Citation: | Jiang Tongran, Yan Yunfei, Jiang Lichun. Construction of crown radius models for Larix gmelinii based on generalized additive model[J]. Journal of Beijing Forestry University, 2025, 47(3): 73-82. DOI: 10.12171/j.1000-1522.20240272 |
This study aims to develop crown radius models for Larix gmelinii based on the theory of generalized additive model (GAM), and compares the predictive accuracy with the aggregation for crown radius and crown width, and providing theoretical foundations and practical guidance for predictions of crown radius and crown width in Larix gmelinii.
The research subjects were 3 444 Larix gmelinii trees from 68 natural forest plots in the Greater Khingan Mountains of Heilongjiang Province, northeastern China. From eight crown width-diameter base model fitting results, the model with the smallest Akaike information criterion (AIC) and Bayesian information criterion (BIC) was selected as the base models for each crown radius. Single-tree and stand factors were introduced into the optimal base models to construct the generalized models. Based on the constructed generalized models, the aggregation and GAM theory were used to build a system of compatible models for each crown radius.
(1) The base model fitting results indicated that the optimal base models varied for crown radii in different directions. (2) Introducing variables such as height to the crown base, basal area, and quadratic mean DBH into the base models for different crown radius directions all improved the model fitting effects. Subsequently, generalized models containing single-tree size and competition variables were constructed for each crown radius. (3) The comprehensive comparison of compatible models of crown radius and crown width based on the aggregation and GAM methods showed that GAM had better fitting effects and predictive accuracy, and the predictions for both crown radius and crown width was better than that of aggregation method.
Each crown radius of Larix gmelinii exhibits different growth trends. In the crown radius model for Larix gmelinii, the predictive accuracy of GAM is superior to that of aggregation. GAM not only does not require strict model assumption but also simplifies the selection process between predictor and response variables. Therefore, from the perspectives of model assumptions and application convenience, GAM is recommended for predicting crown radius and crown width in this region’s Larix gmelinii forests.
[1] |
Biging G S, Dobbertin M. A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees[J]. Forest Science, 1992, 38(3): 695−720. doi: 10.1093/forestscience/38.3.695
|
[2] |
董晨, 吴保国, 韩焱云, 等. 基于修正函数的杉木人工林单木冠幅预测模型[J]. 东北林业大学学报, 2015, 43(5): 49−53. doi: 10.3969/j.issn.1000-5382.2015.05.010
Dong C, Wu B G, Han Y Y, et al. An individual crown-width model for Chinese fir plantation based on modified function[J]. Journal of Northeast Forestry University, 2015, 43(5): 49−53. doi: 10.3969/j.issn.1000-5382.2015.05.010
|
[3] |
Bragg D C. A local basal area adjustment for crown width prediction[J]. Northern Journal of Applied Forestry, 2001, 18(1): 22−28. doi: 10.1093/njaf/18.1.22
|
[4] |
Rüdiger G. Estimation of crown radii and crown projection area from stem size and tree position[J]. Annals of Forest Science, 2003, 60(5): 393−402. doi: 10.1051/forest:2003031
|
[5] |
Kong F L, Bi H Q, McLean M, et al. Comparative performances of new and existing indices of crown asymmetry: an evaluation using tall trees of Eucalyptus pilularis (Smith)[J]. Journal of Forestry Research, 2021, 32(1): 43−65. doi: 10.1007/s11676-020-01180-0
|
[6] |
Longuetaud F, Piboule A, Wernsdörfer H, et al. Crown plasticity reduces inter-tree competition in a mixed broadleaved forest[J]. European Journal of Forest Research, 2013, 132(4): 621−634. doi: 10.1007/s10342-013-0699-9
|
[7] |
Jucker T, Bouriaud O, Coomes D A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests[J]. Functional Ecology, 2015, 29(8): 1078−1086. doi: 10.1111/1365-2435.12428
|
[8] |
Krůček M, Trochta J , Cibulka M, et al. Beyond the cones: how crown shape plasticity alters aboveground competition for space and light-Evidence from terrestrial laser scanning[J]. Agricultural and Forest Meteorology, 2018, 264: 188−199.
|
[9] |
Thorpe H C, Astrup R, Trowbridge A, et al. Competition and tree crowns: a neighborhood analysis of three boreal tree species[J]. Forest Ecology and Management, 2010, 259(8): 1586−1596. doi: 10.1016/j.foreco.2010.01.035
|
[10] |
Fu L Y, Xiang W, Wang G X, et al. Additive crown width models comprising nonlinear simultaneous equations for Prince Rupprecht larch (Larix principis-rupprechtii) in northern China[J]. Trees, 2017, 31(6): 1959−1971. doi: 10.1007/s00468-017-1600-0
|
[11] |
Fu L Y, Sharma R P, Wang G X, et al. Modelling a system of nonlinear additive crown width models applying seemingly unrelated regression for Prince Rupprecht larch in northern China[J]. Forest Ecology and Management, 2017, 386: 71−80. doi: 10.1016/j.foreco.2016.11.038
|
[12] |
Lei Y K, Fu L Y, Affleck D L R, et al. Additivity of nonlinear tree crown width models: aggregated and disaggregated model structures using nonlinear simultaneous equations[J]. Forest Ecology and Management, 2018, 427: 372−382. doi: 10.1016/j.foreco.2018.06.013
|
[13] |
Adamec Z, Drápela K. Generalized additive models as an alternative approach to the modelling of the tree height-diameter relationship[J]. Journal of Forest Science, 2015, 61(6): 235−243. doi: 10.17221/14/2015-JFS
|
[14] |
Guisan A, Edwards T C, Hastie T. Generalized linear and generalized additive models in studies of species distributions: setting the scene[J]. Ecological Modelling, 2002, 157(2−3): 89−100. doi: 10.1016/S0304-3800(02)00204-1
|
[15] |
Robinson A P, Lane S E, Thérien G. Fitting forestry models using generalized additive models: a taper model example[J]. Canadian Journal of Forest Research, 2011, 41(10): 1909−1916. doi: 10.1139/x11-095
|
[16] |
Albert M, Schmidt M. Climate-sensitive modelling of site-productivity relationships for Norway spruce (Picea abies (L.) Karst.) and common beech (Fagus sylvatica L.)[J]. Forest Ecology and Management, 2010, 259(4): 739−749. doi: 10.1016/j.foreco.2009.04.039
|
[17] |
Falk W, Mellert K H. Species distribution models as a tool for forest management planning under climate change: risk evaluation of Abies alba in Bavaria[J]. Journal of Vegetation Science, 2011, 22(4): 621−634. doi: 10.1111/j.1654-1103.2011.01294.x
|
[18] |
He P, Jiang L C, Li F R. Evaluation of parametric and non-parametric stem taper modeling approaches: a case study for Betula platyphylla in Northeast China[J]. Forest Ecology and Management, 2022, 525: 120535. doi: 10.1016/j.foreco.2022.120535
|
[19] |
韩艳刚, 雷泽勇, 赵国军, 等. 樟子松人工固沙林冠幅−胸径模型[J]. 干旱区研究, 2018, 35(5): 1129−1137.
Han Y G, Lei Z Y, Zhao G J, et al. Canopy-DBH models for sand-fixing plantation of Pinus sylvestris var.mongolica[J]. Arid Zone Research, 2018, 35(5): 1129−1137.
|
[20] |
吕乐, 董利虎, 李凤日. 黑龙江省东部地区天然椴树单木冠幅预测模型[J]. 东北林业大学学报, 2019, 47(7): 37−42. doi: 10.3969/j.issn.1000-5382.2019.07.007
Lü L, Dong L H, Li F R. Individual tree crown width prediction models for natural Tilia tuan in eastern Heilongjiang Province[J]. Journal of North-East Forestry University, 2019, 47(7): 37−42. doi: 10.3969/j.issn.1000-5382.2019.07.007
|
[21] |
贺梦莹, 董利虎, 李凤日. 长白落叶松−水曲柳混交林冠幅预测模型[J]. 北京林业大学学报, 2020, 42(7): 23−32. doi: 10.12171/j.1000-1522.20190250
He M Y, Dong L H, Li F R. Crown width prediction models for Larix olgensis and Fraxinus mandshurica mixed plantations[J]. Journal of Beijing Forestry University, 2020, 42(7): 23−32. doi: 10.12171/j.1000-1522.20190250
|
[22] |
邱思玉, 孙玉军. 长白落叶松人工林单木冠幅模型[J]. 东北林业大学学报, 2021, 49(2): 49−53.
Qiu S Y, Sun Y J. Individual tree crown width prediction models for Larix olgensis plantation[J]. Journal of Northeast Forestry University, 2021, 49(2): 49−53.
|
[23] |
Sánchez-González M, Cañellas I, Montero G. Generalized height-diameter and crown diameter prediction models for cork oak forests in Spain[J]. Investigación Agraria: Sistemasy Recursos Forestales, 2007, 16(1): 76−88.
|
[24] |
Sönmez T. Diamater at breast height-crown diameter prediction models for Picea orientalis[J]. African Journal of Agricultural Research, 2009, 4(3): 215−219.
|
[25] |
罗玲, 廖超英. 榆林沙区樟子松冠幅与胸径的相关关系分析[J]. 安徽农学通报, 2007, 13(24): 92, 97.
Luo L, Liao C Y. Research on the correlation between crown width and DBH of Pinus sylvestris var. mongholica in Yulin desert area[J]. Anhui Agricultural Science Bulletin, 2007, 13(24): 92 , 97.
|
[26] |
Parresol B R. Additivity of nonlinear biomass equations[J]. Canadian Journal of Forest Research, 2001, 31(5): 865−878. doi: 10.1139/x00-202
|
[27] |
辛士冬, 严云仙, 姜立春. 基于不同可加性方法的黑龙江省红松人工林林分生物量模型[J]. 应用生态学报, 2020, 31(10): 3322−3330.
Xin S D, Yan Y X, Jiang L C. Stand biomass model for Pinus koraiensis plantation based on different additive methods in Heilongjiang Province, China[J]. The Journal of Applied Ecology, 2020, 31(10): 3322−3330.
|
[28] |
Stone C. Additive regression and other nonparametric models[J]. The Annals of Statistics, 1985, 13(2): 689−705.
|
[29] |
何培, 辛士冬, 姜立春. 基于广义加性模型的樟子松树干削度方程研建[J]. 北京林业大学学报, 2020, 42(12): 1−8. doi: 10.12171/j.1000-1522.20200094
He P, Xin S D, Jiang L C. Research on stem taper equation of Scots pine based on generalized additive model[J]. Journal of Beijing Forestry University, 2020, 42(12): 1−8. doi: 10.12171/j.1000-1522.20200094
|
[30] |
Uria-Diez J, Pommerening A. Crown plasticity in Scots pine (Pinus sylvestris L.) as a strategy of adaptation to competition and environmental factors[J]. Ecological Modelling, 2017, 356: 117−126.
|
[31] |
Qiu S Y, Gao P W, Pan L, et al. Developing nonlinear additive tree crown width models based on decomposed competition index and tree variables[J]. Journal of Forestry Research, 2023, 34(5): 1407−1422. doi: 10.1007/s11676-022-01576-0
|
[32] |
胡静杉, 铁牛. 兴安落叶松与白桦混交林合理经营密度研究[J]. 西北林学院学报, 2021, 36(2): 180−185. doi: 10.3969/j.issn.1001-7461.2021.02.26
Hu J S, Tie N. Rational operating density of mixed forest of Larix gmelinii and Betula platyphlla[J]. Journal of Northwest Forestry University, 2021, 36(2): 180−185. doi: 10.3969/j.issn.1001-7461.2021.02.26
|
[33] |
Tian D Y, He P, Jiang L C, et al. Developing crown width model for mixed forests using soil, climate and stand factors[J]. Journal of Ecology, 2024, 112(2): 427−442. doi: 10.1111/1365-2745.14249
|
[34] |
李应涛, 刘时良, 孙海龙, 等. 云冷杉针阔混交林单木枝下高和冠幅模型构建[J]. 森林与环境学报, 2022, 42(3): 289−296.
Li Y T, Liu S L, Sun H L, et al. Modeling of height to crown base and crown width in spruce-fir conifer-broadleaf mixed forest[J]. Journal of Forest and Environment, 2022, 42(3): 289−296.
|
[35] |
Levine J, Valpine P D, Battles J. Generalized additive models reveal among-stand variation in live tree biomass equations[J]. Canadian Journal of Forest Research, 2021, 51(4): 546−564. doi: 10.1139/cjfr-2020-0219
|