• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Gao Hemiao, Ren Aitian, Zhang Shaocong, Yuan Longyi. Soil bacterial diversity and its influencing factors of walnut forests with different stand ages in Xizang Plateau of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(11): 100-109. DOI: 10.12171/j.1000-1522.20230051
Citation: Gao Hemiao, Ren Aitian, Zhang Shaocong, Yuan Longyi. Soil bacterial diversity and its influencing factors of walnut forests with different stand ages in Xizang Plateau of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(11): 100-109. DOI: 10.12171/j.1000-1522.20230051

Soil bacterial diversity and its influencing factors of walnut forests with different stand ages in Xizang Plateau of northwestern China

More Information
  • Received Date: March 08, 2023
  • Revised Date: September 05, 2023
  • Available Online: November 14, 2023
  • Objective 

    Soil bacteria play an important role in maintaining the ecological function and health of the soil ecosystem. Based on understanding the variation of soil bacterial community with the stand ages of walnut forests, combined with soil factors, this paper aims to further explore the relationship between soil microbial community and soil properties. At the same time, the driving factors of soil microbial community composition changes were elucidated.

    Method 

    In this study, we sampled soils in walnut consisting of stands of 8, 50 and over 100 years of average age to measure soil physical and chemical properties, enzyme activities, and to describe the composition and diversity of soil microbial community using high-throughput sequencing technology.

    Result 

    (1) There was no significant difference in soil bacterial richness under different stand ages, but ancient walnut forests (more than 100 years) significantly reduced soil bacterial Shannon index, Simpson index and Pielou index. (2) Amplicon sequencing revealed Proteobacteria, Acidobacteria, Firmicutes, Gemmatimonadetes, Myxococcota, Actinobacteria, Chloroflexi, and Bacteroidetes were the dominant phylum of soil bacteria under different stand ages. There were significant differences in the relative abundance of some microbial groups under different walnut ages. The relative abundance of Actinobacteria was significantly increased, but Chloroflexi was significantly decreased, and Bacteroidetes first increased and then decreased. (3) Non-metric multi-dimensional scaling showed that there were significant differences between soil bacterial communities under different stand ages. In addition, the composition of bacterial communities was significantly affected by soil nitrate nitrogen content. (4) Correlation analysis also showed a significant or very significant correlation between soil enzymes, soil physicochemical properties and diversity, dominant phylum of soil bacteria.

    Conclusion 

    In conclusion, the changes in composition and diversity of soil microbial communities in walnut forests occurring over time can largely be attributed to changes in soil physicochemical properties and enzyme activities. Soil nitrate-nitrogen content is the main driving factor in microbial community formation. Importantly, the bacterial community diversity of ancient walnut forests is significantly reduced, which aggravates the microecology imbalance in the rhizospheric soil of ancient walnut forests. The study is an essential supplement to the analysis of bacterial communities in the forest. In addition to renewing walnut trees in actual production, inorganic and organic fertilizers or microbial fertilizers can be rationally used to maintain the stability of the soil ecosystem of walnut forests.

  • [1]
    Zeng J, Liu X J, Song L, et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition[J]. Soil Biology and Biochemistry, 2016, 92(1): 41−49.
    [2]
    Vieira S, Sikorski J, Dietz S, et al. Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands[J]. The ISME Journal, 2020, 14(2): 463−475. doi: 10.1038/s41396-019-0543-4
    [3]
    贺纪正, 王军涛. 土壤微生物群落构建理论与时空演变特征[J]. 生态学报, 2015, 35(20): 6575−6583.

    He J Z, Wang J T. Mechanisms of community organization and spatiotemporal patterns of soil microbial communities[J]. Acta Ecologica Sinica, 2015, 35(20): 6575−6583.
    [4]
    Deng J J, Bai X J, Zhou Y B, et al. Variations of soil microbial communities accompanied by different vegetation restoration in an open-cut iron mining area[J/OL]. Science of the Total Environment, 2019, 704(11): 135243[2022−08−15]. https://sci-hubtw.hkvisa.net/10.1016/j.scitotenv.2019.135243.
    [5]
    Oldroyd G E D, Leyser O. A plant’s diet, surviving in a variable nutrient environment[J/OL]. Science, 2020, 368: eaba0196[2022−03−25]. https://www.science.org/doi/10.1126/science.aba0196.
    [6]
    郭文, 高李文, 彭紫薇, 等. 不同林龄杉木根际与非根际土壤微生物群落特征[J]. 水土保持研究, 2022, 29(6): 260−267. doi: 10.13869/j.cnki.rswc.2022.06.002

    Guo W, Gao L W, Peng Z W, et al. Characteristics of microbial community in rhizosphere and non-rhizosphere soil of Cunninghamia lanceolata plantation with different stand ages[J]. Research of Soil and Water Conservation, 2022, 29(6): 260−267. doi: 10.13869/j.cnki.rswc.2022.06.002
    [7]
    王宇飞. 种植年限对滇重楼品质及土壤微生物的影响研究[D]. 大理: 大理大学, 2022.

    Wang Y F. Study of the effects of planting years on the quality and soil microbial communities of Paris polyphylla var. yunnanensis[D]. Dali: Dali University, 2022.
    [8]
    郭辉, 唐卫平. 不同林龄华北落叶松根际与非根际土壤酶和土壤微生物研究[J]. 生态环境学报, 2020, 29(11): 2163−2170.

    Guo H, Tang W P. Enzyme activity and microbial community diversity in rhizosphere and non-rhizosphere soil of Larix principis-rupprechtii[J]. Ecology and Environmental Sciences, 2020, 29(11): 2163−2170.
    [9]
    朱海云, 马瑜, 柯杨, 等. 不同种植年限猕猴桃园土壤微生物功能多样性研究[J]. 微生物学杂志, 2019, 39(5): 64−72.

    Zhu H Y, Ma Y, Ke Y, et al. Functional diversities of soil microbial community in kiwifruit orchards of different planting years[J]. Journal of Microbiology, 2019, 39(5): 64−72.
    [10]
    曹小青, 王亮, 孙孟瑶, 等. 不同年限毛竹−白及复合系统土壤微生物群落多样性特点[J]. 中国土壤与肥料, 2022(1): 147−154.

    Cao X Q, Wang L, Sun M Y, et al. Soil microbial community diversity in Phyllostachys pubescens-Bletilla striata ecosystems with different intercropping years[J]. Soil and Fertilizer Sciences in China, 2022(1): 147−154.
    [11]
    纳小凡, 郑国琦, 彭励, 等. 不同种植年限宁夏枸杞根际微生物多样性变化[J]. 土壤学报, 2016, 53(1): 241−252.

    Na X F, Zheng G Q, Peng L, et al. Microbial biodiversity in rhizosphere of Lycium bararum L. relative to cultivation history[J]. Acta Pedologica Sinica, 2016, 53(1): 241−252.
    [12]
    顾美英, 徐万里, 马凯, 等. 不同定植年限核桃园土壤细菌群落多样性及碳代谢功能特征[J]. 生态学杂志, 2021, 40(7): 2045−2056.

    Gu M Y, Xu W L, Ma K, et al. Soil bacterial community diversity and carbon source metabolism function in walnut orchard with different stand ages[J]. Chinese Journal of Ecology, 2021, 40(7): 2045−2056.
    [13]
    曹艺漩. 不同林龄杉木人工林土壤微生物群落特征研究[D]. 长沙: 中南林业科技大学, 2022.

    Cao Y X. Characterization of soil microbial communities in Cunninghamia lanceolata plantation of different ages[D]. Changsha: Central South University of Forestry and Technology, 2022.
    [14]
    蔡锰柯, 韩海荣, 程小琴, 等. 山西太岳山不同林龄华北落叶松林土壤微生物群落结构特征[J]. 北京林业大学学报, 2022, 44(5): 86−93.

    Cai M K, Han H R, Cheng X Q, et al. Characteristics of soil microbial community structure with different plantation ages in larch forest in Taiyue Mountain of Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 86−93.
    [15]
    廖礼彬, 石福孙, 张楠楠, 等. 不同种植年限对花椒根际土壤理化性质和微生物群落的影响[J]. 植物研究, 2022, 42(3): 466−474.

    Liao L B, Shi F S, Zhang N N, et al. Effects of different planting years on rhizosphere soil physiochemical properties and microbial community of Zanthoxylum bungeanum[J]. Bulletin of Botanical Research, 2022, 42(3): 466−474.
    [16]
    叶雯, 李永春, 喻卫武, 等. 不同种植年限香榧根际土壤微生物多样性[J]. 应用生态学报, 2018, 29(11): 3783−3792.

    Ye W, Li Y C, Yu W W, et al. Microbial biodiversity in rhizospheric soil of Torreya grandis ‘Merrilli’ relative to cultivation history[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3783−3792.
    [17]
    陈莹. 西藏核桃的遗传格局研究[D]. 昆明: 云南大学, 2021.

    Chen Y. The genetic pattern of walnut in Tibet[D]. Kunming: Yunnan University, 2021.
    [18]
    陈定梅, 赤桑单吉, 唐明兴. 西藏加查县气候与经济农产品产量相关性分析[J]. 西藏农业科技, 2021, 43(3): 9−13. doi: 10.3969/j.issn.1005-2925.2021.03.003

    Chen D M, Chisangdanji, Tang M X. Analysis of correlation between climate and cash crops production in Gyaca County[J]. Tibet Journal of Agricultural Sciences, 2021, 43(3): 9−13. doi: 10.3969/j.issn.1005-2925.2021.03.003
    [19]
    Xiong W, Zhao Q Y, Zhao J, et al. Different continuous cropping spans significantly affect microbial community membership and structure in a Vanilla-grown soil as revealed by deep pyrosequencing[J]. Microbial Ecology, 2015, 70(1): 209−218. doi: 10.1007/s00248-014-0516-0
    [20]
    王灿, 李志刚, 杨建峰, 等. 胡椒连作对土壤微生物群落功能多样性与群落结构的影响[J]. 热带作物学报, 2017, 38(7): 1235−1242.

    Wang C, Li Z G, Yang J F, et al. Effects of consecutive monoculture of Piper nigrum L. on soil microbial functional diversity and community structure[J]. Chinese Journal of Tropical Crops, 2017, 38(7): 1235−1242.
    [21]
    Xie X, Wang Q, Dai L, et al. Application of China’s national forest continuous inventory database[J]. Environmental Management, 2011, 48: 1095−1106.
    [22]
    李万年, 黄则月, 赵春梅, 等. 望天树人工幼林土壤微生物量碳氮及养分特征[J]. 北京林业大学学报, 2020, 42(12): 51−62.

    Li W N, Huang Z Y, Zhao C M, et al. Characteristics of soil microbial biomass C, N and nutrients in young plantations of Parashorea chinensis[J]. Journal of Beijing Forestry University, 2020, 42(12): 51−62.
    [23]
    关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.

    Guan S M. Soil enzymes and their research methods[M]. Beijing: Agricultural Publishing House, 1986.
    [24]
    Xu N, Tan G, Wang H, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74: 1−8. doi: 10.1016/j.ejsobi.2016.02.004
    [25]
    宋思宇, 陈亚梅, 汪涛, 等. 不同林龄的西藏林芝云杉人工林土壤酶活性及化学计量比特征[J]. 应用与环境生物学报, 2023, 29(1): 178−185.

    Song S Y, Chen Y M, Wang T, et al. Characteristics of soil enzyme activity and stoichiometry in a Picea likiangensis var. linzhiensis plantation with different ages[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(1): 178−185.
    [26]
    张芸, 李惠通, 张辉, 等. 不同林龄杉木人工林土壤C∶N∶P化学计量特征及其与土壤理化性质的关系[J]. 生态学报, 2019, 39(7): 2520−2531.

    Zhang Y, Li H T, Zhang H, et al. Soil C∶N∶P stoichiometry and its relationship with the soil physicochemical properties of different aged Chinese fir ( Cunninghamia lanceolata) plantations[J]. Acta Ecologica Sinica, 2019, 39(7): 2520−2531.
    [27]
    何玉姣, 陈婵, 朱小叶, 等. 湘中丘陵区不同植被恢复阶段林地土壤可溶性氮组分含量和密度[J]. 水土保持学报, 2021, 35(2): 258−264.

    He Y J, Chen C, Zhu X Y, et al. Content and density of soil soluble nitrogen components at different vegetation restoration stages in hilly region of central Hunan Province, China[J]. Journal of Soil and Water Conservation, 2021, 35(2): 258−264.
    [28]
    郝丙青, 夏莹莹, 张乃燕, 等. 不同树龄油茶林分中土壤养分的变化特征及对细根生物量的影响[J]. 广西林业科学, 2019, 48(1): 6−13.

    Hao B Q, Xia Y Y, Zhang N Y, et al. Changes of soil nutrients and their effects on fine root biomass in different Camellia oleifera stands[J]. Guangxi Forestry Science, 2019, 48(1): 6−13.
    [29]
    周志勇, 徐梦瑶, 王勇强, 等. 山西太岳山油松林土壤质量与有机碳稳定性随林龄的演变特征[J]. 北京林业大学学报, 2022, 44(10): 112−119. doi: 10.12171/j.1000-1522.20220320

    Zhou Z Y, Xu M Y, Wang Y Q, et al. Evolutionary characteristics of soil quality and organic carbon stability with forest stand age for Pinus tabuliformis forests in the Taiyue Mountain of Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(10): 112−119. doi: 10.12171/j.1000-1522.20220320
    [30]
    Li L J, Zhu B X, Ye R, et al. Soil microbial biomass size and soil carbon influence the priming effect from carbon inputs depending on nitrogen availability[J]. Soil Biology and Biochemistry, 2018, 119(4): 41−49.
    [31]
    付学琴, 黄文新. 不同树龄南丰蜜橘根际土壤微生物群落多样性分析[J]. 园艺学报, 2014, 41(4): 631−640.

    Fu X Q, Huang W X. Analysis on microbial diversity in the rhizosphere of nanfeng tangerine of different tree-age[J]. Acta Horticulturae Sinica, 2014, 41(4): 631−640.
    [32]
    尹砾. 种植年限对樱桃根际微生态环境的影响[D]. 烟台: 烟台大学, 2019.

    Yin S. Effects of planting years on rhizosphere microecological environment of cherry[D]. Yantai: Yantai University, 2019.
    [33]
    张玉树, 张金波, 朱同彬, 等. 不同种植年限果园土壤有机氮组分变化特征[J]. 生态学杂志, 2015, 34(5): 1229−1233.

    Zhang Y S, Zhang J B, Zhu T B, et al. Characteristics of soil organic nitrogen components of orchards with different planting ages[J]. Chinese Journal of Ecology, 2015, 34(5): 1229−1233.
    [34]
    李茜, 刘松涛, 何俊, 等. 葡萄园土壤养分变化特征对不同栽培年限的响应[J]. 西南农业学报, 2020, 33(7): 1404−1409.

    Li Q, Liu S T, He J, et al. Response of soil fertility change characteristics to different planting years in vine yard[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(7): 1404−1409.
    [35]
    原雅楠, 李正才, 王斌, 等. 不同林龄榧树林地土壤碳氮磷化学计量特征[J]. 浙江农林大学学报, 2021, 38(5): 1050−1057.

    Yuan Y N, Li Z C, Wang B, et al. Stoichiometric characteristics of soil C, N and P in Torreya grandis stands of different ages[J]. Journal of Zhejiang A&F University, 2021, 38(5): 1050−1057.
    [36]
    罗亚进. 不同林龄桉树人工林土壤微生物及土壤酶活性的研究[D]. 桂林: 广西师范大学, 2014.

    Luo Y J. Study on soil microorganism and soil enzyme activity along a chronosequence of Eucalyptus plantation[D]. Guilin: Guangxi Normal University, 2014.
    [37]
    崔翠. 渭北黄土区农林复合系统核桃根际土壤及根系分泌物化感作用研究[D]. 杨凌: 西北农林科技大学, 2012.

    Cui C. Allelopathic effects of walnut root exudates and rhizosphere soil in agroforestry system of loess area in Northern Wei River[D]. Yangling: Northwest A&F University, 2012.
    [38]
    张胜男, 闫德仁, 黄海广, 等. 不同林龄沙地樟子松人工林土壤微生物群落结构[J]. 中南林业科技大学学报, 2023, 43(1): 123−131, 143.

    Zhang S N, Yan D R, Huang H G, et al. The soil microbial community structure in the Pinus sylvestris var. mongolica plantations of different ages[J]. Journal of Central South University of Forestry and Technology, 2023, 43(1): 123−131, 143.
    [39]
    吴菲, 文仕知, 何功秀, 等. 土壤细菌群落结构和多样性对不同林龄闽楠人工林的响应[J]. 中南林业科技大学学报, 2020, 40(12): 134−143. doi: 10.14067/j.cnki.1673-923x.2020.12.016

    Wu F, Wen S Z, He G X, et al. Response of soil bacterial community structure and diversity to different forest ages[J]. Journal of Central South University of Forestry & Technology, 2020, 40(12): 134−143. doi: 10.14067/j.cnki.1673-923x.2020.12.016
    [40]
    王好才, 夏敏, 刘圣恩, 等. 若尔盖高原泥炭沼泽湿地土壤细菌群落空间分布及其驱动机制[J]. 生态学报, 2021, 41(7): 2663−2675.

    Wang H C, Xia M, Liu S E, et al. Spatial distribution and driving mechanism of soil bacterial communities in the wetland of Zoige Plateau[J]. Acta Ecologica Sinica, 2021, 41(7): 2663−2675.
    [41]
    曹升, 潘菲, 林根根, 等. 不同林龄杉木林土壤细菌群落结构与土壤酶活性变化研究[J]. 生态学报, 2021, 41(5): 1846−1856.

    Cao S, Pan F, Lin G G, et al. Changes of soil bacterial structure and soil enzyme activity in Chinese fir forest of different ages[J]. Acta Ecologica Sinica, 2021, 41(5): 1846−1856.
    [42]
    Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization[J]. Soil Biology and Biochemistry, 2010, 42(5): 669−678. doi: 10.1016/j.soilbio.2009.11.024
    [43]
    马红叶, 张文娥, 潘学军, 等. 胡桃科植物的化感作用及其应用前景综述[J]. 江苏农业科学, 2019, 47(20): 57−63, 74.

    Ma H Y, Zhang W E, Pan X J, et al. Walnut allelopathy and its application prospects: a review[J]. Jiangsu Agricultural Sciences, 2019, 47(20): 57−63, 74.
    [44]
    Lan X, Du H, Peng W X, et al. Functional diversity of the soil culturable microbial community in eucalyptus plantations of different ages in Guangxi, South China[J]. Forests, 2019, 10(12): 1083−1097. doi: 10.3390/f10121083
    [45]
    杜思垚, 陈静, 刘佳炜, 等. 基于宏基因组学揭示咸水滴灌对棉田土壤微生物的影响[J]. 环境科学, 2023, 44(2): 1104−1119.

    Du S Y, Chen J, Liu J W, et al. Revealing the effect of saline water drip irrigation on soil microorganisms in cotton fields based on metagenomics[J]. Environmental Science, 2023, 44(2): 1104−1119.
    [46]
    向前胜, 张登山, 孙奎, 等. 高寒地区不同海拔梯度西北小檗生境土壤微生物群落结构及多样性分析[J]. 西北植物学报, 2021, 41(6): 1036−1050. doi: 10.7606/j.issn.1000-4025.2021.06.1036

    Xiang Q S, Zhang D S, Sun K, et al. Analysis of soil microbial community structure and diversity in Berberis vernae habitat at different altitudes in alpine region[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(6): 1036−1050. doi: 10.7606/j.issn.1000-4025.2021.06.1036
    [47]
    Klappenbach J A, Pierson B K. Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium ‘ Candidatus Chlorothrix halophila’ gen. nov., sp. nov., recovered from hypersaline microbial mats[J]. Archives of Microbiology, 2004, 181(1): 17−25. doi: 10.1007/s00203-003-0615-7
    [48]
    鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9): 1801−1820.

    Xian W D, Zhang X T, Li W J. Research status and prospect on bacterial phylum Chloroflexi[J]. Acta Microbiologica Sinica, 2020, 60(9): 1801−1820.
    [49]
    Thomas F, Hehemann J H, Rebuffet E, et al. Environmental and gut bacteroidetes: the food connection[J]. Frontiers in Microbiology, 2011, 2(5): 93−108.
    [50]
    张利荣, 李惠通, 郑立津, 等. 不同林龄杉木人工林的林下植被与土壤理化特性[J]. 亚热带农业研究, 2021, 17(3): 165−172.

    Zhang L R, Li H T, Zheng L J, et al. Undergrowth vegetation of Chinese fir plantations of different ages and soil physical and chemical properties[J]. Subtropical Agriculture Research, 2021, 17(3): 165−172.
    [51]
    夏晶晶. 锡林河流域厚壁菌群和拟杆菌群的生物地理学研究[D]. 呼和浩特: 内蒙古大学, 2021.

    Xia J J. Research on biogeography of the firmicuts and bacteroidetes communities in Xilin River Basin[D]. Hohhot: University of the Inner Mongol, 2021.
  • Related Articles

    [1]Yang Qinglei, He Huaijiang, Wang Juan, Cheng Yanxia, Zhang Chunyu. The impact of thinning intensity on carbon storage in the mixed coniferous and broad-leaved forest ecosystem in Northeast China[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240032
    [2]Gao Xu, Mu Changcheng, Liang Daosheng, Lu Yi. Spatial differentiation law and main control factors of carbon storage in natural plant communities of Taihu National Wetland Park of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(8): 16-28. DOI: 10.12171/j.1000-1522.20220045
    [3]He Xiao, Li Haikui, Zhang Yiru, Huang Jinjin. Growth model of carbon storage and driving force of carbon sequestration capacity of natural secondary forests[J]. Journal of Beijing Forestry University, 2023, 45(1): 1-10. DOI: 10.12171/j.1000-1522.20210265
    [4]Yan Su, Mu Changcheng, Wang Bowei, Wang Biao. Carbon storage of natural broadleaved forested marsh wetland ecosystem in temperate Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(8): 1-11. DOI: 10.13332/j.1000-1522.20180005
    [5]SUN Zhi-hu, WANG Xiu-qin, CHEN Xiang-wei.. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. DOI: 10.13332/j.1000-1522.20160016
    [6]SUN Hu, LI Feng-ri, SUN Mei-ou, JIA Wei-wei. Carbon storage of poplar plantations in Songnen Plain, northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(5): 33-41. DOI: 10.13332/j.1000-1522.20150336
    [7]ZHANG Yi, MU Chang-cheng, ZHENG Tong, LI Na-na. Ecosystem carbon storage of natural secondary birch forests in Xiaoxing’an Mountains of China[J]. Journal of Beijing Forestry University, 2015, 37(4): 38-47. DOI: DOI:10.13332/j.1000-1522.20140449
    [8]CUI Wei, MU Chang-cheng, LU Hui-cui, BAO Xu, WANG Biao. Effects of draining for forestation on carbon storage of wetland ecosystem in Daxing'an Mountains of northeastern China.[J]. Journal of Beijing Forestry University, 2013, 35(5): 28-36.
    [9]LI Yan-yan, FAN Hou-bao, LIU Wen-fei, HUANG Rong-zhen, YUAN Ying-hong, SU Bing-qiang, LIAO Ying-chun. Ecosystem biomass in a chronosequence of Eucalptus urophylla×E. grandis plantation forests[J]. Journal of Beijing Forestry University, 2011, 33(4): 28-32.
    [10]HU Jian-zhong. Carbon storage of artificial forests in rehabilitated lands in the upper reaches of the Yellow River[J]. Journal of Beijing Forestry University, 2005, 27(6): 1-8.
  • Cited by

    Periodical cited type(24)

    1. 陈焕伟,季景勇,叶琳燕,沈斌,蔡超,骆珍莎,曹森. 不同产地红豆树家系生长与叶形性状变异分析与优良家系选择. 浙江林业科技. 2025(01): 73-81 .
    2. 吕寻,李万峰,胡勐鸿,戴小芬,成红梅,委霞. 日本落叶松种子园和优树自由授粉家系选择与利用研究. 西南林业大学学报(自然科学). 2024(03): 1-9 .
    3. 王昕昊,战金伟,陈若楠,刘金义,程冬霞,李万峰. 日本落叶松苗木繁育技术进展. 林业科技通讯. 2024(08): 17-21 .
    4. 尚福强,高源,马晓雨,李连强,张利民,张丽艳,张杰,冯健. 红松优树半同胞家系的遗传变异及优良家系和单株选择. 东北林业大学学报. 2024(10): 1-6 .
    5. 靳旭红,于聪,张庭耀,吕松瞳,刘扬,陈乐,龙生,穆怀志. 基于种子活力和苗期生长的枫桦半同胞家系初选. 植物研究. 2024(05): 763-773 .
    6. 胡勐鸿,李万峰,吕寻,戴小芬,李宗德,周卓玲. 日本落叶松种子园和人工林优树自由授粉家系苗期选择. 森林工程. 2024(06): 64-78 .
    7. 胡勐鸿,李万峰,吕寻. 日本落叶松自由授粉家系选择和无性繁殖利用. 温带林业研究. 2023(01): 7-16 .
    8. 胡勐鸿,吕寻,李万峰,戴小芬. 日本落叶松种子园和人工林优树自由授粉家系试验林比较. 温带林业研究. 2023(02): 8-16 .
    9. Conghui Zheng,Jianfeng Dai,Hongjing Zhang,Yuzhong Wang,Zhenhua Xu,Zichun Du. Family selection and evaluation of Larix gmelinii var.principis-rupprechtii(Mayr.)Pilger based on stem analysis data at multiple sites. Journal of Forestry Research. 2023(05): 1627-1638 .
    10. 穆怀志,王清玉,张玥,吕松瞳,靳旭红,张骁,夏富才. 基于叶片和果实性状的糠椴天然居群表型变异及多样性分析. 植物研究. 2023(06): 826-834 .
    11. 彭叶青,洪大伟,产启福,卜良高,李彦杰,栾启福,武浩然. 基于无人机多光谱的湿地松生长性状遗传评价. 安徽农业大学学报. 2023(05): 758-763 .
    12. 魏嘉彤,陈思琪,芦贤博,张非凡,潘振海,柳妍如,葛丽丽,赵曦阳. 基于生长与木材性状的红松优良种源评价选择. 北京林业大学学报. 2022(03): 12-23 . 本站查看
    13. 李海燕,王昊羽,黄佳芳,仝川. 福州市滨海湿地中主要草本植物的种子性状分析. 湿地科学. 2022(02): 239-250 .
    14. 贾庆彬,刘庚,赵佳丽,李奎友,孙文生. 红松半同胞家系生长性状变异分析与优良家系选择. 南京林业大学学报(自然科学版). 2022(04): 109-116 .
    15. Qinhui Zhang,Shihe Yu,Xiaona Pei,Qianchun Wang,Aijun Lu,Ying Cao,Mulualem Tigabu,Jian Feng,Xiyang Zhao. Within-and between-population variations in seed and seedling traits of Juglans mandshurica. Journal of Forestry Research. 2022(04): 1175-1186 .
    16. 欧阳天林,朱柯帆,邱建勋,刘武阳,邱全生,肖德卿,王云鹏,周志春. 木荷种子园自由授粉家系生长遗传变异及初选. 中南林业科技大学学报. 2022(09): 17-23 .
    17. 肖德卿,沈斌,罗芊芊,徐肇友,金霖芳,周志春. 不同产地幼龄秀丽四照花生长和形质性状家系变异分析. 林业科学研究. 2021(02): 114-121 .
    18. 赵林峰,邱向英. 不同林龄杉木实生林物理力学性质变异研究. 安徽农业大学学报. 2021(05): 726-732 .
    19. 林琳,高宇婷,程福山,辛本花,王贵春,夏富才,穆怀志. 赛黑桦不同半同胞家系种子活力比较. 植物研究. 2020(01): 125-132 .
    20. 连勇机. 秃杉半同胞家系生长性状的遗传分析及初选. 森林与环境学报. 2020(02): 190-194 .
    21. 于增金,郑风英,任可,吴佳木,荣俊冬,陈礼光,郑郁善. 凹叶厚朴种源苗期性状比较及地理变异. 福建农林大学学报(自然科学版). 2020(02): 185-191 .
    22. 姜英,韦铄星,林建勇,欧汉彪,梁瑞龙. 香合欢不同种源种子表型性状及生长差异分析. 广西林业科学. 2020(01): 66-70 .
    23. 王月婵,于世河,赫亮,马悦,吴腾晖,冯健. 15个种源东部白松幼林期生长性状评估及选择. 辽宁林业科技. 2020(05): 20-22+59 .
    24. 杨鹤. 辽宁本溪地区日本落叶松人工林生长模型研究. 吉林林业科技. 2019(03): 10-13 .

    Other cited types(5)

Catalog

    Article views (300) PDF downloads (55) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return