森. 气候变化对中国东北温带针阔混交林和落叶阔叶次生林影响的模型研究[D]. 哈尔滨: 东北林业大学, 2003.

    Jin S. Modeling effects of climatic changes on coniferobroadleaved forest and secondary deciduous broadleaved forest in Northeast China[D]. Harbin: Northeast Forestry University, 2003.
    [49]
    韩士杰, 王庆贵. 北方森林生态系统对全球气候变化的响应研究进展[J]. 北京林业大学学报, 2016, 38(4): 1−20.

    Han S J, Wang Q G. Response of boreal forest ecosystem to global climate change: a review[J]. Journal of Beijing Forestry University, 2016, 38(4): 1−20.
    [50]
    Piao S L, Fang J Y, Ji W, et al. Variation in a satellite-based vegetation index in relation to climate in China[J]. Journal of Vegetation Science, 2004, 15(2): 219−226. doi: 10.1658/1100-9233(2004)015[0219:VIASVI]2.0.CO;2
    [51]
    王延吉, 神祥金, 姜明. 1961—2018年长白山区不同等级降水时空变化特征[J]. 气候与环境研究, 2021, 26(2): 227−238.

    Wang Y J, Shen X J, Jiang M. Spatial-temporal variation characteristics of different grades of precipitation in Changbai Mountain from 1961 to 2018[J]. Climatic and Environmental Research, 2021, 26(2): 227−238.
    [52]
    Peng S S, Piao S L, Ciais P, et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation[J]. Nature, 2013, 501: 88−92. doi: 10.1038/nature12434
    [53]
    Shen X J, Liu B H, Li G D, et al. Impact of climate change on temperate and alpine grasslands in China during 1982−2006[J/OL]. Advances in Meteorology, 2015, 2015: 180614[2021−12−14]. https://www.hindawi.com/journals/amete/2015/180614/.
    [54]
    王丁, 杨雪, 韩鸿鹏, 等. 干旱胁迫及复水条件下刺槐(Robinia pseudoacacia L.)苗木水分运输过程中的补偿现象[J]. 干旱区资源与环境, 2015, 29(2): 61−66.

    Wang D, Yang X, Han H P, et al. Compensation effect of water transportation process in black locust (Robinia pseudoacacia L.) seedlings under the conditions of drought and rewatering[J]. Journal of Arid Land Resources and Environment, 2015, 29(2): 61−66.
    [55]
    李娅, 曾波, 叶小齐, 等. 水淹对三峡库区岸生植物秋华柳(Salix variegata Franch.)存活和恢复生长的影响[J]. 生态学报, 2008, 28(5): 1923−1930.

    Li Y, Zeng B, Ye X Q, et al. The effects of flooding on survival and recovery growth of the riparian plant Salix variegate Franch. in Three Gorges Reservoir Region[J]. Acta Ecologica Sincica, 2008, 28(5): 1923−1930.
    [56]
    胡田田, 康绍忠. 植物抗旱性中的补偿效应及其在农业节水中的应用[J]. 生态学报, 2005, 25(4): 885−891. doi: 10.3321/j.issn:1000-0933.2005.04.034

    Hu T T, Kang S Z. The compensatory effect in drought resistance of plants and its application in water-saving agriculture[J]. Acta Ecologica Sinica, 2005, 25(4): 885−891. doi: 10.3321/j.issn:1000-0933.2005.04.034
    [57]
    赵威, 王征宏. 植物的补偿性生长[J]. 生物学通报, 2008, 43(3): 12−13. doi: 10.3969/j.issn.0006-3193.2008.03.005

    Zhao W, Wang Z H. Compensatory growth of plant[J]. Bulletin of Biology, 2008, 43(3): 12−13. doi: 10.3969/j.issn.0006-3193.2008.03.005
    [58]
    朱军涛, 郑家禾. 昼夜不对称变暖对陆地生态系统的影响[J]. 生态学杂志, 2022, 41(4): 777−783. doi: 10.13292/j.1000-4890.202203.001

    Zhu J T, Zheng J H. Effects of diurnal asymmetric warming on terrestrial ecosystems[J]. Chinese Journal of Ecology, 2022, 41(4): 777−783. doi: 10.13292/j.1000-4890.202203.001
    [59]
    Cong N, Shen M G, Yang W, et al. Varying responses of vegetation activity to climate changes on the Tibetan Plateau Grassland[J]. International Journal of Biometeorology, 2017, 61(8): 1433−1444.
    [60]
    谢胜金, 刘永和, 姚风欣. 1998—2015年北京市NDVI时空变化及其与气候因子的响应关系[J]. 水土保持研究, 2020, 27(3): 190−196, 202.

    Xie S J, Liu Y H, Yao F X. Spatial-temporal characteristics of NDVI and its relationship with climate change in Beijing from 1998 to 2015[J]. Research of Soil and Water Conservation, 2020, 27(3): 190−196, 202.
    [61]
    刘正才, 屈瑶瑶. 基于SPOT-VGT数据的湖南省植被变化及其对气候变化的响应[J]. 北京林业大学学报, 2019, 41(2): 80−87.

    Liu Z C, Qu Y Y. Vegetation change and its response to climate change based on SPOT-VGT in Hunan Province of southern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 80−87.
    [62]
    康剑, 蒋少伟, 黄建国. 阿尔泰山萨彦岭4种优势树种径向生长对气候因子的响应[J]. 生态学报, 2020, 40(17): 6135−6146.

    Kang J, Jiang S W, Huang J G. Radial growth response of four dominant tree species to climate factors in the Sayan Range of the Altai Mountains, Russia[J]. Acta Ecologica Sinica, 2020, 40(17): 6135−6146.
    [63]
    Wang X C, Pederson N, Chen Z J, et al. Recent rising temperatures drive younger and southern Korean pine growth decline[J]. Science of the Total Environment, 2019, 649: 1105−1116. doi: 10.1016/j.scitotenv.2018.08.393
    [64]
    鲍安, 杨立学, 刘滨辉. 老爷岭红松和胡桃楸径向生长对气候变化的响应[J]. 东北林业大学学报, 2019, 47(12): 16−21.

    Bao A, Yang L X, Liu B H. Radial growth of Pinus koraiensis and Juglans mandshurica in response to climate change in Laoyeling Mountains[J]. Journal of Northeast Forestry University, 2019, 47(12): 16−21.
  • Related Articles

    [1]Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022
    [2]He Xin, Ma Wenxu, Zhao Tiantian, Yang Xiaohong, Ma Qinghua, Liang Lisong, Wang Guixi, Yang Zhen. Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial[J]. Journal of Beijing Forestry University, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350
    [3]Zhou Yuting, Ge Xuezhen, Zou Ya, Guo Siwei, Wang Tao, Tao Jing, Zong Shixiang. Prediction of the potential geographical distribution of Hylurgus ligniperda at the global scale and in China using the Maxent model[J]. Journal of Beijing Forestry University, 2022, 44(11): 90-99. DOI: 10.12171/j.1000-1522.20210345
    [4]Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360
    [5]Wang Yanjun, Gao Tai, Shi Juan. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt[J]. Journal of Beijing Forestry University, 2021, 43(9): 59-69. DOI: 10.12171/j.1000-1522.20200416
    [6]Huang Ruizhi, Yu Tao, Zhao Hui, Zhang Shengkai, Jing Yang, Li Junqing. Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33-43. DOI: 10.12171/j.1000-1522.20200254
    [7]Huang Mengyi, Zhao Jiaqiang, Shi Juan. Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt[J]. Journal of Beijing Forestry University, 2020, 42(11): 64-71. DOI: 10.12171/j.1000-1522.20190053
    [8]Yang Furong, Qi Yaodong, Liu Haitao, Xie Caixiang, Song Jingyuan. Global potential suitable area and ecological characteristics of Moringa oleifera[J]. Journal of Beijing Forestry University, 2020, 42(10): 45-54. DOI: 10.12171/j.1000-1522.20190375
    [9]ZHANG Chao, CHEN Lei, TIAN Cheng-ming, LI Tao, WANG Rong, YANG Qi-qing. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5): 23-32. DOI: 10.13332/j.1000-1522.20150516
    [10]SONG Yan, JI Jing-jun, ZHU Lin-hong, ZHANG Shi-ying. Characteristics of Asian-African summer monsoon pre-and post-global warming in mid-1980s[J]. Journal of Beijing Forestry University, 2007, 29(2): 24-33.
  • Cited by

    Periodical cited type(2)

    1. 韩蓉,马燕,敖羽,张婷,孟新涛,许铭强,潘俨. 基于多元分析法综合评价新疆不同品种大果沙棘汁品质特性及加工适宜性. 食品工业科技. 2025(03): 322-332 .
    2. 李元朝,黎勤吉,郭玉琼,郝志龙,金珊. 枸杞茶感官审评方法的建立及其主要呈香物质的探索. 食品工业科技. 2025(04): 30-41 .

    Other cited types(0)

Catalog

    Article views (1052) PDF downloads (158) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return