• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Chengzhi, Fan Chengcheng, Sun Lili, Cao Chuanwang. Stress response and molecular docking analysis of ryanodine receptor (RyR) in Hyphantria cunea to chlorantraniliprole[J]. Journal of Beijing Forestry University, 2024, 46(10): 90-99. DOI: 10.12171/j.1000-1522.20230275
Citation: Zhang Chengzhi, Fan Chengcheng, Sun Lili, Cao Chuanwang. Stress response and molecular docking analysis of ryanodine receptor (RyR) in Hyphantria cunea to chlorantraniliprole[J]. Journal of Beijing Forestry University, 2024, 46(10): 90-99. DOI: 10.12171/j.1000-1522.20230275

Stress response and molecular docking analysis of ryanodine receptor (RyR) in Hyphantria cunea to chlorantraniliprole

More Information
  • Received Date: October 16, 2023
  • Revised Date: March 17, 2024
  • Accepted Date: July 26, 2024
  • Available Online: October 11, 2024
  • Objective 

    The ryanodine receptor (RyR) of Hyphantria cunea was involved in the toxic mechanism of chlorantraniliprole to Hyphantria cunea, and the molecular docking mode of RyR and chlorantraniliprole was explored. The study provided a theoretical basis for analyzing the molecular mechanism of RyR gene of Hyphantria cunea in response to chlorantraniliprole stress.

    Method 

    The full-length cDNA of RyR gene was cloned from Hyphantria cunea. The temporal and spatial expression patterns of RyR gene and the expression level of RyR gene in Hyphantria cunea under sublethal concentration of chlorantraniliprole stress were analyzed by real-time fluorescence quantitative RT-PCR. The RyR gene of Hyphantria cunea was silenced by RNAi technology, and the survival rate of silencer under chlorantraniliprole stress was determined to explore the regulation of RyR gene of Hyphantria cunea on chlorantraniliprole resistance. The molecular docking of chlorantraniliprole and RyR was analyzed by Discovery Studio 2019 Client software. The docking situation was analyzed by binding energy and visualization.

    Result 

    (1) The median lethal concentration (LC50) and sub-lethal concentration (LC30) of chlorantraniliprole were 21.40 μg/L and 11.13 μg/L for 72 h, respectively, indicating that chlorantraniliprole had high biological activity against the 3rd instar Hyphantria cunea larvae. (2) The relative expression of RyR gene in the 3rd instar Hyphantria cunea larvae increased firstly and then decreased with time under the treatment of chlorantraniliprole LC30 concentration (11.13 μg/L). The relative expression of RyR gene in 48 h and 72 h was 2.6- and 1.5-fold of that in control group, respectively. (3) The survival rate of Hyphantria cunea with RyR gene silencing was 73.33%, while that of control group with GFP gene silencing was 46.66% under LC30 stress of chlorantraniliprole at 72 h. Silencing RyR gene significantly reduced the sensitivity of 3rd instar Hyphantria cunea larvae to chlorantraniliprole. (4) Molecular docking showed that the binding energy of RyR and chlorantraniliprole was −31.35 kJ/mol, and there were hydrogen bonds and van der Waals force between them to make them stable.

    Conclusion 

    These results clarify the molecular mechanism of RyR gene in response to chlorantraniliprole stress, and further understand the structure of RyR in Hyphantria cunea and provide a theoretical basis for the development of targeted insecticides.

  • [1]
    赵旭东, 耿薏舒, 郝德君, 等. 美国白蛾防控技术的研究进展及展望[J]. 中国森林病虫, 2022, 41(5): 44−52.

    Zhao X D, Geng Y S, Hao D J, et al. Research progress and prospect of control technology of Hyphantria cunea[J]. Forest Pest and Disease, 2022, 41(5): 44−52.
    [2]
    武亚敬, 于祎飞. 美国白蛾生物学特性及病原真菌防治研究进展[J]. 河北林业科技, 2022(2): 45−49. doi: 10.3969/j.issn.1002-3356.2022.2.heblykj202202012

    Wu Y J, Yu Y F. Research progress on biological characteristics of Hyphantria cunea and control of pathogenic fungi[J]. The Journal of Hebei Forestry Science and Technology, 2022(2): 45−49. doi: 10.3969/j.issn.1002-3356.2022.2.heblykj202202012
    [3]
    刘枫, 李群. 美国白蛾在中国发生情况、林间防治现状及展望[J]. 沈阳农业大学学报, 2022, 53(5): 630−640. doi: 10.3969/j.issn.1000-1700.2022.05.013

    Liu F, Li Q. Occurrence of Hyphantria cunea in China, status and prospct of forest control[J]. Journal of Shenyang Aricultural University, 2022, 53(5): 630−640. doi: 10.3969/j.issn.1000-1700.2022.05.013
    [4]
    Selby T P, Lahm G P, Stevenson T M, et al. Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity[J]. Bioorganic & Medicinal Chemistry Letters, 2013, 23(23): 6341.
    [5]
    张琳, 张紫溪, 陈秀, 等. 双酰胺类农药生物活性、生态毒性及残留行为研究进展[J]. 农药学学报, 2023, 25(2): 295−309.

    Zhang L, Zhang Z X, Chen X, et al. Research progress on the biological activity, ecotoxicity, and residual behavior of bisamide pesticides[J]. Chinese Journal of Pesticide Science, 2023, 25(2): 295−309.
    [6]
    Wang M, Kong X P, Li H C, et al. Coprecipitation-based synchronous chlorantraniliprole encapsulation with chitosan: carrier-pesticide interactions and release behavior[J]. Pest Management Science, 2023, 79(10): 3757−3766. doi: 10.1002/ps.7559
    [7]
    Teixeira L A, Andaloro J T. Diamide insecticides: global efforts to address insect resistance stewardship challenges[J]. Pesticide Biochemistry and Physiology, 2013, 106(3): 76−78. doi: 10.1016/j.pestbp.2013.01.010
    [8]
    郑雪松, 时立波, 茹李军, 等. 鱼尼丁受体及以其为靶标的杀虫剂[J]. 现代农药, 2012, 11(3): 1−6. doi: 10.3969/j.issn.1671-5284.2012.03.001

    Zheng X S, Shi L B, Ru L J, et al. Ryanodine receptor and insecticides targeting them[J]. Modern Agrochemicals, 2012, 11(3): 1−6. doi: 10.3969/j.issn.1671-5284.2012.03.001
    [9]
    谭海军, 童益利. 双酰胺类杀虫剂及其作用机制和在烟草上的应用[J]. 生物灾害科学, 2020, 43(2): 131−137. doi: 10.3969/j.issn.2095-3704.2020.02.25

    Tan H J, Tong Y L. Diamide insecticides and their mechanism of action and application in tobacco[J]. Biological Disaster Science, 2020, 43(2): 131−137. doi: 10.3969/j.issn.2095-3704.2020.02.25
    [10]
    李林珊, 谢伟彬, 郑占英, 等. 碳硫双手性邻苯二甲酰类鱼尼丁受体杀虫剂研究进展[J]. 世界农药, 2022, 44(3): 21−25.

    Li L S, Xie W B, Zheng Z Y, et al. Research progress on carbon sulfur two handed phthaloyl ryanodine receptor insecticides[J]. World Pesticide, 2022, 44(3): 21−25.
    [11]
    董良胜, 陆敬松, 杜莹, 等. 新型农药氯虫苯甲酰胺的合成研究进展[J]. 广州化工, 2017, 45(17): 20−22. doi: 10.3969/j.issn.1001-9677.2017.17.008

    Dong L S, Lu J S, Du Y, et al. Research progress in the synthesis of a new pesticide chlorantraniliprole[J]. Guangzhou Chemical Industry, 2017, 45(17): 20−22. doi: 10.3969/j.issn.1001-9677.2017.17.008
    [12]
    刘熠, 王国胜. 鱼尼丁受体类新型杀虫剂氯虫酰胺的研究概述[J]. 化学工程师, 2009, 23(12): 44−47. doi: 10.3969/j.issn.1002-1124.2009.12.016

    Liu Y, Wang G S. Overview of the research on novel insecticide chlorantraniliprole insecticide based on ryanodine receptor[J]. Chemical Engineer, 2009, 23(12): 44−47. doi: 10.3969/j.issn.1002-1124.2009.12.016
    [13]
    唐振华, 陶黎明. 新型二酰胺类杀虫剂对鱼尼丁受体作用的分子机理[J]. 昆虫学报, 2008, 51(6): 646−651. doi: 10.3321/j.issn:0454-6296.2008.06.013

    Tang Z H, Tao L M. Molecular mechanism of the action of novel diamide insecticides on ryanodine receptor[J]. Acta Entomologica Sinica, 2008, 51(6): 646−651. doi: 10.3321/j.issn:0454-6296.2008.06.013
    [14]
    李秀霞, 梁沛, 高希武, 等. 昆虫对双酰胺类杀虫剂抗性机制研究进展[J]. 植物保护学报, 2015, 42(4): 481−487.

    Li X X, Liang P, Gao X W, et al. Research progress on the resistance mechanism of insects to diamide insecticides[J]. Journal of Plant Protection, 2015, 42(4): 481−487.
    [15]
    卢晶晶, 贾变桃, 安颢敏, 等. 4种鱼尼丁受体杀虫剂对小菜蛾及半闭弯尾姬蜂的选择毒力[J]. 山西农业大学学报(自然科学版), 2019, 39(4): 58−62.

    Lu J J, Jia B T, An H M, et al. Selective toxicity of four kinds of ryanodine receptor insecticides to diamondback moth and Diadegma semiclausum[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2019, 39(4): 58−62.
    [16]
    Takeshima H, Nishi M, Iwabe N, et al. Isolation and characterization of a gene for a ryanodine receptor/calcium release channel in Drosophilidae melanogaster[J]. FEBS Letters, 1994, 337(1): 81−87. doi: 10.1016/0014-5793(94)80634-9
    [17]
    李康, 王凯博, 陶丽红, 等. 草地贪夜蛾鱼尼丁受体与双酰胺类杀虫剂的结合模式及抗性风险分析[J]. 农药学学报, 2021, 23(5): 856−868.

    Li K, Wang K B, Tao L H, et al. Binding mode and resistance risk analysis of ryanodine receptor of Spodoptera frugiperda to diamide insecticides[J]. Chinese Journal of Pesticide Science, 2021, 23(5): 856−868.
    [18]
    王少丽, 董钧锋, 李如美, 等. 甜菜夜蛾对氯虫苯甲酰胺抗性种群选育及鱼尼丁受体基因表达特征[J]. 植物保护学报, 2015, 42(3): 425−431.

    Wang S L, Dong J F, Li R M, et al. Breeding of Spodoptera exigua resistant population to chlorantraniliprole and the expression characteristics of ryanodine receptor genes[J]. Journal of Plant Protection, 2015, 42(3): 425−431.
    [19]
    孙丽娜, 杨代斌, 芮昌辉, 等. 氯虫苯甲酰胺对小菜蛾鱼尼丁受体基因mRNA表达量的影响[J]. 农药学学报, 2012, 14(2): 136−142. doi: 10.3969/j.issn.1008-7303.2012.02.04

    Sun L N, Yang D B, Rui C H, et al. The effect of chlorantraniliprole on the mRNA expression of ryanodine receptor gene in diamondback moth[J]. Chinese Journal of Pesticide Science, 2012, 14(2): 136−142. doi: 10.3969/j.issn.1008-7303.2012.02.04
    [20]
    刘亚萍. 赤拟谷盗两种细胞内钙离子通道基因的克隆及RNA干扰研究[D]. 扬州: 扬州大学, 2014.

    Liu Y P. Cloning and RNA interference study of two intracellular calcium ion channel genes from Tribolium castaneum[D]. Yangzhou: Yangzhou University, 2014.
    [21]
    郭冰, 郝恩华, 王菁桢, 等. 入侵害虫松树蜂气味结合蛋白与其相关信息化学物质的分子对接[J]. 植物保护学报, 2019, 46(5): 1004−1017.

    Guo B, Hao E H, Wang J Z, et al. Molecular docking of odorant binding proteins and its related semiochemicals of Sirex noctilio, an invasive insect pest[J]. Journal of Plant Protection, 2019, 46(5): 1004−1017.
    [22]
    李敏, 郭美琪, 相伟芳, 等. 分子对接技术在昆虫化学感受研究中的应用进展[J]. 植物保护, 2019, 45(5): 121−127.

    Li M, Guo M Q, Xiang W F, et al. Research progress in molecular docking in insect chemosense[J]. Plant Protection, 2019, 45(5): 121−127.
    [23]
    Liu Q J, Wang H, Li H L, et al. Impedance sensing and molecular modeling of an olfactory biosensor based on chemosensory proteins of honeybee[J]. Biosensors & Bioelectronics, 2013, 40(1): 174−179.
    [24]
    Li H L, Ni C X, Tan J, et al. Chemosensory proteins of the eastern honeybee, Apis cerana: identification, tissue distribution and olfactory related functional characterization[J]. Journal of Insect Physiology, 2016, 194−195: 11−19. doi: 10.1016/j.cbpb.2015.11.014
    [25]
    李红亮, 张林雅, 庄树林, 等. 中华蜜蜂普通气味结合蛋白ASP2的气味结合功能模式分析[J]. 中国农业科学, 2013, 46(1): 154−161. doi: 10.3864/j.issn.0578-1752.2013.01.018

    Li H L, Zhang L Y, Zhuang S L, et al. Interpretation of odorant binding function and mode of general odorant binding protein ASP2 in Chinese honeybee (Apis cerana cerana)[J]. Scientia Agricultura Sinica, 2013, 46(1): 154−161. doi: 10.3864/j.issn.0578-1752.2013.01.018
    [26]
    杨雪清, 刘吉元, 张雅林. 分子模拟技术及其在苹果蠹蛾代谢杀虫剂分子机制研究中的应用进展[J]. 生物安全学报, 2015, 24(4): 265−273.

    Yang X Q, Liu J Y, Zhang Y L. Molecular simulation and its application progress on molecular metabolic mechanisms of insecticide in Cydia pomonella[J]. Journal of Biosafety, 2015, 24(4): 265−273.
    [27]
    Wang Y L, Jin Y C, Chen Q, et al. Selectivity and ligand-based molecular modeling of an odorant-binding protein from the leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) in relation to habitat-related volatiles[J]. Scientific Reports, 2017, 7(1): 15374. doi: 10.1038/s41598-017-15538-8
    [28]
    杨耀. 三种昆虫鱼尼丁受体的克隆及其对氯虫苯甲酰胺敏感性差异的比较分析[D]. 南京: 南京农业大学, 2017.

    Yang Y. Cloning of three insect ryanodine receptors and comparative analysis of their sensitivity to chlorantraniliprole[D]. Nanjing: Nanjing Agricultural University, 2017.
    [29]
    高晓进, 郭莉, 陈迪, 等. 花椒窄吉丁化学感受蛋白AzanCSP7的三维模型预测及其与寄主挥发物的分子对接[J]. 农业生物技术学报, 2023, 31(6): 1238−1251. doi: 10.3969/j.issn.1674-7968.2023.06.012

    Gao X J, Guo L, Chen D, et al. Three dimensional model prediction of Agrilus zanthoxylumi chemoreceptor protein AzanCSP7 and its macromolecular docking with host volatiles[J]. Journal of Agricultural Biotechnology, 2023, 31(6): 1238−1251. doi: 10.3969/j.issn.1674-7968.2023.06.012
    [30]
    刘少武, 呼健洋, 刘艳, 等. 2种双酰胺类杀虫剂对4种鳞翅目害虫的生物活性[J]. 农药, 2023, 62(8): 616−619.

    Liu S W, Hu J Y, Liu Y, et al. Biological activities of two diamide insecticides against four Lepidoptera pests[J]. Agrochemicals, 2023, 62(8): 616−619.
    [31]
    Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research, 2001, 29(9): e45. doi: 10.1093/nar/29.9.e45
    [32]
    邱立新, 卢修亮, 林晓, 等. 我国美国白蛾防控历程与新时期策略探讨[J]. 中国森林病虫, 2022, 41(6): 1−7.

    Qiu L X, Lu X L, Lin X, et al. Discussion on the prevention and control course of Hyphantria cunea in China and strategies for the new era[J]. Forest Pest and Disease, 2022, 41(6): 1−7.
    [33]
    Boaventura D, Bolzan A, Padovez F E, et al. Detection of a ryanodine receptor target-site mutation in diamide insecticide resistant fall armyworm, Spodoptera frugiperda[J]. Pest Management Science, 2020, 76(1): 47−54. doi: 10.1002/ps.5505
    [34]
    赵丹丹, 周丽琪, 张帅, 等. 二化螟对双酰胺类杀虫剂的抗药性监测和交互抗性研究[J]. 中国水稻科学, 2017, 31(3): 8.

    Zhao D D, Zhou L Q, Zhang S, et al. Monitoring of resistance and study on interaction resistance of Chilo suppressalis to diamide insecticides[J]. Chinese Journal of Rice Science, 2017, 31(3): 8.
    [35]
    邓放, 周小毛. 氯虫苯甲酰胺对菜青虫鱼尼丁受体基因表达量的影响[J]. 湖南农业科学, 2014, 334(7): 5−7. doi: 10.3969/j.issn.1006-060X.2014.07.002

    Deng F, Zhou X M. Effect of chlorantraniliprole on gene expression of ryanodine receptor in Pieris rapae[J]. Hunan Agricultural Sciences, 2014, 334(7): 5−7. doi: 10.3969/j.issn.1006-060X.2014.07.002
    [36]
    孙丽娜, 张怀江, 闫文涛, 等. 桃小食心虫鱼尼丁受体基因克隆及表达模式分析[J]. 中国农业科学, 2015, 48(10): 1971−1981. doi: 10.3864/j.issn.0578-1752.2015.10.010

    Sun L N, Zhang H J, Yan W T, et al. Cloning and expression pattern analysis of ryanodine receptor gene in Carposina sasakii[J]. Scientia Agricultura Sinica, 2015, 48(10): 1971−1981. doi: 10.3864/j.issn.0578-1752.2015.10.010
    [37]
    曹晓炜. 华东地区小菜蛾抗药性监测和鱼尼丁受体I4790M突变介导的氟虫双酰胺抗性研究[D]. 南京: 南京农业大学, 2019.

    CAO X W. Monitoring of resistance of Plutella xylostella to insecticides in East China and study on resistance to fipronil diamide mediated by I4790M mutation of ryanodine receptor[D]. Nanjing: Nanjing Agricultural University, 2019.
    [38]
    Troczka B, Zimmer C T, Elias J, et al. Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor[J]. Insect Biochemistry and Molecular Biology, 2012, 42(11): 873−880. doi: 10.1016/j.ibmb.2012.09.001
    [39]
    孙丽娜, 张怀江, 刘孝贺, 等. 基于转录组的苹小卷叶蛾杀虫剂靶标及解毒代谢相关基因分析[J]. 昆虫学报, 2020, 63(4): 470−481.

    Sun L N, Zhang H J, Liu X H, et al. Transcriptome based analysis of insecticide targets and detoxification metabolism related genes of Adoxophyes orana[J]. Acta Entomologica Sinica, 2020, 63(4): 470−481.
    [40]
    杨欢, 郭冰, 郝恩华, 等. 禾谷缢管蚜气味降解酶鉴定及其与关键信息化学物质的分子对接[J]. 植物保护学报, 2022, 49(4): 1119−1131.

    Yang H, Guo B, Hao E H, et al. Identification of odor-degrading enzymes from Rhopalosiphum padi and their molecular docking with key information chemicals[J]. Journal of Plant Protection, 2022, 49(4): 1119−1131.
    [41]
    崔琳琳, 宋亚刚, 苗明三. 基于网络药理学和分子对接的陈皮干预COVID-19的可能机制[J]. 中药药理与临床, 2020, 36(5): 28−33.

    Cui L L, Song Y G, Miao M S. Possible mechanism of citri reticulatae pericarpium intervening on COVID-19 based on network pharmacology and molecular docking[J]. Pharmacology and Clinics of Chinese Materia Medica, 2020, 36(5): 28−33.
    [42]
    Gawande N D, Subashini S, Murugan M, et al. Molecular screening of insecticides with sigma glutathione S-transferases (GST) in cotton aphid Aphis gossypii using docking[J]. Bioinformation, 2014, 10(11): 679−683. doi: 10.6026/97320630010679
  • Cited by

    Periodical cited type(14)

    1. 吕坤,班以琛,坝仕宏,刘洋,文剑. 基于抚育整枝目标的毛白杨枝条冲击切割性能适应性分析. 北京林业大学学报. 2024(04): 158-166 . 本站查看
    2. 阮颖超,苏比·热西塔洪,林熙,李明,范少辉,冯随起,陈志云,马祥庆,何宗明. 修枝强度对杉木人工林无节材形成及质量的影响. 林业科学. 2024(06): 50-59 .
    3. 陈明旭,吴雅琳,刘雨晖,李明,吴鹏飞,马祥庆. 修枝对杉木节子发育和无节材比例的影响. 森林与环境学报. 2024(05): 449-456 .
    4. 谭长强,杨丽萍,梁星星,彭玉华,莫雅芳,何峰,申文辉,钟瑜. 不同修枝强度及配方施肥对红锥幼林生长的影响. 广西林业科学. 2023(02): 167-172 .
    5. 卢翠香,李桂兰,任世奇,刘媛,蒋小波,黄明军,韦振道. 人工修枝对尾巨桉胶合板性能的影响. 广西林业科学. 2023(04): 522-527 .
    6. 张士韬,欧阳林男,陈少雄,杨嘉麒. 间伐与修枝对人工林木材质量影响的研究进展. 广西林业科学. 2023(06): 803-811 .
    7. 谢耀坚. 科技创新引领中国桉树研究和产业迅猛发展. 桉树科技. 2022(01): 35-42 .
    8. 白卫国,黎世鑫,李蔷薇,熊涛,赵佳宁,任世奇. 不同种植密度与修枝强度对幼龄尾巨桉生长量的影响. 桉树科技. 2022(02): 20-24 .
    9. 苏福聪,李书玲,黄慧敏,刘杰钊,罗克展,梁志诚,刘媛,任世奇. 修枝对尾巨桉生长量的影响. 桉树科技. 2021(01): 31-35 .
    10. 刘罗新,罗建中,王楚彪,卢万鸿,林彦,邢晓文. 桉树旋切单板用材质量研究现状. 桉树科技. 2021(03): 63-68 .
    11. 莫柳园,李秋荔,周鑫,温晓毅,刘资华,任世奇. 施肥和修枝对巨尾桉幼林生长的影响. 桉树科技. 2021(03): 44-46 .
    12. 李国新,黎颖锋,邓炳权,龚益广,杨锦昌. 广东郁南尾巨桉人工林密度效应. 林业与环境科学. 2017(04): 9-13 .
    13. 任世奇,卢翠香,邓紫宇,郭东强,伍琪. 修枝对大花序桉幼林生长和木材密度的影响. 西南大学学报(自然科学版). 2017(11): 45-50 .
    14. 王杰,钟志兴. 修枝对巨尾桉生长动态及单板质量的影响. 花卉. 2015(17): 102-103 .

    Other cited types(4)

Catalog

    Article views (175) PDF downloads (19) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return