Citation: | Li Chenxi, Wei Xing, Tang Jingwen, Cheng Xin, Liu Jing, Peng Zhenglin, Su Anran, Su Jiaxi, Wu Chenglin, Wu Chunze. Response of photosynthetic and stoichiometric characteristics of female and male leaves of Fraxinus mandshurica to exogenous hormones[J]. Journal of Beijing Forestry University, 2023, 45(12): 80-89. DOI: 10.12171/j.1000-1522.20220335 |
This paper aims to assess the effects of exogenous hormone addition on the photosynthesis and stoichiometry of male and female Fraxinus mandshurica leaves, elucidate differential responses to different hormone ratio combinations between male and female Fraxinus mandshurica, and provide a basis for precision breeding of Fraxinus mandshurica.
The experiment utilized a two-factor, four-level fractional factorial experimental design, with mature female and male F. mandshurica trees from artificial forests as the test subjects. Gibberellin (GA3) and cytokinin (6-BA) hormone treatments were administered separately to female and male trees through stem drip method. The photosynthetic parameters, leaf area, chlorophyll content (SPAD), leaf carbon (C), nitrogen (N) content, and C/N ratio of female and male trees were measured.
(1) The optimal hormone treatment for female trees was A2B1 (GA3 60 mg/L, 6-BA 30 mg/L), which significantly increased leaf C content, and had the highest leaf N content and C/N ratio, as well as significantly increased leaf area and SPAD value (P < 0.05), achieving the highest net photosynthetic rate. (2) The optimal hormone treatment for male trees was A3B2 (GA3 90 mg/L, 6-BA 60 mg/L), which achieved the highest leaf C and N content, the second highest C/N ratio, significantly increased leaf area and SPAD value (P < 0.05), and the highest net photosynthetic rate. (3) Overall, the photosynthetic and stoichiometric indicators of female trees were higher than those of male trees after hormone treatment.
Female F. mandshurica trees have optimal photosynthetic functionality with GA3 60 mg/L and 6-BA 30 mg/L treatment, while male trees show optimal photosynthetic functionality with GA3 90 mg/L and 6-BA 60 mg/L treatment. Leaf carbon (C) and nitrogen (N) content are significantly increased under these treatments. The photosynthetic and stoichiometric characteristics of female and male Fraxinus mandshurica leaves show significant differential responses to the type and ratio of exogenous hormones.
[1] |
郑乐娅, 吴文革, 阎川, 等. 植物生长调节剂对水稻光合速率和产量构成因素的影响[J]. 作物杂志, 2011, 27(3): 63−66.
Zheng L Y, Wu W G, Yan C, et al. Effects of plant growth regulators on photosynthetic rate and yield components of rice[J]. Crops, 2011, 27(3): 63−66.
|
[2] |
谷小红, 郭宝林, 田景, 等. 植物生长调节剂在药用植物生长发育和栽培中的应用[J]. 中国现代中药, 2017, 19(2): 295−305, 310.
Gu X H, Guo B L, Tian J, et al. Utilization of plant growth regulators in growth and cultivation of medicinal plants[J]. Modern Chinese Medicine, 2017, 19(2): 295−305, 310.
|
[3] |
张允昔, 夏绍南, 杨茅难, 等. 植物生长促进剂对赣北移栽棉生长发育及产量的影响[J]. 棉花学报, 2019, 31(3): 233−241.
Zhang Y X, Xia S N, Yang M N, et al. Plant growth promoter effects on the growth and yield of transplanted cotton in northern Jiangxi[J]. Cotton Science, 2019, 31(3): 233−241.
|
[4] |
孙位, 潘远智, 覃琳岚. GA3和CEPA对香水百合开花期光合生理和抗氧化酶活性的影响及其花期响应研究[J]. 草业学报, 2015, 24(8): 73−84.
Sun W, Pan Y Z, Qin L L. Effects of GA_3 and CEPA on photosynthetic characteristics and antioxidant enzymes in the flowering phase and the flowering response of Lilium casa blanca[J]. Acta Prataculturae Sinica, 2015, 24(8): 73−84.
|
[5] |
裴海荣, 李伟, 张蕾, 等. 植物生长调节剂的研究与应用[J]. 山东农业科学, 2015, 47(7): 142−146.
Pei H R, Li W, Zhang L, et al. Research and application of plant growth regulators[J]. Shandong Agricultural Science, 2015, 47(7): 142−146.
|
[6] |
He H, Qin J, Cheng X, et al. Effects of exogenous 6-BA and NAA on growth and contents of medicinal ingredient of Phellodendron chinense seedlings[J]. Saudi Journal of Biological Sciences, 2018, 25(6): 1189−1195. doi: 10.1016/j.sjbs.2017.11.037
|
[7] |
Fang M, Zhou Z, Zhou X, et al. Overexpression of Os FTL10 induces early flowering and improves drought tolerance in Oryza sativa L[J]. PeerJ, 2019, 7: e6422. doi: 10.7717/peerj.6422
|
[8] |
刘嘉仪, 王颖, 吴林, 等. 长日照处理下‘雪球’海棠休眠特性和喷施6-BA对其萌芽及开花的影响[J]. 北方园艺, 2017(21): 109−114.
Liu J Y, Wang Y, Wu L, et al. Dormancy characteristics of ‘ Snowdrift’ and effects of spraying 6-BA on its germination in long-day treatment[J]. Northern Horticulture, 2017(21): 109−114.
|
[9] |
王莎, 程大伟, 顾红, 等. 植物生长调节剂对‘阳光玫瑰’葡萄果实无核及品质的影响[J]. 果树学报, 2019, 36(12): 1675−1682.
Wang S, Cheng D W, Gu H, et al. Effects of plant growth regulators on the seedless rate and fruit quality of ‘ Shine Muscat’ grape[J]. Journal of Fruit Science, 2019, 36(12): 1675−1682.
|
[10] |
Li J, Liu B, Li X, et al. Exogenous abscisic acid mediates berry quality improvement by altered endogenous plant hormones level in ‘Ruiduhongyu’ grapevine[J]. Frontiers in Plant Science, 2021, 12: 739964. doi: 10.3389/fpls.2021.739964
|
[11] |
Zheng C, Liu C, Ren W, et al. Flower and pod development, grain-setting characteristics and grain yield in Chinese milk vetch( Astragalus sinicus L.) in response to pre-anthesis foliar application of paclobutrazol[J]. PLoS One, 2021, 16(2): e0245554. doi: 10.1371/journal.pone.0245554
|
[12] |
冯刚, 李小飞, 邓秋菊, 等. 植物生长调节剂对薄壳山核桃品种‘波尼’枝条生长和叶片碳氮代谢物积累的影响[J]. 植物资源与环境学报, 2018, 27(3): 49−55.
Feng G, Li X F, Deng Q J, et al. Effects of plant growth regulators on branch growth and leaf carbon-nitrogen metabolite accumulation of Carya illinoinensis ‘Pawnee’[J]. Journal of Plant Resources and Environment, 2018, 27(3): 49−55.
|
[13] |
Yang Z B, Liu G, Liu J, et al. Synergistic action of auxin and cytokinin mediates aluminum-induced root growth inhibition in Arabidopsis[J]. EMBO Reports, 2017, 18(7): 1213−1230. doi: 10.15252/embr.201643806
|
[14] |
Ahmed N R, Manirafasha E, Pan X, et al. Exploring biostimulation of plant hormones and nitrate supplement to effectively enhance biomass growth and lutein production with thermo-tolerant Desmodesmus sp. F51[J]. Bioresource Technology, 2019, 291: 121883. doi: 10.1016/j.biortech.2019.121883
|
[15] |
李敬蕊, 王育博, 吴晓蕾, 等. GR24和IAA及互作对甜瓜胚根和不定根生长的影响[J]. 西北农业学报, 2021, 30(10): 1484−1494. doi: 10.7606/j.issn.1004-1389.2021.10.006
Li J R, Wang Y B, Wu X L, et al. Effects of GR24 and IAA and its interaction on the growth of melon radicle and adventitious root[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(10): 1484−1494. doi: 10.7606/j.issn.1004-1389.2021.10.006
|
[16] |
张燕, 任毛飞, 赵琳, 等. 6-BA和NAA对番茄种子萌发的影响[J]. 安徽农学通报, 2018, 24(23): 23−25.
Zhang Y, Ren M F, Zhao L, et al. Effect of 6-BA and NAA on seed germination of tomato[J]. Anhui Agricultural Science Bulletin, 2018, 24(23): 23−25.
|
[17] |
翟飞飞, 孙振元. 木本植物雌雄株生物学差异研究进展[J]. 林业科学, 2015, 51(10): 110−116.
Zhai F F, Sun Z Y. Progress in study on sexual differences of woody dioecious plants[J]. Scientia Silvae Sinicae, 2015, 51(10): 110−116.
|
[18] |
Li W, Zhang Y L, Wei X, et al. Responses of early distribution and developmental traits of male and female trees to stand density in Fraxinus mandshurica Rupr. plantation[J]. Forests, 2022, 13(3): 472. doi: 10.3390/f13030472
|
[19] |
钟川, 王熊军, 漆小雪, 等. 银杏雌雄株花期内源激素和养分含量动态变化规律[J]. 江苏农业科学, 2011, 39(6): 251−254.
Zhong C, Wang X J, Qi X X, et al. Dynamic changes in endogenous hormones and nutrient contents in male and female Ginkgo trees during the flowering period[J]. Jiangsu Agricultural Sciences, 2011, 39(6): 251−254.
|
[20] |
马丽媛, 齐国辉, 李保国, 等. 黄连木雌、雄株内源植物激素和POD同工酶的比较[J]. 植物科学学报, 2013, 31(3): 297−303. doi: 10.3724/SP.J.1142.2013.30297
Ma L Y, Qi G H, Li B G, et al. Content of endogenous phytohormones and isoenzymes of peroxidase in male and female Pistacia chinensis plants bunge leaves[J]. Plant Science Journal, 2013, 31(3): 297−303. doi: 10.3724/SP.J.1142.2013.30297
|
[21] |
Xu X, Yang F, Xiao X, et al. Sex-specific responses of Populus cathayana to drought and elevated temperatures[J]. Plant, Cell & Environment, 2008, 31(6): 850−860.
|
[22] |
尹春英, 李春阳. 雌雄异株植物与性别比例有关的性别差异研究现状与展望[J]. 应用与环境生物学报, 2007, 13(3): 419−425.
Yin C Y, Li C Y. Gender differences of dioecious plants related sex ratio: recent advances and future prospects[J]. Chinese Journal of Applied & Environmental Biology, 2007, 13(3): 419−425.
|
[23] |
Zhu Z, Qi F, Yan C, et al. Sexually different morphological, physiological and molecular responses of Fraxinus mandshurica flowers to floral development and chilling stress[J]. Plant physiology and biochemistry, 2016, 99: 97−107. doi: 10.1016/j.plaphy.2015.12.006
|
[24] |
谷宇超, 杨懿德, 鄢敏, 等. 打顶后喷施不同浓度GA3和6-BA对烤烟农艺性状和化学成分的影响[J]. 作物杂志, 2021(6): 171−176.
Gu Y C, Yang Y D, Yan M, et al. Effects of GA3 and 6-BA on agronomic traits and chemical components of flue cured tobacco after topping[J]. Crops, 2021(6): 171−176.
|
[25] |
袁晶, 汪俏梅. 植物激素信号之间的相互作用[J]. 细胞生物学杂志, 2005, 27(3): 4.
Yuan J, Wang Q M. Interactions between phytohormone signals[J]. Chinese Journal of Coll Biology, 2005, 27(3): 4.
|
[26] |
Barrett S C H, Hough J. Sexual dimorphism in flowering plants[J]. Journal of Experimental Botany, 2013, 64(1): 67−82. doi: 10.1093/jxb/ers308
|
[27] |
赵海艳. 雌雄异株树种簇毛槭繁殖代价延迟效应研究[D]. 北京: 北京林业大学, 2019.
Zhao H Y. Delayed effects of reproductive costs in dioecious species Acer barbinerve [D] Beijing: Beijing Forestry University , 2019.
|
[28] |
刘芸, 钟章成, 王小雪, 等. 栝楼雌雄植株激素和多胺含量的比较[J]. 园艺学报, 2010, 37(10): 1645−1650.
Liu Y, Zhong Z C, Wang X X, et al. Comparison in contents of endogenous hormones and polyamines in female and male plants of Trichosanthes kirilowii[J]. Acta Horticulturae Sinica, 2010, 37(10): 1645−1650.
|
[29] |
Cornelissen T, Larsson S S. Sex-biased herbivory: a meta-analysis of the effects of gender on plant-herbivore interactions[J]. Oikos, 2010, 111(3): 488−500.
|
[30] |
Tozawa M, Ueno N, Seiwa K. Compensatory mechanisms for reproductive costs in the dioecious tree Salix integra[J]. Botany, 2009, 2009,87(3): 315−323.
|
[31] |
刘瑞香, 杨劼, 高丽. 中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J]. 水土保持学报, 2005, 19(3): 148−151.
Liu R X, Yang J, Gao L. Changes in contents of proline, soluble saccharin and endogenous hormone in leaves of Chinese seabuckthorn and Russian seabuckthorn under different soil water content[J]. Journal of Soil and Water Conservation, 2005, 19(3): 148−151.
|
[32] |
Ueno N, Seiwa K. Gender-specific shoot structure and functions in relation to habitat conditions in a dioecious tree, Salix sachalinensis[J]. Journal of Forest Research, 2003, 8: 9−16.
|
[33] |
柳跃. 鸦胆子雌雄株的性别差异研究[D]. 广州: 广州中医药大学, 2014.
Liu Y. Study on sex difference between male and female plants of Brucea javanica[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2014.
|
[34] |
Montesinos D, Villar-Salvador P, García-Fayos P, et al. Genders in Juniperus thurifera have different functional responses to variations in nutrient availability[J]. New Phytologist, 2012, 193: 705−712.
|
[35] |
刘颖, 贺静雯, 余杭, 等. 干热河谷优势灌木细根、粗根与叶片养分(C、N、P)含量及化学计量比[J]. 山地学报, 2020, 38(5): 668−678.
Liu Y, He J W, Yu H, et al. Nutrients (C, N, P) contents and stoichiometric ratios of fine root, coarse root and leaf in dominant shrubs in dry-hot valley[J]. Mountain Research, 2020, 38(5): 668−678.
|
[36] |
Cisse A, Zhao X, Fu W, et al. Non-photochemical quenching involved in the regulation of photosynthesis of rice leaves under high nitrogen conditions[J]. International Journal of Molecular Sciences, 2020, 21(6): E2115. doi: 10.3390/ijms21062115
|
[37] |
Shangguan Z P, Shao M A, Dyckmans J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat[J]. Environmental and Experimental Botany, 2000, 44(2): 141−149. doi: 10.1016/S0098-8472(00)00064-2
|
[38] |
赵平, 张志权. 欧洲3种常见乔木幼苗在两种光环境下叶片的气体交换、叶绿素含量和氮素含量[J]. 热带亚热带植物学报, 1999, 7(2): 133−139.
Zhao P, Zhang Z Q. Gas exchange, chlorophyll, and nitrogen contents in leaves of three common trees in middle Europe under two contrasting light regimes[J]. Journal of tropical and subtropical botany, 1999, 7(2): 133−139.
|
[39] |
Warren C. Evergreen trees do not maximize instantaneous photosynthesis[J]. Trends in Plant Science, 2004, 9(6): 270−274. doi: 10.1016/j.tplants.2004.04.004
|
[40] |
Mckey D. Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle[J]. Advances in Legume Systematics 5: The Nitrogen Factor, 1994, 211−228.
|
[41] |
潘瑞炽, 王小青, 李娘辉. 植物生理学[M]. 北京: 高等教育出版社, 1992.
Pan R Z, Wang X Q, Li N H. Plant Physiology[M]. Beijing: Higher Education Press, 1992.
|
[42] |
刘玮, 宁淑香, 崔成日, 等. 赤霉素对分蘖洋葱生长发育影响研究[J]. 东北农业大学学报, 2011, 42(7): 83−86. doi: 10.3969/j.issn.1005-9369.2011.07.015
Liu W, Ning S X, Cui C R, et al. Effect of gibberellin treatment on growth and development of tillered-onion[J]. Journal of Northeast Agricultural University, 2011, 42(7): 83−86. doi: 10.3969/j.issn.1005-9369.2011.07.015
|
[43] |
张翔, 徐永平, 李永荣, 等. DA-6、PBO、6-BA叶面喷施对薄壳山核桃树体发育的影响[J]. 中国农学通报, 2015, 31(7): 13−17.
Zhang X, Xu Y P, Li Y R, et al. Effect of foliar application of DA-6, PBO and 6-BA on the growth of Carya illinoinensis[J]. Chinese Agricultural Science Bulletin, 2015, 31(7): 13−17.
|
[1] | Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240063 |
[2] | Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321 |
[3] | Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052 |
[4] | Wang Longfeng, Xiao Weiwei, Wang Shuli. Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests[J]. Journal of Beijing Forestry University, 2022, 44(7): 97-106. DOI: 10.12171/j.1000-1522.20210497 |
[5] | Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133 |
[6] | ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008 |
[7] | DONG Li-hu, LI Feng-ri, JIA Wei-wei.. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation.[J]. Journal of Beijing Forestry University, 2013, 35(6): 14-22. |
[8] | DONG Li-hu, LI Feng-ri, JIA Wei-wei. Development of tree biomass model for Pinus koraiensis plantation[J]. Journal of Beijing Forestry University, 2012, 34(6): 16-22. |
[9] | WANG Xiong-bin, YU Xin-xiao, XU Cheng-li, , GU Jian-cai, ZHOU Bin, FAN Min-rui, JIA Guo-dong, LV xi-zhi. Effects of thinning on edge effect of Larix principisrupprechtii plantation.[J]. Journal of Beijing Forestry University, 2009, 31(5): 29-34. |
[10] | LI Chun-ming.. Simulating basal area growth of fir plantations using a nonlinear mixed modeling approach.[J]. Journal of Beijing Forestry University, 2009, 31(1): 44-49. |