Citation: | Li Xiaoyu, Hu Bing, Qin Jianghuan, Zhao Xiuhai. Relationship between species abundance distribution and trait distribution in main forest stand of Changbai Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(8): 47-56. DOI: 10.12171/j.1000-1522.20230050 |
The study expored the species abundance distribution pattern and its driving process, as well as the relationship between species abundance distribution and trait distribution, so as to provide theoretical support for strategies formulation of local forest management and restoration strategies.
The study objects were three forest plots of 5.2 ha (secondary Populus davidiana-Betula platyphylla mixed forest, secondary coniferous and broadleaved mixed forest, primary Pinus koraiensis-Tilia amurensis mixed forest) and one forest plot of 5 ha (primary broadleaved-Pinus koraiensis mixed forest). Six functional traits, including leaf area, specific leaf area, leaf thickness, max. tree height, leaf nitrogen concentration, and leaf phosphorus concentration, were measured to analyze the distribution patterns of species abundance and functional traits in the sample plot, as well as their relationship.
Although the types of the models that had passed statistical tests varied in different stands, all optimal models were statistical models. In the distribution patterns of traits, the max. tree height, specific leaf area, and leaf phosphorus concentration of the 4 sample plots showed a normal distribution. However, the model of species distribution converted from the functional traits distribution showed that although some models had passed statistical tests, it could not fit the real species abundance distribution well.
Random process is not the main mechanism driving the formation of species diversity in Changbai Mountain. Instead, competition has a significant effect on species diversity, which determines the change of community species composition during forest succession. There is a correlation between functional trait distribution and species abundance distribution, but community-level trait distribution cannot be applied to infer species abundance distribution directly.
[1] |
McGill B J, Etienne R S, Gray J S, et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework[J]. Ecology Letters, 2007, 10: 995−1015. doi: 10.1111/j.1461-0248.2007.01094.x
|
[2] |
Gaston K J. Species-range-size distributions: patterns, mechanisms and implications[J]. Trends in Ecology & Evolution, 1996, 11(5): 197−201.
|
[3] |
Isaac N J B, Jarzyna M A, Keil P, et al. Data integration for large-scale models of species distributions[J]. Trends in Ecology & Evolution, 2020, 35(1): 56−67.
|
[4] |
Naeem S. Patterns in the distribution and abundance of grassland species[J]. Trends in Ecology & Evolution, 1996, 11(10): 400−401.
|
[5] |
Morlon H, White E P, Etienne R S, et al. Taking species abundance distribution beyond individuals[J]. Ecology Letters, 2009, 12: 488−501. doi: 10.1111/j.1461-0248.2009.01318.x
|
[6] |
Gaston K J. The multiple forms of the interspecific abundance-distribution relationship[J]. Oikos, 1996, 76: 211−220. doi: 10.2307/3546192
|
[7] |
Gaston K J, Blackburn T M, Greenwood J J D, et al. Abundance-occupancy relationships[J]. Journal of Applied Ecology, 2000, 37: S39−S59. doi: 10.1046/j.1365-2664.2000.00485.x
|
[8] |
Diamond J M. Assembly of species communities[M]//Cody M L, Diamond J M. Ecology and evolution of communities. Cambridge: Harvard University Press, 1975: 342−444.
|
[9] |
Ricklefs R E, Travis J. A morphological approach to the study of avian community organization[J]. The Auk, 1980, 97: 321−338.
|
[10] |
Keddy P A. Assembly and response rules: two goals for predictive community ecology[J]. Journal of Vegetation Science, 1992, 3: 157−164. doi: 10.2307/3235676
|
[11] |
Hubbell S P. The unified neutral theory of biodiversity and biogeography[M]. Princeton: Princeton University Press, 2001.
|
[12] |
Jung V, Violle C, Mondy C, et al. Intraspecific variability and trait-based community assembly[J]. Journal of Ecology, 2010, 98: 1134−1140. doi: 10.1111/j.1365-2745.2010.01687.x
|
[13] |
Hutchinson G E. Homage to Santa Rosalia or why are there so many kinds of animals?[J]. The American Naturalist, 1959, 93(870): 145−159. doi: 10.1086/282070
|
[14] |
MacArthur R, Levins R. The limiting similarity, convergence, and divergence of coexisting species[J]. The American Naturalist, 1967, 101: 377−385. doi: 10.1086/282505
|
[15] |
Roughgarden J. Competition and theory in community ecology[J]. The American Naturalist, 1983, 122(5): 583−601.
|
[16] |
Meszéna G, Gyllenberg M, Pásztor L, et al. Competitive exclusion and limiting similarity: a unified theory[J]. Theoretical Population Biology, 2006, 69(1): 68−87. doi: 10.1016/j.tpb.2005.07.001
|
[17] |
Díaz S, Cabido M, Casanoves F. Plant functional traits and environmental filters at a regional scale[J]. Journal of Vegetation Science, 1998, 9: 113−122. doi: 10.2307/3237229
|
[18] |
Brooker R W, Maestre F T, Callaway R M, et al. Facilitation in plant communities: the past, the present, and the future[J]. Journal of Ecology, 2008, 96: 18−34. doi: 10.1111/j.1365-2745.2007.01295.x
|
[19] |
Ulrich W, Ollik M, Ugland K I. A meta-analysis of species-abundance distributions[J]. Oikos, 2010, 119(7): 1149−1155. doi: 10.1111/j.1600-0706.2009.18236.x
|
[20] |
Green J L, Plotkin J B. A statistical theory for sampling species abundances [J]. Ecology Letters, 2007, 10(11): 1037−1045.
|
[21] |
May R M. Patterns of species abundance and diversity[M]//Cody M L, Diamond J M. Ecology and evolution of communities. Cambridge: Harvard University Press, 1975: 81−120.
|
[22] |
Tokeshi M. Species abundance patterns and community structure[J]. Advances in Ecological Research, 1993, 24: 111−186.
|
[23] |
Marquet P A, Keymer J A, Cofre H. Breaking the stick in space: of niche models, metacommunities and patterns in the relative abundance of species[M]//Blackburn T M, Gaston K J. Macroecology: concepts and consequences. Oxford: Blackwell Science, 2003: 64−86.
|
[24] |
Gray J S, Bjorgesaeter A, Ugland K I. On plotting species abundance distributions[J]. Journal of Animal Ecology, 2006, 75(3): 752−756. doi: 10.1111/j.1365-2656.2006.01095.x
|
[25] |
MacArthur R H. On the relative abundance of bird species[J]. Proceedings of the National Academy of Sciences of the United States of America, 1957, 43: 293−295.
|
[26] |
Westoby M, Falster D S, Moles A T, et al. Plant ecological strategies: some leading dimensions of variation between species[J]. Annual Review of Ecology & Systematics, 2002, 33: 125−159.
|
[27] |
Kraft N J B, Valencia R, Ackerly D D. Functional traits and niche-based tree community assembly in an Amazonian forest[J]. Science, 2008, 322: 580−582.
|
[28] |
McGill B J, Enquist B J, Weiher E, et al. Rebuilding community ecology from functional traits[J]. Trends in Ecology & Evolution, 2006, 21(4): 178−185.
|
[29] |
Kevin J G, Tim M B, John H L. Interspecific abundance-range size relationships: an appraisal of mechanisms[J]. Journal of Animal Ecology, 1997, 66(4): 579−601. doi: 10.2307/5951
|
[30] |
Brown J H. On the relationship between abundance and distribution of species[J]. The American Naturalist, 1984, 124(2): 255−279. doi: 10.1086/284267
|
[31] |
Murray B R, Thrall P H, Gill A M, et al. How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales[J]. Austral Ecology, 2002, 27: 291−310. doi: 10.1046/j.1442-9993.2002.01181.x
|
[32] |
Shipley B, Vile D, Garnier E. From plant traits to plant communities: a statistical mechanistic approach to biodiversity[J]. Science, 2006, 314: 812−817. doi: 10.1126/science.1131344
|
[33] |
Haegeman B, Loreau M. Limitations of entropy maximization in ecology[J]. Oikos, 2008, 117: 1700−1710. doi: 10.1111/j.1600-0706.2008.16539.x
|
[34] |
Umaña M N, Zhang C C, Cao M, et al. Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings[J]. Ecology Letters, 2015, 18(12): 1329−1337. doi: 10.1111/ele.12527
|
[35] |
Umaña M N, Mi X, Cao M, et al. The role of functional uniqueness and spatial aggregation in explaining rarity in trees[J]. Global Ecology and Biogeography, 2017, 26(7): 777−786. doi: 10.1111/geb.12583
|
[36] |
Mi X, Sun Z, Song Y, et al. Rare tree species have narrow environmental but not functional niches[J]. Functional Ecology, 2021, 35: 511−520. doi: 10.1111/1365-2435.13714
|
[37] |
Dai L, Zhao F, Shao G, et al. China’s classification-based forest management: procedures, problems, and prospects[J]. Environmental Management, 2009, 43(6): 1162−1173. doi: 10.1007/s00267-008-9229-9
|
[38] |
于大炮, 周旺明, 周莉, 等. 长白山区阔叶红松林经营历史与研究历程[J]. 应用生态学报, 2019, 30(5): 1426−1434.
Yu D P, Zhou W M, Zhou L, et al. Exploring the history of the management theory and technology of broad-leaved Korean pine (Pinus koraiensis Sieb. et Zucc.) forest in Changbai Mountain region, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1426−1434.
|
[39] |
郝占庆, 陶大立, 赵士洞. 长白山北坡阔叶红松林及其次生白桦林高等植物物种多样性比较[J]. 应用生态学报, 1994, 5(1): 16−23. doi: 10.3321/j.issn:1001-9332.1994.01.013
Hao Z Q, Tao D L, Zhao S D. Diversity of higher plants in broad-leaved Korean pine and secondary birch of forests on northern slope of Changbai mountain[J]. Chinese Journal of Applied Ecology, 1994, 5(1): 16−23. doi: 10.3321/j.issn:1001-9332.1994.01.013
|
[40] |
郝占庆, 于德永, 吴钢, 等. 长白山北坡植物群落β多样性分析[J]. 生态学报, 2001, 21(12): 2018−2022.
Hao Z Q, Yu D Y, Wu G, et al. Analysis on β diversity of plant communities on northern slope of Changbai Mountain[J]. Acta Ecologica Sinica, 2001, 21(12): 2018−2022.
|
[41] |
Yuan Z, Ali A, Ruiz-Benito P, et al. Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient[J]. Journal of Ecology, 2020, 108(5): 2012−2024. doi: 10.1111/1365-2745.13378
|
[42] |
张姗, 蔺菲, 原作强, 等. 长白山阔叶红松林草本层物种多度分布格局及其季节动态[J]. 生物多样性, 2015, 23(5): 641−648. doi: 10.17520/biods.2015089
Zhang S, Lin F, Yuan Z Q, et al. Herb layer species abundance distribution patterns in different seasons in an old-growth temperate forest in Changbai Mountain, China[J]. Biodiversity Science, 2015, 23(5): 641−648. doi: 10.17520/biods.2015089
|
[43] |
闫琰, 张春雨, 赵秀海. 长白山不同演替阶段针阔混交林群落物种多度分布格局[J]. 植物生态学报, 2012, 36(9): 923−934.
Yan Y, Zhang C Y, Zhao X H. Species-abundance distribution patterns at different successional stages of conifer and broad-leaved mixed forest communities in Changbai Mountains, China[J]. Chinese Journal of Plant Ecology, 2012, 36(9): 923−934.
|
[44] |
侯嫚嫚, 李晓宇, 王均伟, 等. 长白山针阔混交林不同演替阶段群落系统发育和功能性状结构[J]. 生态学报, 2017, 37(22): 7503−7513.
Hou M M, Li X Y, Wang J W, et al. Phylogenetic development and functional structures during successional stages of conifer and broad-leaved mixed forest communities in Changbai Mountains, China[J]. Acta Ecologica Sinica, 2017, 37(22): 7503−7513.
|
[45] |
郝姝珺, 李晓宇, 侯嫚嫚, 等. 长白山温带森林不同演替阶段群落功能性状的空间变化[J]. 植物生态学报, 2019, 43(3): 208−216. doi: 10.17521/cjpe.2018.0295
Hao S J, Li X Y, Hou M M, et al. Spatial variations of community functional traits at different successional stages in temperate forests of Changbai Mountains, Northeast China[J]. Chinese Journal of Plant Ecology, 2019, 43(3): 208−216. doi: 10.17521/cjpe.2018.0295
|
[46] |
Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51: 335−380. doi: 10.1071/BT02124
|
[47] |
Preston F W. The commonness, and rarity, of species[J]. Ecology, 1948, 29: 254−283. doi: 10.2307/1930989
|
[48] |
Fisher R A, Corbet A S, Williams C B. The relation between the number of species and the number of individuals in a random sample from an animal population[J]. Journal of Animal Ecology, 1943, 12: 42−58. doi: 10.2307/1411
|
[49] |
MacArthur R H. On the relative abundance of species[J]. American Naturalist, 1960, 94: 25−36. doi: 10.1086/282106
|
[50] |
Motomura I. On the statistical treatment of communities[J]. Zoologisches Magazin, 1932, 44: 379−383.
|
[51] |
Frontier S. Diversity and structure in aquatic ecosystems[J]. Oceanography & Marine Biology, 1985, 23: 253−312.
|
[52] |
Volkov I, Banavar J R, Hubbell S P, et al. Neutral theory and relative species abundance in ecology[J]. Nature, 2003, 424: 1035−1037. doi: 10.1038/nature01883
|
[53] |
Koffel T, Umemura K, Litchman E. et al. A general framework for species-abundance distributions: linking traits and dispersal to explain commonness and rarity[J]. Ecology Letters, 2022, 25(11): 2359−2371. doi: 10.1111/ele.14094
|
[54] |
Aho K, Derryberry D, Peterson T. Model selection for ecologists: the worldviews of AIC and BIC[J]. Ecology, 2014, 95(3): 631−636. doi: 10.1890/13-1452.1
|
[55] |
Gao J, Zhang P, Zhang X, et al. Multi-scale analysis on species diversity within a 40-ha old-growth temperate forest[J]. Plant Diversity, 2018, 40(2): 45−49. doi: 10.1016/j.pld.2017.12.003
|
[56] |
Tan L, Zhang P, Zhao X, et al. Analysing species abundance distribution patterns across sampling scales in three natural forests in Northeastern China[J]. iForest-Biogeosciences and Forestry, 2020, 13(6): 482−489.
|
[57] |
Wu A, Deng X, He H, et al. Responses of species abundance distribution patterns to spatial scaling in subtropical secondary forests[J]. Ecology and Evolution, 2019, 9(9): 5338−5347. doi: 10.1002/ece3.5122
|
[58] |
李晓宇, 廖嘉星, 侯嫚嫚, 等. 不同尺度下长白山次生杨桦林群落系统发育结构研究[J]. 北京林业大学学报, 2016, 38(12): 14−20.
Li X Y, Liao J X, Hou M M, et al. Multi-scale analysis on community phylogenetic structure of secondary Populus davidiana-Betula platyphylla forest in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(12): 14−20.
|
[59] |
Letcher S G, Chazdon R L, Andrade A C S, et al. Phylogenetic community structure during succession: evidence from three Neotropical forest sites[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14(2): 79−87. doi: 10.1016/j.ppees.2011.09.005
|
[60] |
Li Y, Shipley B, Price J N, et al. Habitat filtering determines the functional niche occupancy of plant communities worldwide[J]. Journal of Ecology, 2017, 106(3): 1001−1009.
|
[61] |
Kunstler G, Falster D, Coomes D A, et al. Plant functional traits have globally consistent effects on competition[J]. Nature, 2016, 529(7585): 204−207. doi: 10.1038/nature16476
|
[62] |
Laughlin D C, Joshi C, Bodegom P M, er al. A predictive model of community assembly that incorporates intraspecific trait variation[J]. Ecology Letters, 2012, 15(11): 1291−1299. doi: 10.1111/j.1461-0248.2012.01852.x
|
[63] |
Laughlin D C, Joshi C. Theoretical consequences of trait-based environmental filtering for the breadth and shape of the niche: New testable hypotheses generated by the Traitspace model[J]. Ecological Modelling, 2015, 307: 10−21. doi: 10.1016/j.ecolmodel.2015.03.013
|
[64] |
Carmona C P, de Bello F, Mason N W H, et al. Traits without borders: integrating functional diversity across scales[J]. Trends in Ecology & Evolution, 2016, 31(5): 382−394.
|
[65] |
Lavorel S, Grigulis S K, McIntyre N S G, et al. Assessing functional diversity in the field-methodology matters[J]. Functional Ecology, 2008, 22: 134−147. doi: 10.1111/j.1365-2435.2007.01339.x
|
[66] |
Fang S, Cadotte M W, Yuan Z, et al. Intraspecific trait variation improves the detection of deterministic community assembly processes in early successional forests, but not in late successional forests[J]. Journal of Plant Ecology, 2019, 12(4): 593−602. doi: 10.1093/jpe/rty053
|
1. |
施云凤,李文秀,贺军军,罗萍,张华林,张凤英. 甲基磺酸乙酯诱变对阳春砂仁出苗的影响. 热带农业科学. 2024(10): 47-51 .
![]() | |
2. |
崔晓彤,刘婉婷,张恒月,段乌拉,王君. 杨树派间远缘杂种小胡杨(Populus simonii×P.euphratica)组培快繁体系的构建. 分子植物育种. 2023(07): 2337-2343 .
![]() | |
3. |
王欢,曾琪瑶,王春胜,郭俊杰,曾杰. 油榄仁种胚高质量组培快繁体系. 中南林业科技大学学报. 2023(09): 53-61+88 .
![]() | |
4. |
李春兰. 毛白杨良种繁殖技术研究进展. 安徽农业科学. 2022(10): 22-24+45 .
![]() | |
5. |
王雷,李百和,赵培霞,韩鹏. 蒙古莸(Caryopteris mongholica)组培快繁体系的建立和优化. 分子植物育种. 2022(14): 4745-4754 .
![]() | |
6. |
陈耀兵,罗凯,李美东,黄秀芳,刘汉蓁,王水清,陈圣林. “鄂选1号”山桐子组培繁育体系构建. 北京林业大学学报. 2022(12): 23-31 .
![]() | |
7. |
屈超,叶冬梅,郭欣,崔雁敏,朝勒蒙. 互叶醉鱼草茎段组织培养技术研究. 江苏林业科技. 2022(06): 15-19 .
![]() | |
8. |
马秋月,李倩中,李淑顺,朱璐,颜坤元,李淑娴,张斌,闻婧. 元宝枫组织培养及快速繁殖技术研究. 南京林业大学学报(自然科学版). 2021(02): 220-224 .
![]() | |
9. |
石进朝,陈博,陈兰芬,李彦侠. 阳光毛白杨带芽茎段再生体系的构建. 江苏农业科学. 2021(14): 50-55 .
![]() | |
10. |
梁艳,赵雪莹,白雪,刘德强,张妍,潘朋. PVP处理对黑皮油松外植体酚类物质形成及酶活性的影响. 林业科学. 2021(10): 166-174 .
![]() | |
11. |
王建新,吴志茹,冯光惠. 榆林沙区引种波尔卡树莓的组织培养与快速繁殖. 山西农业科学. 2019(12): 2078-2082 .
![]() |