Citation: | Li Yunke, Li Zhenxin, Zhang Yutong, Yi Qirui, Ma Erni. Water-induced effects of matrix in wood cell wall on cellulose crystalline structure[J]. Journal of Beijing Forestry University, 2022, 44(12): 121-131. DOI: 10.12171/j.1000-1522.20220150 |
[1] |
刘一星, 赵广杰. 木材学[M]. 北京: 中国林业出版社, 2012.
Liu Y X, Zhao G J. Wood science[M]. Beijing: China Forestry Publishing House, 2012.
|
[2] |
杨蕊, 韩景泉, 兰平, 等. 生物质纤维素结晶度的研究进展[J]. 木材加工机械, 2018, 29(4): 29−35. doi: 10.13594/j.cnki.mcjgjx.2018.04.008
Yang R, Han J Q, Lan P, et al. Research progress on cellulose crystalline of biomass materials[J]. Wood Processing Machinery, 2018, 29(4): 29−35. doi: 10.13594/j.cnki.mcjgjx.2018.04.008
|
[3] |
Kulasinski K, Guyer R, Derome D, et al. Water adsorption in wood microfibril-hemicellulose system: role of the crystalline-amorphous interface[J]. Biomacromolecules, 2015, 16(9): 2972−2978. doi: 10.1021/acs.biomac.5b00878
|
[4] |
Abe K, Yamamoto H. Mechanical interaction between cellulose microfibril and matrix substance in wood cell wall determined by X-ray diffraction[J]. Journal of Wood Science, 2005, 51(4): 334−338. doi: 10.1007/s10086-004-0667-6
|
[5] |
Abe K, Yamamoto H. Change in mechanical interaction between cellulose microfibril and matrix substance in wood cell wall induced by hygrothermal treatment[J]. Journal of Wood Science, 2006, 52(2): 107−110. doi: 10.1007/s10086-005-0738-3
|
[6] |
Zabler S, Paris O, Burgert I, et al. Moisture changes in the plant cell wall force cellulose crystallites to deform[J]. Journal of Structural Biology, 2010, 171(2): 133−141. doi: 10.1016/j.jsb.2010.04.013
|
[7] |
Inagaki T, Siesler H W, Mitsui K, et al. Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study[J]. Biomacromolecules, 2010, 11(9): 2300−2305. doi: 10.1021/bm100403y
|
[8] |
Toba K, Yamamoto H, Yoshida M. Mechanical interaction between cellulose microfibrils and matrix substances in wood cell walls induced by repeated wet-and-dry treatment[J]. Cellulose, 2012, 19(4): 1405−1412. doi: 10.1007/s10570-012-9700-x
|
[9] |
Toba K, Yamamoto H, Yoshida M. Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatment, using X-ray diffraction technique[J]. Cellulose, 2013, 20(2): 633−643. doi: 10.1007/s10570-012-9853-7
|
[10] |
Alméras T, Gronvold A, van der Lee A, et al. Contribution of cellulose to the moisture-dependent elastic behaviour of wood[J]. Composites Science and Technology, 2017, 138: 151−160. doi: 10.1016/j.compscitech.2016.11.025
|
[11] |
Agarwal U P, Ralph S A, Baez C, et al. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size[J]. Cellulose, 2017, 24(5): 1971−1984. doi: 10.1007/s10570-017-1259-0
|
[12] |
Salmén L, Stevanic J S, Holmqvist C, et al. Moisture induced straining of the cellulosic microfibril[J]. Cellulose, 2021, 28(6): 3347−3357. doi: 10.1007/s10570-021-03712-1
|
[13] |
梁永信, 马永轩, 王德洪. X射线衍射法研究木材纤维结晶度[J]. 东北林业大学学报, 1986, 14(增刊 3): 12−15. doi: 10.13759/j.cnki.dlxb.1986.s3.003
Liang Y X, Ma Y X, Wang D H. Studise on crystallinity in wood cellulose with X-ray diffraction method[J]. Journal of Northeast Forestry University, 1986, 14(Suppl. 3): 12−15. doi: 10.13759/j.cnki.dlxb.1986.s3.003
|
[14] |
李新宇, 张明辉. 利用X射线衍射法探究木材含水率与结晶度的关系[J]. 东北林业大学学报, 2014, 42(2): 96−99. doi: 10.3969/j.issn.1000-5382.2014.02.023
Li X Y, Zhang M H. Relationship of wood moisture content and the degree of crystallinity by X-ray diffraction[J]. Journal of Northeast Forestry University, 2014, 42(2): 96−99. doi: 10.3969/j.issn.1000-5382.2014.02.023
|
[15] |
谢满华. 化学处理木材的应力松弛[D]. 北京: 北京林业大学, 2006.
Xie M H. Stress relaxation of chemically treated wood[D]. Beijing: Beijing Forestry University, 2006.
|
[16] |
Hill S J, Kirby N M, Mudie S T, et al. Effect of drying and rewetting of wood on cellulose molecular packing[J]. Holzforschung, 2010, 64(4): 421−427.
|
[17] |
Atalla R S, Crowley M F, Himmel M E, et al. Irreversible transformations of native celluloses, upon exposure to elevated temperatures[J]. Carbohydrate Polymers, 2014, 100: 2−8. doi: 10.1016/j.carbpol.2013.06.007
|
[18] |
Babiak M, Kúdela J. A contribution to the definition of the fiber saturation point[J]. Wood Science and Technology, 1995, 29(3): 217−226.
|
[19] |
Li J, Ma E, Yang T. Differences between hygroscopicity limit and cell wall saturation investigated by LF-NMR on southern pine (Pinus spp.)[J]. Holzforschung, 2019, 73(10): 911−921. doi: 10.1515/hf-2018-0257
|
[20] |
仲翔, 张少军, 马尔妮. 不同含水率状态下木材细胞壁孔径分布变化[J]. 北京林业大学学报, 2021, 43(11): 128−136. doi: 10.12171/j.1000-1522.20210260
Zhong X, Zhang S J, Ma E N. Variation in pore size distribution of wood cell wall under different moisture states[J]. Journal of Beijing Forestry University, 2021, 43(11): 128−136. doi: 10.12171/j.1000-1522.20210260
|
[21] |
Cresswell R, Dupree R, Brown S P, et al. Importance of water in maintaining softwood secondary cell wall nanostructure[J]. Biomacromolecules, 2021, 22(11): 4669−4680. doi: 10.1021/acs.biomac.1c00937
|
[22] |
Paajanen A, Zitting A, Rautkari L, et al. Nanoscale mechanism of moisture-induced swelling in wood microfibril bundles[J]. Nano Letters, 2022, 22(13): 5143−5150. doi: 10.1021/acs.nanolett.2c00822
|
[23] |
Salmén L. On the organization of hemicelluloses in the wood cell wall[J]. Cellulose, 2022, 29(3): 1349−1355. doi: 10.1007/s10570-022-04425-9
|
[24] |
Yang T, Ma E, Cao J. Synergistic effects of partial hemicellulose removal and furfurylation on improving the dimensional stability of poplar wood tested under dynamic condition[J]. Industrial Crops and Products, 2019, 139: 111550−111557. doi: 10.1016/j.indcrop.2019.111550
|
[25] |
中户莞二. 木材の空隙構造(木質材料小特集)[J]. 材料, 1973, 241(22): 903−907.
Nakajima Y. Void construction of wood[J]. Material, 1973, 241(22): 903−907.
|
[26] |
赵广杰. 木材中的纳米尺度、纳米木材及木材–无机纳米复合材料[J]. 北京林业大学学报, 2002, 24(5/6): 204−207.
Zhao G J. Nano-dimensions in wood, nano-wood, wood and inorganic nano-composites[J]. Journal of Beijing Forestry University, 2002, 24(5/6): 204−207.
|
[27] |
刘文静, 张玉君. 细胞壁空隙对木材性能及加工利用的影响[J]. 世界林业研究, 2021, 34(2): 44−48. doi: 10.13348/j.cnki.sjlyyj.2020.0101.y
Liu W J, Zhang Y J. Effects of pore structure in cell wall on wood properties and processing utilization[J]. World Forestry Research, 2021, 34(2): 44−48. doi: 10.13348/j.cnki.sjlyyj.2020.0101.y
|
[28] |
Yang T, Wang J, Xu J, et al. Hygroscopicity and dimensional stability of Populus euramericana cv. modified by furfurylation combined with low hemicellulose pretreatment[J]. Journal of Materials Science, 2019, 54(20): 13445−13456. doi: 10.1007/s10853-019-03839-4
|
[29] |
Yang T, Cao J, Ma E. How does delignification influence the furfurylation of wood?[J]. Industrial Crops and Products, 2019, 135: 91−98. doi: 10.1016/j.indcrop.2019.04.019
|
[30] |
Liang R, Zhu Y, Wen L, et al. Exploration of effect of delignification on the mesopore structure in poplar cell wall by nitrogen absorption method[J]. Cellulose, 2020, 27(4): 1921−1932. doi: 10.1007/s10570-019-02921-z
|
[31] |
Jang E, Kang C. Delignification effects on Indonesian momala (Homalium foetidum) and Korean red toon (Toona sinensis) hardwood pore structure and sound absorption capabilities[J]. Materials, 2021, 14(18): 5215−5225. doi: 10.3390/ma14185215
|
[32] |
Kumar A, Jyske T, Petrič M. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: a review[J]. Advanced Sustainable Systems, 2021, 5(5): 2000251−2000295. doi: 10.1002/adsu.202000251
|
[1] | Zhang Yue, Li Chao, Guo-Ye Yingzi, Zhao Guangjie. Research development on human psychological and physiological responses to visual stimulation of wood[J]. Journal of Beijing Forestry University, 2022, 44(6): 156-166. DOI: 10.12171/j.1000-1522.20210365 |
[2] | Li Wanzhao, Zhang Zheng, Peng Junyi, Wang Xinzhou, Shi Jiangtao, Mei Changtong. Exploring the internal deformation of wood under loading based on X-ray CT[J]. Journal of Beijing Forestry University, 2021, 43(2): 160-164. DOI: 10.12171/j.1000-1522.20200290 |
[3] | Wu Yuhui, Zhang Shaodi, Ren Zizhong, Wang Mingzhi. Flame retardant properties of phytic acid and melamine treated wood[J]. Journal of Beijing Forestry University, 2020, 42(4): 155-161. DOI: 10.12171/j.1000-1522.20190406 |
[4] | LI Gai-yun, JIANG Ze-hui, REN Hai-qing, QIN Te-fu.. Relation of chemical components of brownrotted wood and its liquefaction characteristics[J]. Journal of Beijing Forestry University, 2009, 31(1): 113-119. |
[5] | LI Xian-jun, ZHANG Bi-guang, LI Wen-jun, ZHOU Yong-dong. Mathematical modeling of wood microwavevacuum drying[J]. Journal of Beijing Forestry University, 2008, 30(2): 124-128. |
[6] | CHENG Wan-li, LIU Yi-xing, Toshiro Morooka. Tensile stress relaxation of wood under high temperature and pressurized steam[J]. Journal of Beijing Forestry University, 2007, 29(4): 84-89. DOI: 10.13332/j.1000-1522.2007.04.020 |
[7] | LI Xian-jun, ZHANG Bi-guang, LI Wen-jun, LI Yan-jun. Temperature distribution inside wood during microwave-vacuum drying[J]. Journal of Beijing Forestry University, 2006, 28(6): 128-131. |
[8] | MA Er-ni, ZHAO Guang-jie. Hygroexpansion of wood: From equilibrious state to non-equilibrious state[J]. Journal of Beijing Forestry University, 2006, 28(5): 133-138. |
[9] | CAO Jin-zhen, D.Pascal Kamdem. Surface energy of wood treated with water-borne wood preservatives[J]. Journal of Beijing Forestry University, 2006, 28(4): 1-5. |
[10] | LI Xian-jun, WU Qing-li, JIANG Wei, ZHANG Bi-guang. Mechanism of moisture movement in wood during microwave-vacuum drying[J]. Journal of Beijing Forestry University, 2006, 28(3): 150-153. |
1. |
刘芮,王振兴,张文静,张生德,张清华. 储热材料研究现状及相变储热研究进展. 电机与控制应用. 2024(02): 44-60 .
![]() | |
2. |
陈松武,黄海英,禤示青,刘晓玲,陈桂丹,王浏浏. “双碳”背景下木材加工产业的发展重点与方向的研讨. 浙江林业科技. 2024(04): 112-116 .
![]() | |
3. |
韦溶军,王志闯,王雪纯,王婷欢,王振宇,何正斌,伊松林. 锡铋合金/肉豆蔻酸制备具有金属外壳的储能木材. 北京林业大学学报. 2024(08): 25-33 .
![]() | |
4. |
庞群艳,胡纲正,李文轩,贺磊,邱竑韫,黄慧,何文. 纳米铜热处理竹材制备及其防霉性能. 林业工程学报. 2024(06): 37-43 .
![]() | |
5. |
鲍伟,王胜捷,蒲万兴,宋子豪. 复合相变材料导热性能与套管式相变储热单元翅片结构优化. 农业工程学报. 2024(23): 303-312 .
![]() | |
6. |
何林韩,刘晓玲,陈松武,罗玉芬,王浏浏. 木质基复合相变材料的研究现状与发展趋势. 化工新型材料. 2023(S2): 525-531 .
![]() |