• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Yunke, Li Zhenxin, Zhang Yutong, Yi Qirui, Ma Erni. Water-induced effects of matrix in wood cell wall on cellulose crystalline structure[J]. Journal of Beijing Forestry University, 2022, 44(12): 121-131. DOI: 10.12171/j.1000-1522.20220150
Citation: Li Yunke, Li Zhenxin, Zhang Yutong, Yi Qirui, Ma Erni. Water-induced effects of matrix in wood cell wall on cellulose crystalline structure[J]. Journal of Beijing Forestry University, 2022, 44(12): 121-131. DOI: 10.12171/j.1000-1522.20220150

Water-induced effects of matrix in wood cell wall on cellulose crystalline structure

More Information
  • Received Date: April 17, 2022
  • Revised Date: October 23, 2022
  • Accepted Date: October 25, 2022
  • Available Online: October 27, 2022
  • Published Date: December 24, 2023
  •   Objective  To investigate changes in the crystalline structure of cellulose in wood cell wall induced by water, matrix (lignin and hemicellulose) removals at various degrees by mild method were conducted, and effects on cellulose crystalline structure as well as its interaction with matrix under typical water states (oven-dried, approximate fiber saturation point and water-saturated state) were discussed.
      Method  Poplar (Populus euromericans) wood was chosen as the research object. Specimens of chips (20 mm (longitudinal) × 3 mm (radial) × 20 mm (tangential)) were subjected to matrix removal at room temperature, where CH3COOH/NaClO2 solution was used to remove lignin, and NaOH was used to remove hemicellulose, to obtain samples at different removal ratios of lignin, hemicellulose and both matrix. Water states of treated and untreated specimens were conditioned to oven-dried, approximate fiber saturation point and water-saturated state, and X-ray diffraction technology was applied to detect the diffraction peak positions (2θ) of (200), (1-10) and (110) for analyzing the lattice spacing.
      Result  The (200) peaks of the oven-dried specimens were changed when the matrix was removed, and the (200) lattice spacing tended to decrease with the increase of matrix removal ratio; the (200) lattice spacing of each group of specimens reduced with increasing water content, and for the specimens removed lignin or hemicellulose, the reduction in lattice spacing at the approximate fiber saturation point accounted for a larger percentage of that at the saturated state; with an increase in water content of the specimens, (1-10) and (110) peaks tended to separate.
      Conclusion  At oven-dried condition, cell wall matrix of wood exerts tensile stress on the cellulose; change in physical and chemical environments of the wood cell wall affects the interaction between matrix and water. The swelling of matrix due to water entering caused tension on the cellulose crystal structure to release, which mainly induced by the water in cell wall and acts primarily on the (200) lattice planes.
  • [1]
    刘一星, 赵广杰. 木材学[M]. 北京: 中国林业出版社, 2012.

    Liu Y X, Zhao G J. Wood science[M]. Beijing: China Forestry Publishing House, 2012.
    [2]
    杨蕊, 韩景泉, 兰平, 等. 生物质纤维素结晶度的研究进展[J]. 木材加工机械, 2018, 29(4): 29−35. doi: 10.13594/j.cnki.mcjgjx.2018.04.008

    Yang R, Han J Q, Lan P, et al. Research progress on cellulose crystalline of biomass materials[J]. Wood Processing Machinery, 2018, 29(4): 29−35. doi: 10.13594/j.cnki.mcjgjx.2018.04.008
    [3]
    Kulasinski K, Guyer R, Derome D, et al. Water adsorption in wood microfibril-hemicellulose system: role of the crystalline-amorphous interface[J]. Biomacromolecules, 2015, 16(9): 2972−2978. doi: 10.1021/acs.biomac.5b00878
    [4]
    Abe K, Yamamoto H. Mechanical interaction between cellulose microfibril and matrix substance in wood cell wall determined by X-ray diffraction[J]. Journal of Wood Science, 2005, 51(4): 334−338. doi: 10.1007/s10086-004-0667-6
    [5]
    Abe K, Yamamoto H. Change in mechanical interaction between cellulose microfibril and matrix substance in wood cell wall induced by hygrothermal treatment[J]. Journal of Wood Science, 2006, 52(2): 107−110. doi: 10.1007/s10086-005-0738-3
    [6]
    Zabler S, Paris O, Burgert I, et al. Moisture changes in the plant cell wall force cellulose crystallites to deform[J]. Journal of Structural Biology, 2010, 171(2): 133−141. doi: 10.1016/j.jsb.2010.04.013
    [7]
    Inagaki T, Siesler H W, Mitsui K, et al. Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study[J]. Biomacromolecules, 2010, 11(9): 2300−2305. doi: 10.1021/bm100403y
    [8]
    Toba K, Yamamoto H, Yoshida M. Mechanical interaction between cellulose microfibrils and matrix substances in wood cell walls induced by repeated wet-and-dry treatment[J]. Cellulose, 2012, 19(4): 1405−1412. doi: 10.1007/s10570-012-9700-x
    [9]
    Toba K, Yamamoto H, Yoshida M. Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatment, using X-ray diffraction technique[J]. Cellulose, 2013, 20(2): 633−643. doi: 10.1007/s10570-012-9853-7
    [10]
    Alméras T, Gronvold A, van der Lee A, et al. Contribution of cellulose to the moisture-dependent elastic behaviour of wood[J]. Composites Science and Technology, 2017, 138: 151−160. doi: 10.1016/j.compscitech.2016.11.025
    [11]
    Agarwal U P, Ralph S A, Baez C, et al. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size[J]. Cellulose, 2017, 24(5): 1971−1984. doi: 10.1007/s10570-017-1259-0
    [12]
    Salmén L, Stevanic J S, Holmqvist C, et al. Moisture induced straining of the cellulosic microfibril[J]. Cellulose, 2021, 28(6): 3347−3357. doi: 10.1007/s10570-021-03712-1
    [13]
    梁永信, 马永轩, 王德洪. X射线衍射法研究木材纤维结晶度[J]. 东北林业大学学报, 1986, 14(增刊 3): 12−15. doi: 10.13759/j.cnki.dlxb.1986.s3.003

    Liang Y X, Ma Y X, Wang D H. Studise on crystallinity in wood cellulose with X-ray diffraction method[J]. Journal of Northeast Forestry University, 1986, 14(Suppl. 3): 12−15. doi: 10.13759/j.cnki.dlxb.1986.s3.003
    [14]
    李新宇, 张明辉. 利用X射线衍射法探究木材含水率与结晶度的关系[J]. 东北林业大学学报, 2014, 42(2): 96−99. doi: 10.3969/j.issn.1000-5382.2014.02.023

    Li X Y, Zhang M H. Relationship of wood moisture content and the degree of crystallinity by X-ray diffraction[J]. Journal of Northeast Forestry University, 2014, 42(2): 96−99. doi: 10.3969/j.issn.1000-5382.2014.02.023
    [15]
    谢满华. 化学处理木材的应力松弛[D]. 北京: 北京林业大学, 2006.

    Xie M H. Stress relaxation of chemically treated wood[D]. Beijing: Beijing Forestry University, 2006.
    [16]
    Hill S J, Kirby N M, Mudie S T, et al. Effect of drying and rewetting of wood on cellulose molecular packing[J]. Holzforschung, 2010, 64(4): 421−427.
    [17]
    Atalla R S, Crowley M F, Himmel M E, et al. Irreversible transformations of native celluloses, upon exposure to elevated temperatures[J]. Carbohydrate Polymers, 2014, 100: 2−8. doi: 10.1016/j.carbpol.2013.06.007
    [18]
    Babiak M, Kúdela J. A contribution to the definition of the fiber saturation point[J]. Wood Science and Technology, 1995, 29(3): 217−226.
    [19]
    Li J, Ma E, Yang T. Differences between hygroscopicity limit and cell wall saturation investigated by LF-NMR on southern pine (Pinus spp.)[J]. Holzforschung, 2019, 73(10): 911−921. doi: 10.1515/hf-2018-0257
    [20]
    仲翔, 张少军, 马尔妮. 不同含水率状态下木材细胞壁孔径分布变化[J]. 北京林业大学学报, 2021, 43(11): 128−136. doi: 10.12171/j.1000-1522.20210260

    Zhong X, Zhang S J, Ma E N. Variation in pore size distribution of wood cell wall under different moisture states[J]. Journal of Beijing Forestry University, 2021, 43(11): 128−136. doi: 10.12171/j.1000-1522.20210260
    [21]
    Cresswell R, Dupree R, Brown S P, et al. Importance of water in maintaining softwood secondary cell wall nanostructure[J]. Biomacromolecules, 2021, 22(11): 4669−4680. doi: 10.1021/acs.biomac.1c00937
    [22]
    Paajanen A, Zitting A, Rautkari L, et al. Nanoscale mechanism of moisture-induced swelling in wood microfibril bundles[J]. Nano Letters, 2022, 22(13): 5143−5150. doi: 10.1021/acs.nanolett.2c00822
    [23]
    Salmén L. On the organization of hemicelluloses in the wood cell wall[J]. Cellulose, 2022, 29(3): 1349−1355. doi: 10.1007/s10570-022-04425-9
    [24]
    Yang T, Ma E, Cao J. Synergistic effects of partial hemicellulose removal and furfurylation on improving the dimensional stability of poplar wood tested under dynamic condition[J]. Industrial Crops and Products, 2019, 139: 111550−111557. doi: 10.1016/j.indcrop.2019.111550
    [25]
    中户莞二. 木材の空隙構造(木質材料小特集)[J]. 材料, 1973, 241(22): 903−907.

    Nakajima Y. Void construction of wood[J]. Material, 1973, 241(22): 903−907.
    [26]
    赵广杰. 木材中的纳米尺度、纳米木材及木材–无机纳米复合材料[J]. 北京林业大学学报, 2002, 24(5/6): 204−207.

    Zhao G J. Nano-dimensions in wood, nano-wood, wood and inorganic nano-composites[J]. Journal of Beijing Forestry University, 2002, 24(5/6): 204−207.
    [27]
    刘文静, 张玉君. 细胞壁空隙对木材性能及加工利用的影响[J]. 世界林业研究, 2021, 34(2): 44−48. doi: 10.13348/j.cnki.sjlyyj.2020.0101.y

    Liu W J, Zhang Y J. Effects of pore structure in cell wall on wood properties and processing utilization[J]. World Forestry Research, 2021, 34(2): 44−48. doi: 10.13348/j.cnki.sjlyyj.2020.0101.y
    [28]
    Yang T, Wang J, Xu J, et al. Hygroscopicity and dimensional stability of Populus euramericana cv. modified by furfurylation combined with low hemicellulose pretreatment[J]. Journal of Materials Science, 2019, 54(20): 13445−13456. doi: 10.1007/s10853-019-03839-4
    [29]
    Yang T, Cao J, Ma E. How does delignification influence the furfurylation of wood?[J]. Industrial Crops and Products, 2019, 135: 91−98. doi: 10.1016/j.indcrop.2019.04.019
    [30]
    Liang R, Zhu Y, Wen L, et al. Exploration of effect of delignification on the mesopore structure in poplar cell wall by nitrogen absorption method[J]. Cellulose, 2020, 27(4): 1921−1932. doi: 10.1007/s10570-019-02921-z
    [31]
    Jang E, Kang C. Delignification effects on Indonesian momala (Homalium foetidum) and Korean red toon (Toona sinensis) hardwood pore structure and sound absorption capabilities[J]. Materials, 2021, 14(18): 5215−5225. doi: 10.3390/ma14185215
    [32]
    Kumar A, Jyske T, Petrič M. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: a review[J]. Advanced Sustainable Systems, 2021, 5(5): 2000251−2000295. doi: 10.1002/adsu.202000251
  • Related Articles

    [1]Zhang Yue, Li Chao, Guo-Ye Yingzi, Zhao Guangjie. Research development on human psychological and physiological responses to visual stimulation of wood[J]. Journal of Beijing Forestry University, 2022, 44(6): 156-166. DOI: 10.12171/j.1000-1522.20210365
    [2]Li Wanzhao, Zhang Zheng, Peng Junyi, Wang Xinzhou, Shi Jiangtao, Mei Changtong. Exploring the internal deformation of wood under loading based on X-ray CT[J]. Journal of Beijing Forestry University, 2021, 43(2): 160-164. DOI: 10.12171/j.1000-1522.20200290
    [3]Wu Yuhui, Zhang Shaodi, Ren Zizhong, Wang Mingzhi. Flame retardant properties of phytic acid and melamine treated wood[J]. Journal of Beijing Forestry University, 2020, 42(4): 155-161. DOI: 10.12171/j.1000-1522.20190406
    [4]LI Gai-yun, JIANG Ze-hui, REN Hai-qing, QIN Te-fu.. Relation of chemical components of brownrotted wood and its liquefaction characteristics[J]. Journal of Beijing Forestry University, 2009, 31(1): 113-119.
    [5]LI Xian-jun, ZHANG Bi-guang, LI Wen-jun, ZHOU Yong-dong. Mathematical modeling of wood microwavevacuum drying[J]. Journal of Beijing Forestry University, 2008, 30(2): 124-128.
    [6]CHENG Wan-li, LIU Yi-xing, Toshiro Morooka. Tensile stress relaxation of wood under high temperature and pressurized steam[J]. Journal of Beijing Forestry University, 2007, 29(4): 84-89. DOI: 10.13332/j.1000-1522.2007.04.020
    [7]LI Xian-jun, ZHANG Bi-guang, LI Wen-jun, LI Yan-jun. Temperature distribution inside wood during microwave-vacuum drying[J]. Journal of Beijing Forestry University, 2006, 28(6): 128-131.
    [8]MA Er-ni, ZHAO Guang-jie. Hygroexpansion of wood: From equilibrious state to non-equilibrious state[J]. Journal of Beijing Forestry University, 2006, 28(5): 133-138.
    [9]CAO Jin-zhen, D.Pascal Kamdem. Surface energy of wood treated with water-borne wood preservatives[J]. Journal of Beijing Forestry University, 2006, 28(4): 1-5.
    [10]LI Xian-jun, WU Qing-li, JIANG Wei, ZHANG Bi-guang. Mechanism of moisture movement in wood during microwave-vacuum drying[J]. Journal of Beijing Forestry University, 2006, 28(3): 150-153.
  • Cited by

    Periodical cited type(6)

    1. 刘芮,王振兴,张文静,张生德,张清华. 储热材料研究现状及相变储热研究进展. 电机与控制应用. 2024(02): 44-60 .
    2. 陈松武,黄海英,禤示青,刘晓玲,陈桂丹,王浏浏. “双碳”背景下木材加工产业的发展重点与方向的研讨. 浙江林业科技. 2024(04): 112-116 .
    3. 韦溶军,王志闯,王雪纯,王婷欢,王振宇,何正斌,伊松林. 锡铋合金/肉豆蔻酸制备具有金属外壳的储能木材. 北京林业大学学报. 2024(08): 25-33 . 本站查看
    4. 庞群艳,胡纲正,李文轩,贺磊,邱竑韫,黄慧,何文. 纳米铜热处理竹材制备及其防霉性能. 林业工程学报. 2024(06): 37-43 .
    5. 鲍伟,王胜捷,蒲万兴,宋子豪. 复合相变材料导热性能与套管式相变储热单元翅片结构优化. 农业工程学报. 2024(23): 303-312 .
    6. 何林韩,刘晓玲,陈松武,罗玉芬,王浏浏. 木质基复合相变材料的研究现状与发展趋势. 化工新型材料. 2023(S2): 525-531 .

    Other cited types(1)

Catalog

    Article views (752) PDF downloads (97) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return