• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Chenxi, Wei Xing, Tang Jingwen, Cheng Xin, Liu Jing, Peng Zhenglin, Su Anran, Su Jiaxi, Wu Chenglin, Wu Chunze. Response of photosynthetic and stoichiometric characteristics of female and male leaves of Fraxinus mandshurica to exogenous hormones[J]. Journal of Beijing Forestry University, 2023, 45(12): 80-89. DOI: 10.12171/j.1000-1522.20220335
Citation: Li Chenxi, Wei Xing, Tang Jingwen, Cheng Xin, Liu Jing, Peng Zhenglin, Su Anran, Su Jiaxi, Wu Chenglin, Wu Chunze. Response of photosynthetic and stoichiometric characteristics of female and male leaves of Fraxinus mandshurica to exogenous hormones[J]. Journal of Beijing Forestry University, 2023, 45(12): 80-89. DOI: 10.12171/j.1000-1522.20220335

Response of photosynthetic and stoichiometric characteristics of female and male leaves of Fraxinus mandshurica to exogenous hormones

More Information
  • Received Date: August 10, 2022
  • Revised Date: November 21, 2022
  • Accepted Date: September 26, 2023
  • Available Online: October 07, 2023
  • Objective 

    This paper aims to assess the effects of exogenous hormone addition on the photosynthesis and stoichiometry of male and female Fraxinus mandshurica leaves, elucidate differential responses to different hormone ratio combinations between male and female Fraxinus mandshurica, and provide a basis for precision breeding of Fraxinus mandshurica.

    Method 

    The experiment utilized a two-factor, four-level fractional factorial experimental design, with mature female and male F. mandshurica trees from artificial forests as the test subjects. Gibberellin (GA3) and cytokinin (6-BA) hormone treatments were administered separately to female and male trees through stem drip method. The photosynthetic parameters, leaf area, chlorophyll content (SPAD), leaf carbon (C), nitrogen (N) content, and C/N ratio of female and male trees were measured.

    Result 

    (1) The optimal hormone treatment for female trees was A2B1 (GA3 60 mg/L, 6-BA 30 mg/L), which significantly increased leaf C content, and had the highest leaf N content and C/N ratio, as well as significantly increased leaf area and SPAD value (P < 0.05), achieving the highest net photosynthetic rate. (2) The optimal hormone treatment for male trees was A3B2 (GA3 90 mg/L, 6-BA 60 mg/L), which achieved the highest leaf C and N content, the second highest C/N ratio, significantly increased leaf area and SPAD value (P < 0.05), and the highest net photosynthetic rate. (3) Overall, the photosynthetic and stoichiometric indicators of female trees were higher than those of male trees after hormone treatment.

    Conclusion 

    Female F. mandshurica trees have optimal photosynthetic functionality with GA3 60 mg/L and 6-BA 30 mg/L treatment, while male trees show optimal photosynthetic functionality with GA3 90 mg/L and 6-BA 60 mg/L treatment. Leaf carbon (C) and nitrogen (N) content are significantly increased under these treatments. The photosynthetic and stoichiometric characteristics of female and male Fraxinus mandshurica leaves show significant differential responses to the type and ratio of exogenous hormones.

  • [1]
    郑乐娅, 吴文革, 阎川, 等. 植物生长调节剂对水稻光合速率和产量构成因素的影响[J]. 作物杂志, 2011, 27(3): 63−66.

    Zheng L Y, Wu W G, Yan C, et al. Effects of plant growth regulators on photosynthetic rate and yield components of rice[J]. Crops, 2011, 27(3): 63−66.
    [2]
    谷小红, 郭宝林, 田景, 等. 植物生长调节剂在药用植物生长发育和栽培中的应用[J]. 中国现代中药, 2017, 19(2): 295−305, 310.

    Gu X H, Guo B L, Tian J, et al. Utilization of plant growth regulators in growth and cultivation of medicinal plants[J]. Modern Chinese Medicine, 2017, 19(2): 295−305, 310.
    [3]
    张允昔, 夏绍南, 杨茅难, 等. 植物生长促进剂对赣北移栽棉生长发育及产量的影响[J]. 棉花学报, 2019, 31(3): 233−241.

    Zhang Y X, Xia S N, Yang M N, et al. Plant growth promoter effects on the growth and yield of transplanted cotton in northern Jiangxi[J]. Cotton Science, 2019, 31(3): 233−241.
    [4]
    孙位, 潘远智, 覃琳岚. GA3和CEPA对香水百合开花期光合生理和抗氧化酶活性的影响及其花期响应研究[J]. 草业学报, 2015, 24(8): 73−84.

    Sun W, Pan Y Z, Qin L L. Effects of GA_3 and CEPA on photosynthetic characteristics and antioxidant enzymes in the flowering phase and the flowering response of Lilium casa blanca[J]. Acta Prataculturae Sinica, 2015, 24(8): 73−84.
    [5]
    裴海荣, 李伟, 张蕾, 等. 植物生长调节剂的研究与应用[J]. 山东农业科学, 2015, 47(7): 142−146.

    Pei H R, Li W, Zhang L, et al. Research and application of plant growth regulators[J]. Shandong Agricultural Science, 2015, 47(7): 142−146.
    [6]
    He H, Qin J, Cheng X, et al. Effects of exogenous 6-BA and NAA on growth and contents of medicinal ingredient of Phellodendron chinense seedlings[J]. Saudi Journal of Biological Sciences, 2018, 25(6): 1189−1195. doi: 10.1016/j.sjbs.2017.11.037
    [7]
    Fang M, Zhou Z, Zhou X, et al. Overexpression of Os FTL10 induces early flowering and improves drought tolerance in Oryza sativa L[J]. PeerJ, 2019, 7: e6422. doi: 10.7717/peerj.6422
    [8]
    刘嘉仪, 王颖, 吴林, 等. 长日照处理下‘雪球’海棠休眠特性和喷施6-BA对其萌芽及开花的影响[J]. 北方园艺, 2017(21): 109−114.

    Liu J Y, Wang Y, Wu L, et al. Dormancy characteristics of ‘ Snowdrift’ and effects of spraying 6-BA on its germination in long-day treatment[J]. Northern Horticulture, 2017(21): 109−114.
    [9]
    王莎, 程大伟, 顾红, 等. 植物生长调节剂对‘阳光玫瑰’葡萄果实无核及品质的影响[J]. 果树学报, 2019, 36(12): 1675−1682.

    Wang S, Cheng D W, Gu H, et al. Effects of plant growth regulators on the seedless rate and fruit quality of ‘ Shine Muscat’ grape[J]. Journal of Fruit Science, 2019, 36(12): 1675−1682.
    [10]
    Li J, Liu B, Li X, et al. Exogenous abscisic acid mediates berry quality improvement by altered endogenous plant hormones level in ‘Ruiduhongyu’ grapevine[J]. Frontiers in Plant Science, 2021, 12: 739964. doi: 10.3389/fpls.2021.739964
    [11]
    Zheng C, Liu C, Ren W, et al. Flower and pod development, grain-setting characteristics and grain yield in Chinese milk vetch( Astragalus sinicus L.) in response to pre-anthesis foliar application of paclobutrazol[J]. PLoS One, 2021, 16(2): e0245554. doi: 10.1371/journal.pone.0245554
    [12]
    冯刚, 李小飞, 邓秋菊, 等. 植物生长调节剂对薄壳山核桃品种‘波尼’枝条生长和叶片碳氮代谢物积累的影响[J]. 植物资源与环境学报, 2018, 27(3): 49−55.

    Feng G, Li X F, Deng Q J, et al. Effects of plant growth regulators on branch growth and leaf carbon-nitrogen metabolite accumulation of Carya illinoinensis ‘Pawnee’[J]. Journal of Plant Resources and Environment, 2018, 27(3): 49−55.
    [13]
    Yang Z B, Liu G, Liu J, et al. Synergistic action of auxin and cytokinin mediates aluminum-induced root growth inhibition in Arabidopsis[J]. EMBO Reports, 2017, 18(7): 1213−1230. doi: 10.15252/embr.201643806
    [14]
    Ahmed N R, Manirafasha E, Pan X, et al. Exploring biostimulation of plant hormones and nitrate supplement to effectively enhance biomass growth and lutein production with thermo-tolerant Desmodesmus sp. F51[J]. Bioresource Technology, 2019, 291: 121883. doi: 10.1016/j.biortech.2019.121883
    [15]
    李敬蕊, 王育博, 吴晓蕾, 等. GR24和IAA及互作对甜瓜胚根和不定根生长的影响[J]. 西北农业学报, 2021, 30(10): 1484−1494. doi: 10.7606/j.issn.1004-1389.2021.10.006

    Li J R, Wang Y B, Wu X L, et al. Effects of GR24 and IAA and its interaction on the growth of melon radicle and adventitious root[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(10): 1484−1494. doi: 10.7606/j.issn.1004-1389.2021.10.006
    [16]
    张燕, 任毛飞, 赵琳, 等. 6-BA和NAA对番茄种子萌发的影响[J]. 安徽农学通报, 2018, 24(23): 23−25.

    Zhang Y, Ren M F, Zhao L, et al. Effect of 6-BA and NAA on seed germination of tomato[J]. Anhui Agricultural Science Bulletin, 2018, 24(23): 23−25.
    [17]
    翟飞飞, 孙振元. 木本植物雌雄株生物学差异研究进展[J]. 林业科学, 2015, 51(10): 110−116.

    Zhai F F, Sun Z Y. Progress in study on sexual differences of woody dioecious plants[J]. Scientia Silvae Sinicae, 2015, 51(10): 110−116.
    [18]
    Li W, Zhang Y L, Wei X, et al. Responses of early distribution and developmental traits of male and female trees to stand density in Fraxinus mandshurica Rupr. plantation[J]. Forests, 2022, 13(3): 472. doi: 10.3390/f13030472
    [19]
    钟川, 王熊军, 漆小雪, 等. 银杏雌雄株花期内源激素和养分含量动态变化规律[J]. 江苏农业科学, 2011, 39(6): 251−254.

    Zhong C, Wang X J, Qi X X, et al. Dynamic changes in endogenous hormones and nutrient contents in male and female Ginkgo trees during the flowering period[J]. Jiangsu Agricultural Sciences, 2011, 39(6): 251−254.
    [20]
    马丽媛, 齐国辉, 李保国, 等. 黄连木雌、雄株内源植物激素和POD同工酶的比较[J]. 植物科学学报, 2013, 31(3): 297−303. doi: 10.3724/SP.J.1142.2013.30297

    Ma L Y, Qi G H, Li B G, et al. Content of endogenous phytohormones and isoenzymes of peroxidase in male and female Pistacia chinensis plants bunge leaves[J]. Plant Science Journal, 2013, 31(3): 297−303. doi: 10.3724/SP.J.1142.2013.30297
    [21]
    Xu X, Yang F, Xiao X, et al. Sex-specific responses of Populus cathayana to drought and elevated temperatures[J]. Plant, Cell & Environment, 2008, 31(6): 850−860.
    [22]
    尹春英, 李春阳. 雌雄异株植物与性别比例有关的性别差异研究现状与展望[J]. 应用与环境生物学报, 2007, 13(3): 419−425.

    Yin C Y, Li C Y. Gender differences of dioecious plants related sex ratio: recent advances and future prospects[J]. Chinese Journal of Applied & Environmental Biology, 2007, 13(3): 419−425.
    [23]
    Zhu Z, Qi F, Yan C, et al. Sexually different morphological, physiological and molecular responses of Fraxinus mandshurica flowers to floral development and chilling stress[J]. Plant physiology and biochemistry, 2016, 99: 97−107. doi: 10.1016/j.plaphy.2015.12.006
    [24]
    谷宇超, 杨懿德, 鄢敏, 等. 打顶后喷施不同浓度GA3和6-BA对烤烟农艺性状和化学成分的影响[J]. 作物杂志, 2021(6): 171−176.

    Gu Y C, Yang Y D, Yan M, et al. Effects of GA3 and 6-BA on agronomic traits and chemical components of flue cured tobacco after topping[J]. Crops, 2021(6): 171−176.
    [25]
    袁晶, 汪俏梅. 植物激素信号之间的相互作用[J]. 细胞生物学杂志, 2005, 27(3): 4.

    Yuan J, Wang Q M. Interactions between phytohormone signals[J]. Chinese Journal of Coll Biology, 2005, 27(3): 4.
    [26]
    Barrett S C H, Hough J. Sexual dimorphism in flowering plants[J]. Journal of Experimental Botany, 2013, 64(1): 67−82. doi: 10.1093/jxb/ers308
    [27]
    赵海艳. 雌雄异株树种簇毛槭繁殖代价延迟效应研究[D]. 北京: 北京林业大学, 2019.

    Zhao H Y. Delayed effects of reproductive costs in dioecious species Acer barbinerve [D] Beijing: Beijing Forestry University , 2019.
    [28]
    刘芸, 钟章成, 王小雪, 等. 栝楼雌雄植株激素和多胺含量的比较[J]. 园艺学报, 2010, 37(10): 1645−1650.

    Liu Y, Zhong Z C, Wang X X, et al. Comparison in contents of endogenous hormones and polyamines in female and male plants of Trichosanthes kirilowii[J]. Acta Horticulturae Sinica, 2010, 37(10): 1645−1650.
    [29]
    Cornelissen T, Larsson S S. Sex-biased herbivory: a meta-analysis of the effects of gender on plant-herbivore interactions[J]. Oikos, 2010, 111(3): 488−500.
    [30]
    Tozawa M, Ueno N, Seiwa K. Compensatory mechanisms for reproductive costs in the dioecious tree Salix integra[J]. Botany, 2009, 2009,87(3): 315−323.
    [31]
    刘瑞香, 杨劼, 高丽. 中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J]. 水土保持学报, 2005, 19(3): 148−151.

    Liu R X, Yang J, Gao L. Changes in contents of proline, soluble saccharin and endogenous hormone in leaves of Chinese seabuckthorn and Russian seabuckthorn under different soil water content[J]. Journal of Soil and Water Conservation, 2005, 19(3): 148−151.
    [32]
    Ueno N, Seiwa K. Gender-specific shoot structure and functions in relation to habitat conditions in a dioecious tree, Salix sachalinensis[J]. Journal of Forest Research, 2003, 8: 9−16.
    [33]
    柳跃. 鸦胆子雌雄株的性别差异研究[D]. 广州: 广州中医药大学, 2014.

    Liu Y. Study on sex difference between male and female plants of Brucea javanica[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2014.
    [34]
    Montesinos D, Villar-Salvador P, García-Fayos P, et al. Genders in Juniperus thurifera have different functional responses to variations in nutrient availability[J]. New Phytologist, 2012, 193: 705−712.
    [35]
    刘颖, 贺静雯, 余杭, 等. 干热河谷优势灌木细根、粗根与叶片养分(C、N、P)含量及化学计量比[J]. 山地学报, 2020, 38(5): 668−678.

    Liu Y, He J W, Yu H, et al. Nutrients (C, N, P) contents and stoichiometric ratios of fine root, coarse root and leaf in dominant shrubs in dry-hot valley[J]. Mountain Research, 2020, 38(5): 668−678.
    [36]
    Cisse A, Zhao X, Fu W, et al. Non-photochemical quenching involved in the regulation of photosynthesis of rice leaves under high nitrogen conditions[J]. International Journal of Molecular Sciences, 2020, 21(6): E2115. doi: 10.3390/ijms21062115
    [37]
    Shangguan Z P, Shao M A, Dyckmans J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat[J]. Environmental and Experimental Botany, 2000, 44(2): 141−149. doi: 10.1016/S0098-8472(00)00064-2
    [38]
    赵平, 张志权. 欧洲3种常见乔木幼苗在两种光环境下叶片的气体交换、叶绿素含量和氮素含量[J]. 热带亚热带植物学报, 1999, 7(2): 133−139.

    Zhao P, Zhang Z Q. Gas exchange, chlorophyll, and nitrogen contents in leaves of three common trees in middle Europe under two contrasting light regimes[J]. Journal of tropical and subtropical botany, 1999, 7(2): 133−139.
    [39]
    Warren C. Evergreen trees do not maximize instantaneous photosynthesis[J]. Trends in Plant Science, 2004, 9(6): 270−274. doi: 10.1016/j.tplants.2004.04.004
    [40]
    Mckey D. Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle[J]. Advances in Legume Systematics 5: The Nitrogen Factor, 1994, 211−228.
    [41]
    潘瑞炽, 王小青, 李娘辉. 植物生理学[M]. 北京: 高等教育出版社, 1992.

    Pan R Z, Wang X Q, Li N H. Plant Physiology[M]. Beijing: Higher Education Press, 1992.
    [42]
    刘玮, 宁淑香, 崔成日, 等. 赤霉素对分蘖洋葱生长发育影响研究[J]. 东北农业大学学报, 2011, 42(7): 83−86. doi: 10.3969/j.issn.1005-9369.2011.07.015

    Liu W, Ning S X, Cui C R, et al. Effect of gibberellin treatment on growth and development of tillered-onion[J]. Journal of Northeast Agricultural University, 2011, 42(7): 83−86. doi: 10.3969/j.issn.1005-9369.2011.07.015
    [43]
    张翔, 徐永平, 李永荣, 等. DA-6、PBO、6-BA叶面喷施对薄壳山核桃树体发育的影响[J]. 中国农学通报, 2015, 31(7): 13−17.

    Zhang X, Xu Y P, Li Y R, et al. Effect of foliar application of DA-6, PBO and 6-BA on the growth of Carya illinoinensis[J]. Chinese Agricultural Science Bulletin, 2015, 31(7): 13−17.
  • Related Articles

    [1]Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240063
    [2]Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321
    [3]Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052
    [4]Wang Longfeng, Xiao Weiwei, Wang Shuli. Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests[J]. Journal of Beijing Forestry University, 2022, 44(7): 97-106. DOI: 10.12171/j.1000-1522.20210497
    [5]Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133
    [6]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [7]DONG Li-hu, LI Feng-ri, JIA Wei-wei.. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation.[J]. Journal of Beijing Forestry University, 2013, 35(6): 14-22.
    [8]DONG Li-hu, LI Feng-ri, JIA Wei-wei. Development of tree biomass model for Pinus koraiensis plantation[J]. Journal of Beijing Forestry University, 2012, 34(6): 16-22.
    [9]WANG Xiong-bin, YU Xin-xiao, XU Cheng-li, , GU Jian-cai, ZHOU Bin, FAN Min-rui, JIA Guo-dong, LV xi-zhi. Effects of thinning on edge effect of Larix principisrupprechtii plantation.[J]. Journal of Beijing Forestry University, 2009, 31(5): 29-34.
    [10]LI Chun-ming.. Simulating basal area growth of fir plantations using a nonlinear mixed modeling approach.[J]. Journal of Beijing Forestry University, 2009, 31(1): 44-49.
  • Cited by

    Periodical cited type(44)

    1. 韩彦隆,魏亚娟,左小锋,左轶璆,康帅,童国利,李建媛,王永平. 吉兰泰荒漠绿洲过渡带土壤生态化学计量特征及养分恢复状况研究. 水土保持研究. 2025(02): 207-214+223 .
    2. 罗婷,黄甫昭,李健星,陆芳,文淑均,阮枰臻,李先琨. 广西漓江流域喀斯特地区植被不同恢复阶段植物优势种叶片和土壤的生态化学计量特征. 植物资源与环境学报. 2024(02): 80-90 .
    3. 任泽文,陈昕,陈玥,钟曲颖,余泽平,刘骏,杨清培,宋庆妮. 亚热带森林演替中优势种茎干-土壤碳氮磷生态化学计量的变化特征. 江西农业大学学报. 2024(02): 401-410 .
    4. 侯贻菊,姚雾清,杨光能,崔迎春,周华. 黔竹笋期生长特性及配方施肥效应研究. 贵州林业科技. 2024(02): 19-24 .
    5. 刘亚博,冯天骄,王平,卫伟. 黄土丘陵区典型小流域不同植被恢复方式土壤理化性质差异及其影响因素. 生态学报. 2024(15): 6652-6666 .
    6. 史丽娟,吕海涛,张树梓,李联地,任启文,冯广. 白洋淀上游典型林分类型土壤理化性质及其化学计量特征. 土壤通报. 2024(04): 960-967 .
    7. 武仁杰,邢玮,葛之葳,毛岭峰,彭思利. 4种林分凋落叶不同分解阶段化学计量特征. 浙江农林大学学报. 2023(01): 155-163 .
    8. 孙阔,袁兴中,王晓锋,袁嘉,候春丽,魏丽景. 三峡水库消落带土壤养分含量及生态化学计量特征. 长江流域资源与环境. 2023(02): 403-414 .
    9. 刘根,岳翰林,陈雨志,汪富资,李先宝,代智蓝,李德欢,李思雨,卫万荣. 3种修复措施对高原高速公路边坡土壤化学计量特征的影响. 草业科学. 2023(01): 71-78 .
    10. 王艺伟,仇模升,孙彩丽. 植物反馈作用对火棘群落土壤养分、酶活性及化学计量特征的影响. 中南林业科技大学学报. 2023(03): 127-134 .
    11. 梁楚欣,范弢,陈培云. 滇东石漠化坡地不同恢复模式下云南松林土壤碳氮磷化学计量特征及其影响因子. 浙江农林大学学报. 2023(03): 511-519 .
    12. 白金珂,李笑雨,王力. 1980s与2020s青藏高原南部土壤质量变化. 应用生态学报. 2023(05): 1367-1374 .
    13. 徐子涵,王磊,崔明,刘玉国,赵紫晴,李嘉豪. 南水北调水源区不同植被恢复模式的土壤化学计量特征. 南京林业大学学报(自然科学版). 2023(03): 173-181 .
    14. 何芳远,苏权,陈坤铨,陈善栋,姜勇,罗明,梁士楚. 基于功能性状及系统发育的桂林喀斯特石山群落构建. 广西师范大学学报(自然科学版). 2023(03): 171-181 .
    15. 吴丹,温晨,卫伟,张钦弟. 黄土高原小流域不同植物群落土壤生态化学计量的垂直变化特征. 广西植物. 2023(05): 923-935 .
    16. 宁静,杨磊,曹建华,李亮. 基于文献计量分析的岩溶区植被恢复研究现状与热点. 中国岩溶. 2023(02): 321-336 .
    17. 李雪梅,舒英格. 不同土地利用类型下土壤养分变化及生态化学计量特征分析. 中国农学通报. 2023(28): 62-69 .
    18. 周士锋,魏亚娟,何磊,王项飞,刘美萍,刘澜波. 包头市南海湿地不同季节土壤养分分布特征. 北方园艺. 2023(20): 69-76 .
    19. 侯贻菊,姚雾清,杨光能,崔迎春,周华,张喜. 黔竹秆形结构和地上生物量分配格局研究. 竹子学报. 2023(04): 51-57 .
    20. 胡林安,邱江梅,李强. 云南岩溶断陷盆地植被演替土壤碳氮磷化学计量学特征. 中国岩溶. 2023(06): 1213-1223 .
    21. 袁在翔,关庆伟,李俊杰,韩梦豪,金雪梅,陈霞. 不同植被恢复模式对紫金山森林土壤理化性质的影响. 东北林业大学学报. 2022(01): 52-57 .
    22. 曹全恒 ,胡健 ,陈雪玲 ,孙梅玲 ,刘小龙 ,杨丽雪 ,周青平 . 川西北沙地植被恢复对土壤碳氮磷及生态化学计量特征的影响. 草地学报. 2022(03): 523-531 .
    23. 蔡雅梅,冯民权,肖瑜. 人类活动对河岸带植被氮磷生态化学计量特征的影响——以汾河临汾段为例. 水土保持通报. 2022(01): 17-25 .
    24. 孟海,王海燕,侯文宁,赵晗,宁一泓. 重庆笋溪河流域河岸带水体-土壤-植物的氮磷特征及影响因素. 水土保持学报. 2022(02): 275-282+291 .
    25. 章润阳,钱前,刘坤平,梁月明,张伟,靳振江,潘复静. 喀斯特不同土地利用方式和恢复模式对土壤酶活性C∶N∶P比值的影响. 广西植物. 2022(06): 970-982 .
    26. 王杰. 河岸带土壤氮磷时空分布及影响因素分析. 水土保持应用技术. 2022(04): 13-16 .
    27. 孙渝雯,马赞文,陶贞,张乾柱,唐文魁,吴迪,钟庆祥,王振刚,丁健. 海南岛西南部土壤生物硅分布的时空差异及其驱动机制. 生态学报. 2022(17): 7092-7104 .
    28. 张萌,沈雅飞,陈天,王丽君,曾立雄,孙鹏飞,肖文发,田耀武,程瑞梅. 宜阳县不同森林类型土壤化学计量特征. 陆地生态系统与保护学报. 2022(02): 1-8 .
    29. 陈培云,范弢,何停,户红红. 滇东岩溶高原不同恢复阶段云南松林叶片-枯落物-土壤碳氮磷化学计量特征. 应用与环境生物学报. 2022(06): 1549-1556 .
    30. 刘翔,张连凯,黄超,徐灿,马一奇,杨慧. 广西岩溶区芒果园土壤碳氮磷化学计量特征. 南方农业学报. 2022(12): 3346-3356 .
    31. 李强. 土地利用方式对岩溶断陷盆地土壤细菌和真核生物群落结构的影响. 地球学报. 2021(03): 417-425 .
    32. 陈云,李玉强,王旭洋,牛亚毅. 中国典型生态脆弱区生态化学计量学研究进展. 生态学报. 2021(10): 4213-4225 .
    33. 蔡雅梅,冯民权. 汾河河岸带土壤氮、磷的时空分布规律及其影响因素研究. 水土保持学报. 2021(04): 222-229+236 .
    34. 蔡国俊,锁盆春,张丽敏,符裕红,李安定. 黔南喀斯特峰丛洼地3种建群树种不同器官C、N、P化学计量特征. 贵州师范大学学报(自然科学版). 2021(05): 36-44 .
    35. 魏亚娟,汪季,党晓宏,韩彦隆,高岩,李鹏,金山. 白刺灌丛沙堆演化过程中叶片C、N、P、K含量及其生态化学计量的变化特征. 中南林业科技大学学报. 2021(10): 102-110+139 .
    36. 杨洪炳,肖以华,李明,许涵,史欣,郭晓敏. 典型城市森林旱季土壤团聚体稳定性与微生物胞外酶活性耦合关系. 生态环境学报. 2021(10): 1976-1989 .
    37. 陈剑,王四海,杨卫,吴超. 外来入侵植物肿柄菊群落动态变化特征. 生态学杂志. 2020(02): 469-477 .
    38. 郑鸾,龙翠玲. 茂兰喀斯特森林不同地形土壤生态化学计量特征. 南方农业学报. 2020(03): 545-551 .
    39. 夏光辉,郭青霞,卢庆民,杜轶,康庆. 黄土丘陵区不同土地利用方式下土壤养分及生态化学计量特征. 水土保持通报. 2020(02): 140-147+153 .
    40. 吴鹏,崔迎春,赵文君,侯贻菊,朱军,丁访军,杨文斌. 茂兰喀斯特区68种典型植物叶片化学计量特征. 生态学报. 2020(14): 5063-5080 .
    41. 朱平宗,张光辉,杨文利,赵建民. 红壤区林地浅沟不同植被类型土壤生态化学计量特征. 水土保持研究. 2020(06): 60-65 .
    42. 余杭,罗清虎,李松阳,林勇明,王道杰. 灾害干扰受损森林土壤的碳、氮、磷初期恢复特征与变异性. 山地学报. 2020(04): 532-541 .
    43. 郭汝凤,刘鑫铭,李冠军,黄婷,吴承祯,林勇明,李键. 武夷山人工湿地系统植物生长期内土壤-植物碳氮磷变化特点. 应用与环境生物学报. 2020(02): 433-441 .
    44. 闫丽娟,王海燕,李广,吴江琪. 黄土丘陵区4种典型植被对土壤养分及酶活性的影响. 水土保持学报. 2019(05): 190-196+204 .

    Other cited types(42)

Catalog

    Article views (356) PDF downloads (39) Cited by(86)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return