Citation: | Li Xiaoyu, Hu Bing, Qin Jianghuan, Zhao Xiuhai. Relationship between species abundance distribution and trait distribution in main forest stand of Changbai Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(8): 47-56. DOI: 10.12171/j.1000-1522.20230050 |
The study expored the species abundance distribution pattern and its driving process, as well as the relationship between species abundance distribution and trait distribution, so as to provide theoretical support for strategies formulation of local forest management and restoration strategies.
The study objects were three forest plots of 5.2 ha (secondary Populus davidiana-Betula platyphylla mixed forest, secondary coniferous and broadleaved mixed forest, primary Pinus koraiensis-Tilia amurensis mixed forest) and one forest plot of 5 ha (primary broadleaved-Pinus koraiensis mixed forest). Six functional traits, including leaf area, specific leaf area, leaf thickness, max. tree height, leaf nitrogen concentration, and leaf phosphorus concentration, were measured to analyze the distribution patterns of species abundance and functional traits in the sample plot, as well as their relationship.
Although the types of the models that had passed statistical tests varied in different stands, all optimal models were statistical models. In the distribution patterns of traits, the max. tree height, specific leaf area, and leaf phosphorus concentration of the 4 sample plots showed a normal distribution. However, the model of species distribution converted from the functional traits distribution showed that although some models had passed statistical tests, it could not fit the real species abundance distribution well.
Random process is not the main mechanism driving the formation of species diversity in Changbai Mountain. Instead, competition has a significant effect on species diversity, which determines the change of community species composition during forest succession. There is a correlation between functional trait distribution and species abundance distribution, but community-level trait distribution cannot be applied to infer species abundance distribution directly.
[1] |
McGill B J, Etienne R S, Gray J S, et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework[J]. Ecology Letters, 2007, 10: 995−1015. doi: 10.1111/j.1461-0248.2007.01094.x
|
[2] |
Gaston K J. Species-range-size distributions: patterns, mechanisms and implications[J]. Trends in Ecology & Evolution, 1996, 11(5): 197−201.
|
[3] |
Isaac N J B, Jarzyna M A, Keil P, et al. Data integration for large-scale models of species distributions[J]. Trends in Ecology & Evolution, 2020, 35(1): 56−67.
|
[4] |
Naeem S. Patterns in the distribution and abundance of grassland species[J]. Trends in Ecology & Evolution, 1996, 11(10): 400−401.
|
[5] |
Morlon H, White E P, Etienne R S, et al. Taking species abundance distribution beyond individuals[J]. Ecology Letters, 2009, 12: 488−501. doi: 10.1111/j.1461-0248.2009.01318.x
|
[6] |
Gaston K J. The multiple forms of the interspecific abundance-distribution relationship[J]. Oikos, 1996, 76: 211−220. doi: 10.2307/3546192
|
[7] |
Gaston K J, Blackburn T M, Greenwood J J D, et al. Abundance-occupancy relationships[J]. Journal of Applied Ecology, 2000, 37: S39−S59. doi: 10.1046/j.1365-2664.2000.00485.x
|
[8] |
Diamond J M. Assembly of species communities[M]//Cody M L, Diamond J M. Ecology and evolution of communities. Cambridge: Harvard University Press, 1975: 342−444.
|
[9] |
Ricklefs R E, Travis J. A morphological approach to the study of avian community organization[J]. The Auk, 1980, 97: 321−338.
|
[10] |
Keddy P A. Assembly and response rules: two goals for predictive community ecology[J]. Journal of Vegetation Science, 1992, 3: 157−164. doi: 10.2307/3235676
|
[11] |
Hubbell S P. The unified neutral theory of biodiversity and biogeography[M]. Princeton: Princeton University Press, 2001.
|
[12] |
Jung V, Violle C, Mondy C, et al. Intraspecific variability and trait-based community assembly[J]. Journal of Ecology, 2010, 98: 1134−1140. doi: 10.1111/j.1365-2745.2010.01687.x
|
[13] |
Hutchinson G E. Homage to Santa Rosalia or why are there so many kinds of animals?[J]. The American Naturalist, 1959, 93(870): 145−159. doi: 10.1086/282070
|
[14] |
MacArthur R, Levins R. The limiting similarity, convergence, and divergence of coexisting species[J]. The American Naturalist, 1967, 101: 377−385. doi: 10.1086/282505
|
[15] |
Roughgarden J. Competition and theory in community ecology[J]. The American Naturalist, 1983, 122(5): 583−601.
|
[16] |
Meszéna G, Gyllenberg M, Pásztor L, et al. Competitive exclusion and limiting similarity: a unified theory[J]. Theoretical Population Biology, 2006, 69(1): 68−87. doi: 10.1016/j.tpb.2005.07.001
|
[17] |
Díaz S, Cabido M, Casanoves F. Plant functional traits and environmental filters at a regional scale[J]. Journal of Vegetation Science, 1998, 9: 113−122. doi: 10.2307/3237229
|
[18] |
Brooker R W, Maestre F T, Callaway R M, et al. Facilitation in plant communities: the past, the present, and the future[J]. Journal of Ecology, 2008, 96: 18−34. doi: 10.1111/j.1365-2745.2007.01295.x
|
[19] |
Ulrich W, Ollik M, Ugland K I. A meta-analysis of species-abundance distributions[J]. Oikos, 2010, 119(7): 1149−1155. doi: 10.1111/j.1600-0706.2009.18236.x
|
[20] |
Green J L, Plotkin J B. A statistical theory for sampling species abundances [J]. Ecology Letters, 2007, 10(11): 1037−1045.
|
[21] |
May R M. Patterns of species abundance and diversity[M]//Cody M L, Diamond J M. Ecology and evolution of communities. Cambridge: Harvard University Press, 1975: 81−120.
|
[22] |
Tokeshi M. Species abundance patterns and community structure[J]. Advances in Ecological Research, 1993, 24: 111−186.
|
[23] |
Marquet P A, Keymer J A, Cofre H. Breaking the stick in space: of niche models, metacommunities and patterns in the relative abundance of species[M]//Blackburn T M, Gaston K J. Macroecology: concepts and consequences. Oxford: Blackwell Science, 2003: 64−86.
|
[24] |
Gray J S, Bjorgesaeter A, Ugland K I. On plotting species abundance distributions[J]. Journal of Animal Ecology, 2006, 75(3): 752−756. doi: 10.1111/j.1365-2656.2006.01095.x
|
[25] |
MacArthur R H. On the relative abundance of bird species[J]. Proceedings of the National Academy of Sciences of the United States of America, 1957, 43: 293−295.
|
[26] |
Westoby M, Falster D S, Moles A T, et al. Plant ecological strategies: some leading dimensions of variation between species[J]. Annual Review of Ecology & Systematics, 2002, 33: 125−159.
|
[27] |
Kraft N J B, Valencia R, Ackerly D D. Functional traits and niche-based tree community assembly in an Amazonian forest[J]. Science, 2008, 322: 580−582.
|
[28] |
McGill B J, Enquist B J, Weiher E, et al. Rebuilding community ecology from functional traits[J]. Trends in Ecology & Evolution, 2006, 21(4): 178−185.
|
[29] |
Kevin J G, Tim M B, John H L. Interspecific abundance-range size relationships: an appraisal of mechanisms[J]. Journal of Animal Ecology, 1997, 66(4): 579−601. doi: 10.2307/5951
|
[30] |
Brown J H. On the relationship between abundance and distribution of species[J]. The American Naturalist, 1984, 124(2): 255−279. doi: 10.1086/284267
|
[31] |
Murray B R, Thrall P H, Gill A M, et al. How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales[J]. Austral Ecology, 2002, 27: 291−310. doi: 10.1046/j.1442-9993.2002.01181.x
|
[32] |
Shipley B, Vile D, Garnier E. From plant traits to plant communities: a statistical mechanistic approach to biodiversity[J]. Science, 2006, 314: 812−817. doi: 10.1126/science.1131344
|
[33] |
Haegeman B, Loreau M. Limitations of entropy maximization in ecology[J]. Oikos, 2008, 117: 1700−1710. doi: 10.1111/j.1600-0706.2008.16539.x
|
[34] |
Umaña M N, Zhang C C, Cao M, et al. Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings[J]. Ecology Letters, 2015, 18(12): 1329−1337. doi: 10.1111/ele.12527
|
[35] |
Umaña M N, Mi X, Cao M, et al. The role of functional uniqueness and spatial aggregation in explaining rarity in trees[J]. Global Ecology and Biogeography, 2017, 26(7): 777−786. doi: 10.1111/geb.12583
|
[36] |
Mi X, Sun Z, Song Y, et al. Rare tree species have narrow environmental but not functional niches[J]. Functional Ecology, 2021, 35: 511−520. doi: 10.1111/1365-2435.13714
|
[37] |
Dai L, Zhao F, Shao G, et al. China’s classification-based forest management: procedures, problems, and prospects[J]. Environmental Management, 2009, 43(6): 1162−1173. doi: 10.1007/s00267-008-9229-9
|
[38] |
于大炮, 周旺明, 周莉, 等. 长白山区阔叶红松林经营历史与研究历程[J]. 应用生态学报, 2019, 30(5): 1426−1434.
Yu D P, Zhou W M, Zhou L, et al. Exploring the history of the management theory and technology of broad-leaved Korean pine (Pinus koraiensis Sieb. et Zucc.) forest in Changbai Mountain region, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1426−1434.
|
[39] |
郝占庆, 陶大立, 赵士洞. 长白山北坡阔叶红松林及其次生白桦林高等植物物种多样性比较[J]. 应用生态学报, 1994, 5(1): 16−23. doi: 10.3321/j.issn:1001-9332.1994.01.013
Hao Z Q, Tao D L, Zhao S D. Diversity of higher plants in broad-leaved Korean pine and secondary birch of forests on northern slope of Changbai mountain[J]. Chinese Journal of Applied Ecology, 1994, 5(1): 16−23. doi: 10.3321/j.issn:1001-9332.1994.01.013
|
[40] |
郝占庆, 于德永, 吴钢, 等. 长白山北坡植物群落β多样性分析[J]. 生态学报, 2001, 21(12): 2018−2022.
Hao Z Q, Yu D Y, Wu G, et al. Analysis on β diversity of plant communities on northern slope of Changbai Mountain[J]. Acta Ecologica Sinica, 2001, 21(12): 2018−2022.
|
[41] |
Yuan Z, Ali A, Ruiz-Benito P, et al. Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient[J]. Journal of Ecology, 2020, 108(5): 2012−2024. doi: 10.1111/1365-2745.13378
|
[42] |
张姗, 蔺菲, 原作强, 等. 长白山阔叶红松林草本层物种多度分布格局及其季节动态[J]. 生物多样性, 2015, 23(5): 641−648. doi: 10.17520/biods.2015089
Zhang S, Lin F, Yuan Z Q, et al. Herb layer species abundance distribution patterns in different seasons in an old-growth temperate forest in Changbai Mountain, China[J]. Biodiversity Science, 2015, 23(5): 641−648. doi: 10.17520/biods.2015089
|
[43] |
闫琰, 张春雨, 赵秀海. 长白山不同演替阶段针阔混交林群落物种多度分布格局[J]. 植物生态学报, 2012, 36(9): 923−934.
Yan Y, Zhang C Y, Zhao X H. Species-abundance distribution patterns at different successional stages of conifer and broad-leaved mixed forest communities in Changbai Mountains, China[J]. Chinese Journal of Plant Ecology, 2012, 36(9): 923−934.
|
[44] |
侯嫚嫚, 李晓宇, 王均伟, 等. 长白山针阔混交林不同演替阶段群落系统发育和功能性状结构[J]. 生态学报, 2017, 37(22): 7503−7513.
Hou M M, Li X Y, Wang J W, et al. Phylogenetic development and functional structures during successional stages of conifer and broad-leaved mixed forest communities in Changbai Mountains, China[J]. Acta Ecologica Sinica, 2017, 37(22): 7503−7513.
|
[45] |
郝姝珺, 李晓宇, 侯嫚嫚, 等. 长白山温带森林不同演替阶段群落功能性状的空间变化[J]. 植物生态学报, 2019, 43(3): 208−216. doi: 10.17521/cjpe.2018.0295
Hao S J, Li X Y, Hou M M, et al. Spatial variations of community functional traits at different successional stages in temperate forests of Changbai Mountains, Northeast China[J]. Chinese Journal of Plant Ecology, 2019, 43(3): 208−216. doi: 10.17521/cjpe.2018.0295
|
[46] |
Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51: 335−380. doi: 10.1071/BT02124
|
[47] |
Preston F W. The commonness, and rarity, of species[J]. Ecology, 1948, 29: 254−283. doi: 10.2307/1930989
|
[48] |
Fisher R A, Corbet A S, Williams C B. The relation between the number of species and the number of individuals in a random sample from an animal population[J]. Journal of Animal Ecology, 1943, 12: 42−58. doi: 10.2307/1411
|
[49] |
MacArthur R H. On the relative abundance of species[J]. American Naturalist, 1960, 94: 25−36. doi: 10.1086/282106
|
[50] |
Motomura I. On the statistical treatment of communities[J]. Zoologisches Magazin, 1932, 44: 379−383.
|
[51] |
Frontier S. Diversity and structure in aquatic ecosystems[J]. Oceanography & Marine Biology, 1985, 23: 253−312.
|
[52] |
Volkov I, Banavar J R, Hubbell S P, et al. Neutral theory and relative species abundance in ecology[J]. Nature, 2003, 424: 1035−1037. doi: 10.1038/nature01883
|
[53] |
Koffel T, Umemura K, Litchman E. et al. A general framework for species-abundance distributions: linking traits and dispersal to explain commonness and rarity[J]. Ecology Letters, 2022, 25(11): 2359−2371. doi: 10.1111/ele.14094
|
[54] |
Aho K, Derryberry D, Peterson T. Model selection for ecologists: the worldviews of AIC and BIC[J]. Ecology, 2014, 95(3): 631−636. doi: 10.1890/13-1452.1
|
[55] |
Gao J, Zhang P, Zhang X, et al. Multi-scale analysis on species diversity within a 40-ha old-growth temperate forest[J]. Plant Diversity, 2018, 40(2): 45−49. doi: 10.1016/j.pld.2017.12.003
|
[56] |
Tan L, Zhang P, Zhao X, et al. Analysing species abundance distribution patterns across sampling scales in three natural forests in Northeastern China[J]. iForest-Biogeosciences and Forestry, 2020, 13(6): 482−489.
|
[57] |
Wu A, Deng X, He H, et al. Responses of species abundance distribution patterns to spatial scaling in subtropical secondary forests[J]. Ecology and Evolution, 2019, 9(9): 5338−5347. doi: 10.1002/ece3.5122
|
[58] |
李晓宇, 廖嘉星, 侯嫚嫚, 等. 不同尺度下长白山次生杨桦林群落系统发育结构研究[J]. 北京林业大学学报, 2016, 38(12): 14−20.
Li X Y, Liao J X, Hou M M, et al. Multi-scale analysis on community phylogenetic structure of secondary Populus davidiana-Betula platyphylla forest in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(12): 14−20.
|
[59] |
Letcher S G, Chazdon R L, Andrade A C S, et al. Phylogenetic community structure during succession: evidence from three Neotropical forest sites[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14(2): 79−87. doi: 10.1016/j.ppees.2011.09.005
|
[60] |
Li Y, Shipley B, Price J N, et al. Habitat filtering determines the functional niche occupancy of plant communities worldwide[J]. Journal of Ecology, 2017, 106(3): 1001−1009.
|
[61] |
Kunstler G, Falster D, Coomes D A, et al. Plant functional traits have globally consistent effects on competition[J]. Nature, 2016, 529(7585): 204−207. doi: 10.1038/nature16476
|
[62] |
Laughlin D C, Joshi C, Bodegom P M, er al. A predictive model of community assembly that incorporates intraspecific trait variation[J]. Ecology Letters, 2012, 15(11): 1291−1299. doi: 10.1111/j.1461-0248.2012.01852.x
|
[63] |
Laughlin D C, Joshi C. Theoretical consequences of trait-based environmental filtering for the breadth and shape of the niche: New testable hypotheses generated by the Traitspace model[J]. Ecological Modelling, 2015, 307: 10−21. doi: 10.1016/j.ecolmodel.2015.03.013
|
[64] |
Carmona C P, de Bello F, Mason N W H, et al. Traits without borders: integrating functional diversity across scales[J]. Trends in Ecology & Evolution, 2016, 31(5): 382−394.
|
[65] |
Lavorel S, Grigulis S K, McIntyre N S G, et al. Assessing functional diversity in the field-methodology matters[J]. Functional Ecology, 2008, 22: 134−147. doi: 10.1111/j.1365-2435.2007.01339.x
|
[66] |
Fang S, Cadotte M W, Yuan Z, et al. Intraspecific trait variation improves the detection of deterministic community assembly processes in early successional forests, but not in late successional forests[J]. Journal of Plant Ecology, 2019, 12(4): 593−602. doi: 10.1093/jpe/rty053
|
[1] | Zhao Jinyu, Xia Lei, Zhang Yang. Effects of epoxy resin doping on properties of geopolymer wood adhesive[J]. Journal of Beijing Forestry University, 2024, 46(8): 15-24. DOI: 10.12171/j.1000-1522.20240079 |
[2] | Zeng Lingshun, Li Chengyu, Luo Cuimei, Xu Wenyan, Mu Jun. Preparation and properties of chitosan/gelatin/phytic acid composite flame retardant coatings[J]. Journal of Beijing Forestry University, 2024, 46(7): 112-122. DOI: 10.12171/j.1000-1522.20240151 |
[3] | Lei Yongrui, Lin Xixiang, Niu Wenxi, Li Zhuqi, Chen Hui, Li Jianzhang. Preparation and property of cottonseed meal adhesive reinforced by low-temperature defatted soybean meal[J]. Journal of Beijing Forestry University, 2024, 46(6): 137-144. DOI: 10.12171/j.1000-1522.20240082 |
[4] | Lin Xinyu, Zhang Qiuhao, Huang Yanhui, Huang Quanfei, Yang Xin. Painting technology and adhesion mechanism of waterborne paint based on bamboo laminated lumber[J]. Journal of Beijing Forestry University, 2022, 44(9): 158-164. DOI: 10.12171/j.1000-1522.20220151 |
[5] | Han Yiyun, Dai Mengyuan, Tang Ruilin, Zhang Yang, Yu Zhiming. Preliminary study of epoxy/polyester powder coating applied to reed-based particle board[J]. Journal of Beijing Forestry University, 2022, 44(9): 137-145. DOI: 10.12171/j.1000-1522.20220211 |
[6] | Huang Quanfei, Huang Yanhui, Zhang Wei, Lin Xinyu, Wang Xuecong. Film properties of waterborne paint based on Fraxinus mandshurica substrate[J]. Journal of Beijing Forestry University, 2020, 42(7): 140-146. DOI: 10.12171/j.1000-1522.20200088 |
[7] | Ma Su, Zhen Jin, Wang Jiayu, Zhang Derong, Yu Zhiming, Tang Ruilin, Zhang Yang. Effects of styrene-acrylic emulsion doping on the properties of geopolymer wood adhesives[J]. Journal of Beijing Forestry University, 2020, 42(7): 131-139. DOI: 10.12171/j.1000-1522.20200019 |
[8] | DONG Yue, YUAN Bing-nan, JI Xiao-di, GUO Ming-hui. Preparation of wood-based g-C3N4/TiO2 composite coating and characterization of its photocatalytic properties[J]. Journal of Beijing Forestry University, 2017, 39(12): 112-117. DOI: 10.13332/j.1000-1522.20170266 |
[9] | FENG Jian-wen, WANG Feng-qiang, SUN Li-chao, WANG Qing-wen. Fire retardant properties of intumescent waterborne fireretardant coatings based on MUF-PVAc mixed resin for wood.[J]. Journal of Beijing Forestry University, 2012, 34(4): 160-164. |
[10] | MO Yin-you, CHEN Kui, HE Qi-fei, FU Yun-lin. Modifying wood surface properties by SiO2 polyurethane coating.[J]. Journal of Beijing Forestry University, 2012, 34(4): 154-159. |
1. |
高荧荧,王雯琦,符昌昊,许秀英. 基于UAV平台的农作物数据采集与处理方法研究. 现代化农业. 2025(02): 52-54 .
![]() | |
2. |
陈树新,刘炳杰,王海熠,苏勇,艾遒一,田昕. 结合可见光植被指数和分水岭算法的单木树冠信息提取. 遥感技术与应用. 2024(01): 34-44 .
![]() | |
3. |
钟磊,苏杰. 三维激光扫描技术在建筑物立面测绘中的精度分析. 科学技术创新. 2024(15): 131-134 .
![]() | |
4. |
赵亚凯,邓青春. 反距离加权插值参数对细沟DEM精度的影响. 西华师范大学学报(自然科学版). 2023(05): 496-504 .
![]() | |
5. |
莫嬃,易烜,边更战,陈书杭. 基于第一着枝角度的罗田垂枝杉树冠表面积预估模型研究. 湖南林业科技. 2023(06): 37-43+50 .
![]() | |
6. |
王玉堂,王佳,牛利伟,常书萍,孙露. 基于无人机倾斜摄影测量的树冠体积及表面积提取算法对比分析. 林业工程学报. 2022(03): 166-173 .
![]() | |
7. |
王补 ,谭伟 ,王贵林 ,蒲秀青 . 基于无人机多光谱影像的松材线虫病单木尺度监测. 林业资源管理. 2022(05): 107-117 .
![]() | |
8. |
杜意鸿,尹田,周雪梅,张晓丽. 倾斜摄影测量技术提取油松单木信息. 北京林业大学学报. 2021(04): 77-86 .
![]() | |
9. |
宋晓鹏,张岩,王志强,邓家勇,王佳希. 无人机摄影测量提取黄土高原切沟参数精度分析. 北京师范大学学报(自然科学版). 2021(05): 606-612 .
![]() | |
10. |
杨全月,董泽宇,马振宇,吴悠,崔琪,卢昊. 基于SfM的针叶林无人机影像树冠分割算法. 农业机械学报. 2020(06): 181-190 .
![]() | |
11. |
冯正茂,陈桃红,苏玉峰,伍浩如. 倾斜摄影测量技术在纸浆厂木片资产管理中的应用. 中国造纸. 2020(06): 64-68 .
![]() |