Citation: | He Mingxia, Huang Xueman, You Yeming, Wang Bo, Tong Hui, Yang Xinran, Ming Angang, Zhao Lijun, Luan Junwei. Regulatory mechanism of root-mycelial-microorganism interactions on soil phosphorus transformation of Pinus massoniana plantation under mixed renovation[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240322 |
This paper aims to reveal the regulation mechanisms of soil phosphorus fraction regeneration in Masson pine plantations under multi-layered, uneven-aged mixed transformation, providing theoretical support for alleviating soil phosphorus limitation and ecological function decline caused by continuous planting of coniferous pure forests.
Using Pinus massoniana pure forest and its mixed all-age stands with Castanopsis hystri and Erythrophleum fordii as the research object, the effects of root-mycelium-microbe interactions on phosphorus cycling were resolved by means of inter-root limiting devices with mesh sizes of 1.45 mm (root + mycelium) and 53 μm (mycelium).
(1) Introducing Castanopsis hystri and Erythrophleum fordii mixed transformation into the pure forest, soil total labile phosphorus content was elevated by 41.34% and 44.42%, total moderately labile phosphorus content was elevated by 36.84% and 40.26%. (2) In the mixed forest, total microbial biomass phosphorus content was significantly increased by 91.21% and 79.52%, and the total acid phosphatase activity was significantly increased by 86.25% and 103.46%. Soil total nitrogen, total microbial biomass phosphorus, and L-leucine aminopeptidase were main environmental factors regulating the transformation of soil phosphorus fractions. (3) Only after increasing the involvement of mycelium, phosphorus activation coefficients in the soil of three stands were significantly increased by 24.37%, 20.24%, 20.69%. (4) Compared with only increasing mycelium involvement, root inputs resulted in total active phosphorus and total moderately active phosphorus in pure forests to decrease by 35.55% and 30.25%, respectively, and the active inorganic phosphorus in Castanopsis hystri and Erythrophleum fordii mixed forests to drop by 28.14% and 34.59%, respectively.
The cycling and transformation of soil phosphorus fractions in a mixed mosaic forest are influenced by soil microorganisms, enzyme activities, and soil nitrogen. Roots play a major role in the transformation of phosphorus in the soil, and the interaction between root system and mycelium can complicate the interactions of microbial communities in their soils, affecting the transformation and effectiveness of soil phosphorus.
[1] |
张亮, 杨卉芃, 冯安生, 等. 全球磷矿资源开发利用现状及市场分析[J]. 矿产保护与利用, 2017(5): 105−112.
Zhang L, Yang H P, Feng A S, et al. Study on general situation and analysis of supply and demand of global phosphate resources[J]. Conservation and Utilization of Mineral Resources, 2017(5): 105−112.
|
[2] |
石文静. 土壤有机磷的研究进展[J]. 安徽农业科学, 2014, 42(33): 11697−11701, 11703.
Shi W J. Research advance in soil organic phosphorus[J]. Journal of Anhui Agricultural Sciences, 2014, 42(33): 11697−11701, 11703.
|
[3] |
Jarosch K A, Kandeler E, Frossard E, et al. Is the enzymatic hydrolysis of soil organic phosphorus compounds limited by enzyme or substrate availability?[J]. Soil Biology and Biochemistry, 2019, 139: 107628.
|
[4] |
刘生忠, 王林林, 司佳昂, 等. 长期保护性耕作对陇中旱农区小麦田土壤磷组分的影响[J]. 甘肃农业大学学报, 2024, 59(4): 82−90.
Liu S Z, Wang L L, Si J A, et al. Effects of long-term conservation tillage on soil phosphorus fraction in rainfed wheat field of Longzhong[J]. Journal of Gansu Agricultural University, 2024, 59(4): 82−90.
|
[5] |
Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970−976. doi: 10.2136/sssaj1982.03615995004600050017x
|
[6] |
Sui Y, Thompson M L, Shang C. Fractionation of phosphorus in a mollisol amended with biosolids[J]. Soil Science Society of America Journal, 1999, 63(5): 1174−1180. doi: 10.2136/sssaj1999.6351174x
|
[7] |
Tiessen H, Stewart J W B, Cole C V. Pathways of phosphorus transformations in soils of differing pedogenesis[J]. Soil Science Society of America Journal, 1984, 48(4): 853−858. doi: 10.2136/sssaj1984.03615995004800040031x
|
[8] |
谭许脉. 马尾松/格木异龄混交改造对根际和非根际土壤磷组分的影响及其潜在调控机制[D]. 南宁: 广西大学, 2023.
Tan X M. Effects of Pinus massoniana/Erythrophleum fordii uneven-aged mixied transformation on-rhizosphere and non-rhizosphere soils phosphorus fractions and its potential regulatory mechanisms[D]. Nanning: Guangxi University, 2023.
|
[9] |
Wang G W, Jin Z X, George, et al. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover[J]. The New phytologist, 2023, 238(6): 2578−2593. doi: 10.1111/nph.18772
|
[10] |
Raghothama K G. Phosphorus and plant nutrition: an overview[J]. Phosphorus: Agriculture and the Environment, 2005, 46: 353−378.
|
[11] |
Cao X, Zhao Y, Xia X R, et al. Interactions between root hair development and arbuscular mycorrhizal fungal colonization in trifoliate orange seedlings in response to p levels[J]. Agriculture, 2024, 14(5): 763. doi: 10.3390/agriculture14050763
|
[12] |
Yao N N, Li A, Wang X J, et al. Influence of arbuscular mycorrhizal fungi on root foraging and competitive ability depends on soil phosphorus distribution: evidence from two pairs of invasive and native plants[J]. Applied Soil Ecology, Volume 2024, 201: 105507.
|
[13] |
尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究: 问题与展望[J]. 植物生态学报, 2018, 42(11): 1055−1070. doi: 10.17521/cjpe.2018.0156
Yin H J, Zhang Z L, Liu Q. Root exudates and their ecological consequences in forest ecosystems: problems and perspective[J]. Chinese Journal of Plant Ecology, 2018, 42(11): 1055−1070. doi: 10.17521/cjpe.2018.0156
|
[14] |
Zhang M Z, Li W T, Liu W J, et al. Rhizosphere microbial community construction during the latitudinal spread of the invader Chromolaena odorata[J]. BMC Microbiology, 2024, 24(1): 1−12. doi: 10.1186/s12866-023-03142-y
|
[15] |
李银, 曾曙才, 黄文娟. 模拟氮沉降对鼎湖山森林土壤酸性磷酸单酯酶活性和有效磷含量的影响[J]. 应用生态学报, 2011, 22(3): 631−636.
Li Y, Zeng S C, Huang W J. Effects of simulated nitrogen deposition on soil acid phosphomonoesterase activity and soil available phosphorus content in subtropical forests in Dinghushan Mountain[J]. Chinese Journal of Applied Ecology, 2011, 22(3): 631−636.
|
[16] |
肖指柔, 滕金倩, 秦佳琪, 等. 土壤碳氮磷生态化学计量比对针阔人工混交林及其纯林的差异响应[J]. 西部林业科学, 2024, 53(2): 56−63.
Xiao Z R, Teng J Q, Qin J Q, et al. Differential responses of soil carbon, nitrogen and phosphorus eco-stoichiometric ratio to monoculture and mixed coniferous-broadleaved plantations[J]. Journal of West China Forestry Science, 2024, 53(2): 56−63.
|
[17] |
刘世荣, 杨予静, 王晖. 中国人工林经营发展战略与对策: 从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营[J]. 生态学报, 2018, 38(1): 1−10. doi: 10.1016/j.chnaes.2017.02.003
Liu S R, Yang Y J, Wang H. Development strategy and management countermeasures of planted forests in China: transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services[J]. Acta Ecologica Sinica, 2018, 38(1): 1−10. doi: 10.1016/j.chnaes.2017.02.003
|
[18] |
李金凤, 王晖, 尤业明, 等. 南亚热带人工林树种配置对根际土壤生物有效磷的影响[J]. 应用生态学报, 2024, 35(6): 1492−1500.
Li J F, Wang H, Yu Y M, et al. Effects of tree species assembly on bioavailable P components in rhizosphere soil of southern subtropical plantation[J]. Journal of Applied Ecology, 2024, 35(6): 1492−1500.
|
[19] |
包涛涛, 李丝雨, 王一 , 等. 根系-菌根-土壤微生物对毛竹林土壤氮矿化过程的贡献[J]. 生态学杂志, 2024, 43(5): 1234−1242.
Bao T T, Li S Y, Wang Y, et al. Contribution of roots-mycorrhizae-free-living microorganisms to soil nitrogen mineralization in moso bamboo forest[J]. Chinese Journal of Ecology, 2024, 43(5): 1234−1242.
|
[20] |
Saiya C K, Sinsabaugh R, Zak D. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology & Biochemistry, 2002, 34(9): 1309−1315.
|
[21] |
鲍士旦. 土壤农化分析[M].3版. 北京: 中国农业出版社, 2013.
Bao S T. Soil agrochemical analysis [M]. 3rd ed. Beijing: China Agricultural Press, 2013.
|
[22] |
Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703−707. doi: 10.1016/0038-0717(87)90052-6
|
[23] |
Brookes P C, Powlson D S, Jenkinson D S. Measurement of microbial biomass phosphorus in soil[J]. Soil Biology and Biochemistry, 1982, 14(4): 319−329. doi: 10.1016/0038-0717(82)90001-3
|
[24] |
Asadishad B, Chahal S, Akbari A, et al. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition[J]. Environmental science & technology, 2018, 52(4): 1908−1918.
|
[25] |
田野, 姜文婷, 王秀康, 等. 外源氯化钙与秸秆物料对盐碱土壤有机碳组分和酶活性的影响[J]. 延安大学学报(自然科学版), 2024, 43(3): 59−67.
Tian Y, Jiang W T, Wang X K, et al. Effects of exogenous calcium chloride and straw materials on organic carbon components and enzyme activities of saline-alkali soil[J]. Journal of Yan'an University (Natural Science Edition), 2024, 43(3): 59−67.
|
[26] |
常怡然, 史佳梅, 许冬梅, 等. 荒漠草原不同自然种群蒙古冰草生物量和养分权衡特征[J]. 草业学报, 2024, 33(11): 186−197.
Chang Y R, Shi J M, Xu D M, et al. Trade-off relationships between biomass and nutrient allocation in different natural populations of Agropyron mongolicum on the desert steppe[J]. Acta Prataculturae Sinica, 2024, 33(11): 186−197.
|
[27] |
严君, 韩晓增, 陆欣春, 等. 不同土地利用方式对黑土微生物群落功能多样性的影响[J]. 土壤与作物, 2019, 8(4): 381−388.
Yan J, Han X Z, Lu X C, et al. Effects of different land use types on functional diversity of microbial communities in Mollisols[J]. Soil and Crops, 2019, 8(4): 381−388.
|
[28] |
朱潮, 武利玉, 张崇庆, 等. 兰州市北山典型侧柏人工林分叶片与土壤生态化学计量特征[J]. 水土保持学报, 2021, 35(4): 361−368.
Zhu C, Wu L Y, Zhang C Q, et al. Ecological stoichiometric characteristics of leaves and soil in a typical Platycladus orientalis plantation in Beishan of Lanzhou City[J]. Journal of Soil and Water Conservation, 2021, 35(4): 361−368.
|
[29] |
谷雨晴, 袁在翔, 牛莹莹, 等. 紫金山两种典型林分土壤磷组分特征及其影响因素[J]. 森林与环境学报, 2024, 44(2): 136−147.
Gu Y Q, Yuan Z X, Niu Y Y, et al. Characteristics of soil phosphorus fractions of two typical stands in Zijinshan Mountain and their driving factors[J]. Journal of Forest and Environment, 2024, 44(2): 136−147.
|
[30] |
阿合江·赛力克, 孙琳, 王绒, 等. 黄土丘陵区恢复草地土壤团聚体组成及全氮分布特征[J]. 生态学报, 2023, 43(24): 10065−10080.
Ahejiang S L K, Sun L, Wang R, et al. Restoration of grassland soil aggregate composition and total nitrogen distribution characteristics in loess hilly area[J]. Acta Ecologica Sinica, 2023, 43(24): 10065−10080.
|
[31] |
Hou E, Tang S, Chen C, et al. Solubility of phosphorus in subtropical forest soils as influenced by low-molecular organic acids and key soil properties[J]. Geoderma, 2017, 313: 172−180.
|
[32] |
曾宪楠, 高斯倜, 冯延江, 等. 水稻秸秆还田对土壤培肥及水稻产量的影响研究进展[J]. 江苏农业科学, 2018, 46(18): 13−16.
Zeng X N, Gao S T, Feng Y J, et al. Research progress on the effect of rice straw return on soil fertilization and rice yield[J]. Jiangsu Agricultural Sciences, 2018, 46(18): 13−16.
|
[33] |
冯慧琳, 徐辰生, 何欢辉, 等. 生物炭对土壤酶活和细菌群落的影响及其作用机制[J]. 环境科学, 2021, 42(1): 422−432.
Feng H L, Xu C S, He H H, et al. Effect of biochar on soil enzyme activity & the bacterial community and its mechanism[J]. Environmental Science, 2021, 42(1): 422−432.
|
[34] |
王亚茹, 林鑫宇, 惠昊, 等. 杨树人工林类型对土壤磷组分的影响[J]. 生态学杂志, 2021, 40(6): 1549−1556.
Wang Y R, Lin X Y, Hui H, et al. Effects of poplar plantation types on soil phosphorus fractions[J]. Chinese Journal of Ecology, 2021, 40(6): 1549−1556.
|
[35] |
Moore J, Jiang J, Patterson C M, et al. Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes[J]. Journal of Ecology, 2015, 103(6): 1442−1453. doi: 10.1111/1365-2745.12484
|
[36] |
吴佳芯, 张育涵, 李邵宇, 等. 长期放牧对内蒙古荒漠草原土壤不同组分有机磷含量的影响[J]. 草地学报, 2024, 32(5): 1479−1488.
Wu J X, Zhang Y H, Li S Y, et al. Effects of long-term grazing on different fractions of organic phosphorus content in desert grassland in Inner Mongolia[J]. Acta Agrestia Sinica, 2024, 32(5): 1479−1488.
|
[37] |
段世龙, 严文辉, 冯固, 等. 植物根系/菌根途径获取养分的碳磷互惠机制[J]. 植物营养与肥料学报, 2023, 29(6): 1160−1167.
Duan S L, Yan W H, Feng G, et al. Carbon-phosphorus reciprocal mechanism for plants to acquire nutrients through the root/mycorrhizal pathway[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(6): 1160−1167.
|
[38] |
Emmett B D, Véronique L T, Harrison M J. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi[J]. The ISME Journal, 2021, 15(8): 2276−2288. doi: 10.1038/s41396-021-00920-2
|
[39] |
Zhang L, Shi N, Fan J, et al. Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions: AMF stimulate organic P mobilization in the field[J]. 2018, 20(7): 2639−2651.
|
[40] |
Lin Z, Qun C, Jianwei Z, et al. Soil phosphorus availability determines the preference for direct or mycorrhizal phosphorus uptake pathway in maize[J]. Geoderma, 2021, 403: 115261. doi: 10.1016/j.geoderma.2021.115261
|
[41] |
Li J, Li Z, Wang F, et al. Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China[J]. Biology and Fertility of Soils, 2015, 51(2): 207−215. doi: 10.1007/s00374-014-0964-1
|
[42] |
Huang X, Liu S, Wang H, et al. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China[J]. Soil Biology and Biochemistry, 2014, 73: 42−48. doi: 10.1016/j.soilbio.2014.01.021
|
[43] |
王可莹. 松嫩草地土壤有机磷组分及土壤磷矿化对氮添加的响应[D]. 长春: 东北师范大学, 2021.
Wang K Y. Response of soil organic phosphorus fraction and soil phosphorus mineralization to nitrogen addition in Songnen grassland[D]. Changchun: Northeast Normal University, 2021.
|
[1] | Qin Shaowei, Zhang Jing, Wang Yile, Xu Yuhang, Zhou Chunhan, Chen Keyu, Ji Baoming. Influence of arbuscular mycorrhizal fungi from two temperate grassland types on Medicago sativa seedling growth in Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2024, 46(11): 53-61. DOI: 10.12171/j.1000-1522.20240213 |
[2] | Wu Shuai, Jiang Dun, Ma Qinghui, Tan Mingtao, Zhao Jiaqi, Liu Xiaoxia, Meng Zhaojun, Yan Shanchun. Effects of arbuscular mycorrhizal fungi on metabolism and chemical defense of Populus alba × P. berolinensis leaves[J]. Journal of Beijing Forestry University, 2021, 43(5): 86-92. DOI: 10.12171/j.1000-1522.20200172 |
[3] | Xu Xiaochong, Wang Xinjie, Lu Nini, Zhao Yun, Lin Chen, Dong Boyuan, Li Jiani. Effects of rhizosphere soil addition of different aged Chinese fir plantation on the mycorrhizal colonization and growth of its seedlings[J]. Journal of Beijing Forestry University, 2020, 42(12): 74-82. DOI: 10.12171/j.1000-1522.20200044 |
[4] | Fan Zhouzhou, Lu Shuyu, Wang Jiao, Guo Dongchu, Pang Danbo, Zhou Jinxing, Peng Xiawei. Microbial and enzyme activities in rhizosphere soil of different forest stand in karst and non karst areas[J]. Journal of Beijing Forestry University, 2018, 40(7): 55-61. DOI: 10.13332/j.1000-1522.20180011 |
[5] | WANG Ling, ZHAO Guang-liang, HUANG Jin. Microbial biomass and enzyme activity of the rhizosphere soil under different grafted Xanthoceras sorbifolia cultivars[J]. Journal of Beijing Forestry University, 2015, 37(8): 69-75. DOI: 10.13332/j.1000-1522.20150013 |
[6] | CHEN Jie, XIE Jing, TANG Ming. Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of Amorpha fruticosa under water stress.[J]. Journal of Beijing Forestry University, 2014, 36(6): 142-148. DOI: 10.13332/j.cnki.jbfu.2014.06.026 |
[7] | DU Rui, ZHENG Hong-juan, JIA Gui-xia. Seedling cultivation of Picea pungens with mycorrhizal fungi.[J]. Journal of Beijing Forestry University, 2012, 34(1): 70-74. |
[8] | HU Tao, LI Lu-bin, YANG Kai, TANG Zheng, LIU Zhen-jing, ZHUANG Cai-yun, PENG Zhen-hua. Isolation and identification of Cymbidium mycorrhizae of China.[J]. Journal of Beijing Forestry University, 2008, 30(3): 132-135. |
[9] | JIN Hui, XU Zhong-xiang, CHEN Hui, HAN Su-fen. Localization and changes of activity of acid phosphatase in mycorhiza of Cymbidium hookerianum[J]. Journal of Beijing Forestry University, 2007, 29(4): 156-160. DOI: 10.13332/j.1000-1522.2007.04.031 |
[10] | YAN Rong, LIU Hong-xia, CAI Huai-fu, GE Song. A preliminary study of Changnienia amoena mycorrhizal fungi[J]. Journal of Beijing Forestry University, 2006, 28(2): 112-117. |