• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Pan Xin, Li Jun, Sun Shuaichao, Chen Minghua, Hua Weiping, Jiang Xidian. Timber assortment structure and outturn model for final felling stands of Cunninghamia lanceolata plantations[J]. Journal of Beijing Forestry University, 2023, 45(8): 84-93. DOI: 10.12171/j.1000-1522.20230031
Citation: Pan Xin, Li Jun, Sun Shuaichao, Chen Minghua, Hua Weiping, Jiang Xidian. Timber assortment structure and outturn model for final felling stands of Cunninghamia lanceolata plantations[J]. Journal of Beijing Forestry University, 2023, 45(8): 84-93. DOI: 10.12171/j.1000-1522.20230031

Timber assortment structure and outturn model for final felling stands of Cunninghamia lanceolata plantations

More Information
  • Received Date: February 08, 2023
  • Revised Date: May 14, 2023
  • Accepted Date: July 03, 2023
  • Available Online: July 05, 2023
  • Published Date: August 24, 2023
  •   Objective  It is an important premise to clarify the timber assortment structure of Cunninghamia lanceolata plantations and build a reasonable outturn model, aiming to increase the wood yield, improve the forest management techniques and optimize the management plan for Cunninghamia lanceolata plantations.
      Method  Based on the 492 felling areas of Cunninghamia lanceolata plantations from 6 state-owned forest farms in Fujian Province of eastern China in the past 15 years, the response of 6 timber assortment outturn (i.e., dimension timber, non-dimension timber, commercial timber, fuel wood, merchantable timber, refuse wood) to each factor, including average DBH, average height, stand age, stand volume, stand density and site quality, was investigated. On this basis, the main stand factors affecting the yield of timber species were screened, the timber outturn model for final felling stands of Cunninghamia lanceolata was constructed and the applicability of the model was evaluated.
      Result  Among the stand factors of Cunninghamia lanceolata final felling stands, average DBH and average height showed much larger influence than other stand factors on the outturn of each timber assortment, followed by stand volume, age and density, and the influence of site quality was relatively small. The dimension timber, commercial timber and fuel wood timber assortment outturn model system using average DBH and average height as predictive variables showed good fitting and validating results. Based on this, the timber assortment outturn model of non-dimension timber, merchantable timber and refuse wood timber assortment outturn model was constructed. The prediction errors of the timber assortment outturn for different diameter classes were small and stable.
      Conclusion  This study reveals the timber assortment structure rule, as well as its influencing factors for Cunninghamia lanceolata final felling stands. The model system can be used to calculate the timber assortment yield of Cunninghamia lanceolata final felling stands, and provide support for the formulation of rational production plan of Cunninghamia lanceolata plantations.
  • [1]
    郑仁华, 施季森, 苏顺德, 等. 杉木第3代种子园营建技术及应用[J]. 森林与环境学报, 2018, 38(4): 406−413.

    Zheng R H, Shi J S, Su S D, et al. The establishment technique and application of the third generation seed orchard of Chinese fir[J]. Journal of Forest and Environment, 2018, 38(4): 406−413.
    [2]
    Wang Z, Zhang X Q, Chhin S, et al. Disentangling the effects of stand and climatic variables on forest productivity of Chinese fir plantations in subtropical China using a random forest algorithm[J]. Agricultural and Forest Meteorology, 2021, 304−305(11): 108412.
    [3]
    臧颢, 黄锦程, 刘洪生, 等. 杉木人工林碳汇木材多功能经营的最优轮伐期[J]. 北京林业大学学报, 2022, 44(10): 120−128.

    Zang H, Huang J C, Liu H S, et al. Optimal rotation period of carbon sequestration wood multifunctional management in Chinese fir plantation[J]. Journal of Beijing Forestry University, 2022, 44(10): 120−128.
    [4]
    Wang Z, Zhang X Q, Zhang J G, et al. Effects of stand factors on tree growth of Chinese fir in the subtropics of China depends on climate conditions from predictions of a deep learning algorithm: a long-term spacing trial[J]. Forest Ecology and Management, 2022, 520(84): 120363.
    [5]
    宋重升, 王有良, 张利荣, 等. 基于大径材培育下杉木人工林间伐初始期的确定[J]. 北京林业大学学报, 2022, 44(3): 45−54.

    Song C S, Wang Y L, Zhang L R, et al. Determination of initial thinning period of Chinese fir plantation based on large diameter timber cultivation[J]. Journal of Beijing Forestry University, 2022, 44(3): 45−54.
    [6]
    梁瑞婷, 孙玉军, 周来. 基于分位数回归法的杉木可变指数削度方程构建[J]. 北京林业大学学报, 2021, 43(7): 70−78.

    Liang R T, Sun Y J, Zhou L. Modeling variable exponential taper function for Cunninghamia lanceolata based on quantile regression[J]. Journal of Beijing Forestry University, 2021, 43(7): 70−78.
    [7]
    索沛蘅, 杜大俊, 王玉哲, 等. 杉木连栽对土壤氮含量和氮转化酶活性的影响[J]. 森林与环境学报, 2019, 39(2): 113−119.

    Suo P H, Du D J, Wang Y Z, et al. Effects of successive rotation Chinese fir plantations on soil nitrogen content and soil enzyme activities related to nitrogen transformation[J]. Journal of Forest and Environment, 2019, 39(2): 113−119.
    [8]
    韦如萍, 胡德活, 郑会全, 等. 杉木优树生长性状和材质性状的研究[J]. 中南林业科技大学学报, 2013, 33(2): 28−33.

    Wei R P, Hu D H, Zheng H Q, et al. Study on growth traits and wood properties of superior tree of Cunninghamia lanceolata[J]. Journal of Central South University of Forestry & Technology, 2013, 33(2): 28−33.
    [9]
    张丹丹, 李婧, 郭琪, 等. 氮添加对杉木人工林土壤氮有效性、溶解性有机氮和酸化的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(12): 77−85, 114.

    Zhang D D, Li J, Guo Q, et al. Effects of nitrogen addition on soil nitrogen availability, dissolved organic nitrogen and acidification in a Chinese fir plantation[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(12): 77−85, 114.
    [10]
    孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006: 143−151.

    Meng X Y. Mensuration[M]. Beijing: China Forestry Publishing House, 2006: 143−151.
    [11]
    Andrezj W, Mariusz B, Agnieszka A, et al. Relationship between stand density and value of timber assortments: a case study for Scots pine stands in north-western Poland[J]. New Zealand Journal of Forestry Science, 2018, 48(1): 1−9. doi: 10.1186/s40490-017-0108-0
    [12]
    Holopainen M, Vastaranta M, Rasinmaki J, et al. Uncertainty in timber assortment estimates predicted from forest inventory data[J]. European Journal of Forest Research, 2010, 129(6): 1131−1142. doi: 10.1007/s10342-010-0401-4
    [13]
    李晓景, 江希钿, 庄崇洋, 等. 闽北天然阔叶林径阶材种结构分析及出材率表的编制[J]. 西南林业大学学报, 2012, 32(6): 39−42.

    Li X J, Jiang X D, Zhuang C Y, et al. Compilation of output structure of diameter grade wood assortments and volume ratio table for natural broad-leaved forest tree species in north Fujian Province[J]. Journal of Southwest Forestry University, 2012, 32(6): 39−42.
    [14]
    林剑峰. 马尾松人工林材种出材率表的研究[J]. 北京林业大学学报, 2001, 23(4): 35−38.

    Lin J F. Research on log rule of timbers from artificial Masson pine forest[J]. Journal of Beijing Forestry University, 2001, 23(4): 35−38.
    [15]
    李骏. 福州市国有林场杉木林林分材种出材率研究[D]. 福州: 福建农林大学, 2017.

    Li J. The research of outturn percentage of timber species in Fuzhou State-Owned Forest Farm fir[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017.
    [16]
    赵铭臻, 王利艳, 刘静, 等. 间伐和施肥对杉木成熟林生长和材种结构的影响[J]. 浙江农林大学学报, 2022, 39(2): 338−346.

    Zhao M Z, Wang L Y, Liu J, et al. Effects of thinning and fertilization on growth and timber structure of mature Chinese fir forest[J]. Journal of Zhejiang A&F University, 2022, 39(2): 338−346.
    [17]
    张水松, 陈长发, 吴克选, 等. 杉木林间伐强度材种出材量和经济效果的研究[J]. 林业科学, 2006, 42(7): 37−46.

    Zhang S S, Chen C F, Wu K X, et al. Studies on the timber assortment outturn and economic benefit of the intermediate cutting intensity for Cunninghamia lanceolata stands[J]. Scientia Silvae Sinicae, 2006, 42(7): 37−46.
    [18]
    邓伦秀. 杉木人工林林分密度效应及材种结构规律研究[D]. 北京: 中国林业科学研究院, 2010.

    Deng L X. Studies on stand density effect and timber grade structure of Cunninghamia lanceolata plantations[D]. Beijing: Chinese Academy of Forestry, 2010.
    [19]
    郭书彬, 宋熙龙, 尤海舟, 等. 经营密度对华北落叶松人工林生长的影响[J]. 中南林业科技大学学报, 2018, 38(4): 1−5.

    Guo S B, Song X L, You H Z, et al. Effects of forest density on Larix principis-rupprechtii plantation[J]. Journal of Central South University of Forestry & Technology, 2018, 38(4): 1−5.
    [20]
    相聪伟, 张建国, 段爱国, 等. 杉木人工林材种结构的立地及密度效应研究[J]. 林业科学研究, 2015, 28(5): 654−659.

    Xiang C W, Zhang J G, Duan A G, et al. Effects of site quality and planting density on wood assortment rate in Chinese fir plantation[J]. Forest Research, 2015, 28(5): 654−659.
    [21]
    王素萍, 江希钿, 杨锦昌. 杉木人工林林分材种出材率变化规律的分析[J]. 福建林学院学报, 2002, 22(2): 146−149.

    Wang S P, Jiang X D, Yang J C. An analysis on the change law of output of wood sort for Cunninghamia lanceolata plantation[J]. Journal of Fujian College of Forestry, 2002, 22(2): 146−149.
    [22]
    李明阳. 森林经营规划[M]. 北京: 中国林业出版社, 2022: 136−141.

    Li M Y. Forest management planning[M]. Beijing: China Forestry Publishing House, 2022: 136−141.
    [23]
    福建省市场监督管理局. 森林立地分类与立地质量等级: DB35/T 169—2022[S]. 福州: 福建省市场监督管理局, 2022.

    Market Supervision Administration of Fujian Province. Forest site classification and site quality grade: DB35/T 169−2022[S]. Fuzhou: Market Supervision Administration of Fujian Province, 2022.
    [24]
    福建省市场监督管理局. 主要用材树种出材量测算方法: DB35/T 1876—2019[S]. 福州: 福建省市场监督管理局, 2019.

    Market Supervision Administration of Fujian Province. A calculating methods standard on output volume of main timber tree species: DB35/T 1876−2019[S]. Fuzhou: Market Supervision Administration of Fujian Province, 2019.
    [25]
    王梓名, 赵明明, 任云卯, 等. 主伐龄油松建筑材林生长及土壤性质对林分密度的响应[J]. 北京林业大学学报, 2022, 44(12): 88−101.

    Wang Z M, Zhao M M, Ren Y M, et al. Response of growth and soil properties of Chinese pine building timber forest at felling age to stand density[J]. Journal of Beijing Forestry University, 2022, 44(12): 88−101.
    [26]
    孙余丹, 刘爽, 刘金祥, 等. 不同红树林群落结构与植被碳分布[J]. 东北农业大学学报, 2018, 49(11): 58−64.

    Sun Y D, Liu S, Liu J X, et al. Community structure and vegetation carbon distribution of different mangrove forests[J]. Journal of Northeast Agricultural University, 2018, 49(11): 58−64.
    [27]
    金菊良, 杨晓华, 丁晶. 标准遗传算法的改进方案—加速遗传算法[J]. 系统工程理论与实践, 2001, 21(4): 8−13.

    Jin J L, Yang X H, Ding J. An improved simple genetic algorithm-accelerating genetic algorithm[J]. Systems Engineering—Theory & Practice, 2001, 21(4): 8−13.
    [28]
    黄朝法. 相容性杉木人工单木二元材种出材率模型[J]. 武夷学院学报, 2019, 38(6): 33−37.

    Huang C F. Compatible individual tree two-way merchantable volume model of Cunninghamia lanceolata plantation[J]. Journal of Wuyi University, 2019, 38(6): 33−37.
    [29]
    郭光智, 段爱国, 张建国, 等. 南亚热带杉木人工林材种结构长期立地与密度效应[J]. 林业科学研究, 2020, 33(1): 35−43.

    Guo G Z, Duan A G, Zhang J G, et al. Long-term effects of site and density on timber assortment structure of Chinese fir plantations in south subtropical area, China[J]. Forest Research, 2020, 33(1): 35−43.
    [30]
    郑鸣鸣, 任正标, 王友良, 等. 间伐强度对杉木中龄林生长和结构的影响[J]. 森林与环境学报, 2020, 40(4): 369−376.

    Zheng M M, Ren Z B, Wang Y L, et al. Effect of thinning intensity on the growth and structure of a middle-aged Chinese fir forest[J]. Journal of Forest and Environment, 2020, 40(4): 369−376.
    [31]
    周国模, 郭仁鉴, 韦新良, 等. 浙江省杉木人工林生长模型及主伐年龄的确定[J]. 浙江林学院学报, 2001, 18(3): 219−222.

    Zhou G M, Guo R J, Wei X L, et al. Growth model and cutting age of Chinese fir planted forest in Zhejiang Province[J]. Journal of Zhejiang Forestry College, 2001, 18(3): 219−222.
    [32]
    陈平留, 刘健, 郑德祥. 速生丰产优质杉木林经济效益分析及伐期确定[J]. 林业科学, 2001, 37(增刊1): 47−51. doi: 10.11707/j.1001-7488.2001S109

    Chen P L, Liu J, Zheng D X. The confirmation of harvesting period and the analysis of economic effect on the productive and high-quality Chinese fir plantation[J]. Scientia Silvae Sinicae, 2001, 37(Suppl.1): 47−51. doi: 10.11707/j.1001-7488.2001S109
  • Related Articles

    [1]Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240063
    [2]Luo Guangcheng, Lei Xiangdong, Shi Jingning, He Xiao, Xiang Wei, Li Yutang. Site quality evaluation of Larix olgensis plantations based on potential productivity in Jilin Province of northeastern China[J]. Journal of Beijing Forestry University, 2025, 47(1): 1-10. DOI: 10.12171/j.1000-1522.20240173
    [3]Jiang Jun, Chen Changqi, Chen Beibei, Wang Hao, Hu Dongyang, Zhang Yong, Zhang Yongfu, Li Jie, Zheng Junpeng. Effects of stand density on carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption of Platycladus orientalis plantations in rocky mountainous area of Beijing[J]. Journal of Beijing Forestry University, 2024, 46(10): 33-41. DOI: 10.12171/j.1000-1522.20240011
    [4]Luo Ye, Wang Jun, Yang Yuchun, He Huaijiang, Liu Ting. Growth patterns of Juglans mandshurica secondary forest with stand age and stand density in Northeast China[J]. Journal of Beijing Forestry University, 2024, 46(6): 10-19. DOI: 10.12171/j.1000-1522.20230171
    [5]Jin Suo, Bi Haojie, Liu Jia, Liu Yuhang, Wang Yu, Qi Jinqiu, Hao Jianfeng. Effects of stand density on community structure and species diversity of Cupressus funebris plantation in Yunding Mountain, southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 10-17. DOI: 10.12171/j.1000-1522.20190202
    [6]Shen Jianbo, Wang Yingkuan, Lei Xiangdong, Lei Yuancai, Wang Qiulai, Ye Jinsheng. Site quality evaluation of uneven-aged mixed coniferous and broadleaved stands in Guangdong Province of southern China based on BP neural network[J]. Journal of Beijing Forestry University, 2019, 41(5): 38-47. DOI: 10.13332/j.1000-1522.20190028
    [7]Chen Minghui, Hui Gangying, Hu Yanbo, Zhang Gongqiao, Zhang Ganggang, Liu Ruihong, Yang Aiming, Zhao Zhonghua, Wang Haibin. Impacts of structure-based forest management on forest quality of broadleaved Korean pine forests in northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 19-30. DOI: 10.13332/j.1000-1522.20190032
    [8]XU Luo, KANG Xin-gang, GUO Wei-wei, ZHANG Jia-wei, CHEN Ri-dong, LIAO Qing-wen, KONG Lei. Site quality evaluation of natural spruce-fir and broadleaf mixed stands.[J]. Journal of Beijing Forestry University, 2016, 38(5): 11-12. DOI: 10.13332/j.1000-1522.20140126
    [9]HUANG Guo-sheng, MA Wei, WANG Xue-jun, XIA Chao-zong, DANG Yong-feng. Forestland site quality evaluation of Fujian Province based on continuous forest inventory data.[J]. Journal of Beijing Forestry University, 2014, 36(3): 1-8. DOI: 10.13332/j.cnki.jbfu.2014.03.001
    [10]XU Cheng-yang, ZHANG Hua, JIA Zhong-kui, XUE Kang, DU Peng-zhi, WANG Jing-guo. Effects of stand density and site types on root characteristics of Platycladus orientalis plantations in Beijing mountainous area[J]. Journal of Beijing Forestry University, 2007, 29(4): 95-99. DOI: 10.13332/j.1000-1522.2007.04.022
  • Cited by

    Periodical cited type(8)

    1. 张慧,燕怡帆,朱雅,陈玉婷,王菁华,崔志鹏,杨迪,任学敏. 林分密度对伏牛山南麓山茱萸人工林林下草本植物多样性和土壤性质的影响. 西南林业大学学报(自然科学). 2025(01): 96-105 .
    2. 赵金同,马俊. 刺槐扦插育苗技术与精细抚育要点. 现代园艺. 2024(08): 49-51 .
    3. 何欢,康必均,尹婧,李菲,彭栋,李桂静,查同刚. 不同营林措施对川东华蓥山杉木林土壤团聚体稳定性及细根分布的影响. 土壤通报. 2024(02): 351-359 .
    4. 史小鹏,苟贺然,何淑勤,刘柏廷,冉兰芳,杨琪琳,扎西拉姆,陈雨馨,骆紫藤. 成都市温江区两种绿地土壤抗蚀抗冲性及其影响因素. 水土保持通报. 2024(04): 117-125 .
    5. 刘忆南,申振宏,都都,张知然,林勇明. 蒋家沟泥石流堆积扇不同植被类型区土壤抗蚀性评价. 应用与环境生物学报. 2024(05): 886-893 .
    6. 王依瑞,王彦辉,段文标,李平平,于澎涛,甄理,李志鑫,尚会军. 黄土高原刺槐人工林郁闭度对林下植物多样性特征的影响. 应用生态学报. 2023(02): 305-314 .
    7. 赵云鹤,钟鹏,高晗,付玉. 土地利用类型对典型黑土团聚体稳定性和抗蚀性的影响. 东北林业大学学报. 2023(09): 112-119 .
    8. 胡亚伟,施政乐,刘畅,徐勤涛,张建军. 晋西黄土区刺槐林密度对林下植物多样性及土壤理化性质的影响. 生态学杂志. 2023(09): 2072-2080 .

    Other cited types(8)

Catalog

    Article views (527) PDF downloads (99) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return