Citation: | WANG Cun-guo, CHEN Zheng-xia, MA Cheng-en, LIN Gui-gang, HAN Shi-jie. Three potential pathways influencing contrasting decomposition rates of fine roots[J]. Journal of Beijing Forestry University, 2016, 38(4): 123-128. DOI: 10.13332/j.1000-1522.20150437 |
[1] |
PENG S L, LIU Q. The dynamics of forest litter and its responses to global warming[J]. Acta Ecologica Sinica,2002,22(9):1534-1544.
|
[1] |
PRESCOTT C E. Do rates of litter decomposition tell us anything we really need to know [J]. Forest Ecology and Management,2005,220(1-3):66-74.
|
[2] |
SHAN J P, TAO D L, WANG M, et al. Fine roots turnover in a broad-leaved Korean pine forest of Changbai mountain[J]. Chinese Journal of Applied Ecology,1993,4(3):241-245.
|
[2] |
AERTS R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems [J]. Oikos,1997,79:439-449.
|
[3] |
CANADELL J G, LE QUERE C, RAUPACH M R, et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks[J]. Proceedings of the National Academy of Sciences,2007,104(47):18866-18870.
|
[3] |
LIN C F, GUO J F, CHEN G S, et al. Research progress in fine root decompostion in forest ecosystem[J]. Chinese Journal of Ecology,2008,27(6):1029-1036.
|
[4] |
MA C N, KONG D L, CHEN Z X, et al. Root growth into litter layer and its impact on litter decompostion: a review[J]. Chinese Journal of Plant Ecology,2012,36(11):1197-1204.
|
[4] |
FRESCHET G T, CORNWELL W K, WARDLE D A, et al. Linking litter decomposition of above-and below-ground organs to plant-soil feedbacks worldwide [J]. Journal of Ecology,2013,101:943-952.
|
[5] |
PARTON W, SILVER W L, BURKE I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition [J]. Science,2007,315:361-364.
|
[6] |
MANZONI S, JACKSON R B, TROFYMOW J A, et al. The global stoichiometry of litter nitrogen mineralization [J]. Science,2008,321:684-686.
|
[7] |
彭少麟,刘强. 森林凋落物动态及其对全球变暖的响应[J]. 生态学报,2002,22(9):1534-1544.
|
[8] |
CLEMMENSEN K E, BAHR A, OVASKAINEN O, et al. Roots and associated fungi drive long-term carbon sequestration [J]. Science,2013,339:1615-1618.
|
[9] |
VAN GROENIGEN K J, QI X, OSENBERG C W, et al. Faster decomposition under increased atmospheric CO2 limits soil carbon storage [J]. Science,2014,344:508-509.
|
[10] |
JACKSON R B, MOONEY H A, SCHULZE E D. A global budget for fine root biomass, surface area, and nutrient contents [J]. Proceedings of the National Academy of Sciences,1997,94(14):7362-7366.
|
[11] |
NADELHOFFER K J, RAICH J W. Fine root production estimates and belowground carbon allocation in forest ecosystems [J]. Ecology,1992,73(4):1139-1147.
|
[12] |
VOGT K A, VOGT D J, PALMIOTTO P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species [J]. Plant and Soil,1996,187(2):159-219.
|
[13] |
单建平,陶大立,王 淼,等. 长白山阔叶红松林细根周转的研究[J]. 应用生态学报,1993,4(3):241-245.
|
[14] |
SILVER W L, MIYA R K. Global patterns in root decomposition: comparisons of climate and litter quality effects [J]. Oecologia,2001,129(3):407-419.
|
[15] |
WELLS C E, EISSENSTAT D M. Marked differences in survivorship among apple roots of different diameters [J]. Ecology,2001,82(3):882-892.
|
[16] |
GUO D L, LI H, MITCHELL R J, et al. Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods [J]. New Phytologist,2008a,177(2):443-56.
|
[17] |
LI A, GUO D L, WANG Z Q, et al. Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern [J]. Functional Ecology,2010,24(1):224-232.
|
[18] |
PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees [J]. Ecological Monographs,2002,72(2):293-309.
|
[19] |
GUO D L, XIA M X, WEI X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species [J]. New Phytologist,2008c,180(3):673-683.
|
[20] |
EISSENSTAT D, ACHOR D. Anatomical characteristics of roots of citrus rootstocks that vary in specific root length [J]. New Phytologist,2002,141(2):309-321.
|
[21] |
PREGITZER K S, KUBISKE M E, YU C K, et al. Relationships among root branch order, carbon, and nitrogen in four temperate species [J]. Oecologia,1997,111(3):302-308.
|
[22] |
XIA M X, GUO D L, PREGITZER K S. Ephemeral root modules in Fraxinus mandshurica [J]. New Phytologist,2010,188(4):1065-1074.
|
[23] |
ADAMS T S, MCCORMACK M L, EISSENSTAT D M. Foraging strategies in trees of different root morphology: the role of root lifespan [J]. Tree Physiology,2013,33(9):940-948.
|
[24] |
MCCORMACK M L, EISSENSTAT D M, PRASAD A M, et al. Regional scale patterns of fine root lifespan and turnover under current and future climate [J]. Global Change Biology,2013,19:1697-1708.
|
[25] |
XIONG Y M, FAN P P, FU S L, et al. Slow decomposition and limited nitrogen release by lower order roots in eight Chinese temperate and subtropical trees [J]. Plant and Soil,2013,363(1-2):19-31.
|
[26] |
FAN P P, GUO D L. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil [J]. Oecologia,2010,163(2):509-515.
|
[27] |
GOEBEL M, HOBBIE S E, BULAJ B, et al. Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure [J]. Ecological Monographs,2011,81(1):89-102.
|
[28] |
CORNELISSEN J H C, PEREZ-HARGUINDEGUY N, DIAZ S, et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents [J]. New Phytologist,1999,143(1):191-200.
|
[29] |
YANG Y S, CHEN G S, GUO J F, et al. Decomposition dynamic of fine roots in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum in mid-subtropics [J]. Annals of Forest Science,2004,61(1):65-72.
|
[30] |
HISHI T. Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions [J]. Journal of Forest Research,2007,12(2):126-133.
|
[31] |
MCCLAUGHERTY C A, ABER J D, MELILLO J M. Decomposition dynamics of fine roots in forested ecosystems [J]. Oikos,1984,42(3):378-386.
|
[32] |
FAHEY T J, HUGHES J W, PU M, et al. Root decomposition and nutrient flux following whole-tree harvest of northern hardwood forest [J]. Forest Science,1988,34(3):744-768.
|
[33] |
LÕ, HMUS K, IVASK M. Decomposition and nitrogen dynamics of fine roots of Norway spruce (Picea abies (L.) Karst.) at different sites [J]. Plant and Soil,1995,168(1):89-94.
|
[34] |
SUN T, MAO Z J, HAN Y Y. Slow decomposition of very fine roots and some factors controlling the process: a 4-year experiment in four temperate tree species [J]. Plant and Soil,2013,372(1):445-458.
|
[35] |
SMITH S W, WOODIN S J, PAKEMAN R J, et al. Root traits predict decomposition across a landscape-scale grazing experiment [J]. New Phytologist,2014,203(3):851-862.
|
[36] |
GRAAFF M A D, SIX J, JASTROW J D, et al. Variation in root architecture among switchgrass cultivars impacts root decomposition rates [J]. Soil Biology and Biochemistry,2013,58:198-206.
|
[37] |
DE DEYN G B, CORNELISSEN J H, BARDGETT R D. Plant functional traits and soil carbon sequestration in contrasting biomes [J]. Ecology Letters,2008,11(5):516-531.
|
[38] |
BONFANTE P, GENRE A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis [J]. Nature Communications,2010,1:1-11.
|
[39] |
ALLEN M F. Mycorrhizal fungi: highways for water and nutrients in arid soils [J]. Vadose Zone Journal,2007,6(2):291-297.
|
[40] |
LEHTO T, ZWIAZEK J J. Ectomycorrhizas and water relations of trees: a review [J]. Mycorrhiza,2011,21(2):71-90.
|
[41] |
LANGLEY J A, HUNGATE B A. Mycorrhizal controls on belowground litter quality [J]. Ecology,2003,84(9):2302-2312.
|
[42] |
GADKAR V, DAVID-SCHWARTZ R, KUNIK T, et al. Arbuscular mycorrhizal fungal colonization factors involved in host recognition [J]. Plant Physiology,2001,127(4):1493-1499.
|
[43] |
DE DEYN G B, BIERE A, VAN DER PUTTEN W H, et al. Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L [J]. Oecologia,2009,160(3):433-442.
|
[44] |
BRUNDRETT M C. Coevolution of roots and mycorrhizas of land plants [J]. New Phytologist,2002,154(2):275-304.
|
[45] |
LANGLEY J A, CHAPMAN S K, HUNGATE B A. Ectomycorrhizal colonization slows root decomposition: the post mortem fungal legacy [J]. Ecology Letters,2006,9(8):955-959.
|
[46] |
林成芳,郭剑芬,陈光水,等. 森林细根分解研究进展[J]. 生态学杂志,2008,27(6):1029-1036.
|
[47] |
URCELAY C, VAIERETTI M V, P REZ M, et al. Effects of arbuscular mycorrhizal colonisation on shoot and root decomposition of different plant species and species mixtures [J]. Soil Biology and Biochemistry,2011,43(2):466-468.
|
[48] |
OKAFOR N. Estimation of the decomposition of chitin in soil by the method of carbon dioxide release [J]. Soil Science,1966,102:140-142.
|
[49] |
TROFYMOW J, MORLEY C, COLEMAN D, et al. Mineralization of cellulose in the presence of chitin and assemblages of microflora and fauna in soil [J]. Oecologia,1983,60:103-110.
|
[50] |
WALLANDER H, MASSICOTTE H, NYLUND J E. Seasonal variation in protein, ergosterol and chitin in flve morphotypes of Pinus sylvestris L. ectomycorrhizae in a mature Swedish forest [J]. Soil Biology and Biochemistry,1997,29:45-53.
|
[51] |
EKBLAD A, WALLANDER H, NASHOLM T. Chitin and ergosterol combined to measure total and living fungal biomass in ectomycorrhizas [J]. New Phytologist,1998,138:143-149.
|
[52] |
KOIDE R T, FERNANDEZ C W, PEOPLES M S. Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition[J]. New Phytologist,2011,191(2):508-514.
|
[53] |
KOIDE R T, MALCOLM G M. N concentration controls decomposition rates of different strains of ecotomycorrhizal fungi [J]. Fungal Ecology,2009,2:197-202.
|
[54] |
HOBBIE S E. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian Montane forest [J]. Ecosystems,2000,3(5):484-494.
|
[55] |
HOBBIE E A, COLPAERT J V, WHITE M W, et al. Nitrogen form, availability, and mycorrhizal colonization affect biomass and nitrogen isotope patterns in Pinus sylvestris [J]. Plant and Soil,2008,310(1-2):121-136.
|
[56] |
GUO D L, MITCHELL R J, HENDRICKS J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest [J]. Oecologia,2004,140(3):450-457.
|
[57] |
HENDRICKS J J, ABER J D, NADELHOFFER K J, et al. Nitrogen controls on fine root substrate quality in temperate forest ecosystems [J]. Ecosystems,2000,3(1):57-69.
|
[58] |
WANG W, ZHANG X Y, TAO N, et al. Effects of litter types, microsite and root diameters on litter decomposition in Pinus sylvestris plantations of northern China [J]. Plant and Soil,2014,374(1-2):677-688.
|
[59] |
HÄ, TTENSCHWILER S, COQ S, BARANTAL S, et al. Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis [J]. New Phytologist,2011,189(4):950-965.
|
[60] |
CARREIRO M M, SINSABAUGH R L, REPERT D A, et al. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition [J]. Ecology,2000,81(9):2359-2365.
|
[61] |
SINSABAUGH R L, CARREIRO M M, REPERT D A. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss [J]. Biogeochemistry,2002,60(1):1-24.
|
[62] |
MAGILL A H, ABER J D. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems [J]. Plant and Soil,1998,203(2):301-311.
|
[63] |
BERG B, MCCLAUGHERTY C. Plant litter: decomposition, humus formation, carbon sequestration[M]. 2nd ed. Berlin: Springer-Verlag, 2008.
|
[64] |
WALDROP M P, ZAK D R. Responses of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon[J]. Ecosystems,2006,9(6):921-933.
|
[65] |
DIJKSTRA F A, HOBBIE S E, KNOPS J M H, et al. Nitrogen deposition and plant species interact to influence soil carbon stabilization [J]. Ecology Letters,2004,7(12):1192-1198.
|
[66] |
MOORHEAD D L, SINSABAUGH R L. A theoretical model of litter decay and microbial interaction [J]. Ecological Monographs,2006,76(2):151-174.
|
[67] |
LANGLEY J A, DIJKSTRA P, DRAKE B G, et al. Ectomycorrhizal colonization, biomass, and production in a regenerating scrub oak forest in response to elevated CO2 [J]. Ecosystems,2003,6(5):424-430.
|
[68] |
NIEROP K G J. Origin of aliphatic compounds in a forest soil [J]. Organic Geochemistry,1998,29(4):1009-1016.
|
[69] |
RASSE D P, RUMPEL C, DIGNAC M F. Is soil carbon mostly root carbon: mechanisms for a specific stabilisation [J]. Plant and Soil,2005,269(1):341-356.
|
[70] |
GUO D L, MITCHELL R J, WITHINGTON J M, et al. Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates [J]. Journal of Ecology,2008b,96(4):737-745.
|
[71] |
SEASTEDT T R, MURRAY P J. Root herbivory in grassland ecosystems[M]// JOHNSON S N , MURRAY P J.Root feeders: an ecosystem perspective. Wallingford: CABI, 2008:54-67.
|
[72] |
马承恩,孔德良,陈正侠,等. 根系在凋落物层中的生长及其对凋落物分解的影响[J]. 植物生态学报,2012,36(11):1197-1204.
|
[73] |
JEONG J, KIM C. Carbon and nitrogen status of decomposing roots in three adjacent coniferous plantations [J]. Annals of Forest Research,2014,57(1):109-117.
|
1. |
陈子川,潘国营,陈灿,徐云鹏,林晗,陈煜,谢安强,范海兰. 光强对木麻黄幼苗根系形态、解剖结构及其碳氮含量的影响. 生态学报. 2024(10): 4377-4387 .
![]() | |
2. |
陈静航,叶蕊蕊,孙建喜,罗利华,李灿,吴勇,胡田田. 滴灌施肥周期和毛管布设方式对苹果树细根直径时空分布的影响. 干旱地区农业研究. 2023(01): 101-110 .
![]() | |
3. |
吴小健,李秉钧,颜耀,李明,吴鹏飞,马祥庆. 不同种源杉木细根解剖性状的差异分析. 森林与环境学报. 2023(03): 232-239 .
![]() | |
4. |
吴义远,董文渊,浦婵,钟欢,夏莉,袁翎凌,陈新. 土壤水分和养分对筇竹竹鞭解剖特征及其适应可塑性的影响. 竹子学报. 2023(01): 1-10 .
![]() | |
5. |
张家豪,王根绪,王文志,孙守琴. 大气氮沉降增加对树木生长和水碳利用的影响. 西部林业科学. 2023(03): 145-151+159 .
![]() | |
6. |
韩梦豪,李俊杰,王磊,刘晴廙,关庆伟. 间伐对马尾松不同根序细根化学组分的影响. 森林与环境学报. 2023(04): 337-345 .
![]() | |
7. |
张玉慧,谢芳,闫国永. 不同乔木树种根系养分吸收策略的维度性差异. 林业科技. 2023(04): 16-22 .
![]() | |
8. |
刘逸潇,王传宽,上官虹玉,臧妙涵,梁逸娴,全先奎. 兴安落叶松不同径级根碳氮磷钾化学计量特征的种源差异. 应用生态学报. 2023(07): 1797-1805 .
![]() | |
9. |
周诚,刘彤,王庆贵,韩士杰. 长期氮添加对阔叶红松林细根形态、解剖结构和化学组分的影响. 北京林业大学学报. 2022(11): 31-40 .
![]() | |
10. |
郝龙飞,郝文颖,刘婷岩,张敏,许吉康,斯钦毕力格. 氮添加及接种处理对1年生樟子松苗木根系形态及养分含量的影响. 北京林业大学学报. 2021(04): 1-7 .
![]() | |
11. |
焦海珍,邵陈禹,陈建姣,张晨禹,陈佳豪,李云飞,沈程文. 重度遮阴及复光条件下茶树根系的生理响应及抗氧化酶活性动态变化. 茶叶科学. 2021(05): 695-704 .
![]() | |
12. |
洪梓明,邢亚娟,闫国永,张军辉,王庆贵. 长白山白桦山杨次生林细根形态特征和解剖结构对氮沉降的响应. 生态学报. 2020(02): 608-620 .
![]() | |
13. |
吴义远,董文渊,刘培,张孟楠,谢泽轩,田发坤. 不同土壤水分和养分条件下筇竹竹秆解剖特征及其适应可塑性. 北京林业大学学报. 2020(04): 80-90 .
![]() | |
14. |
李秉钧,颜耀,王小虎,孙雪莲,马祥庆. 环境因子对林木细根功能性状的影响研究进展. 福建林业科技. 2020(02): 125-132 .
![]() | |
15. |
张俪予,张军辉,张蕾,陈伟,韩士杰. 兴安落叶松和白桦细根形态对环境变化的响应. 北京林业大学学报. 2019(06): 15-23 .
![]() | |
16. |
陈旭,刘洪凯,赵春周,王强,王延平. 山东滨海盐碱地11个造林树种叶解剖特征对土壤条件的响应. 植物生态学报. 2019(08): 697-708 .
![]() | |
17. |
杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 北方园艺. 2018(17): 82-89 .
![]() | |
18. |
王建宇,胡海清,邢亚娟,闫国永,王庆贵. 大兴安岭兴安落叶松林树木生物量对氮沉降的响应. 林业科学研究. 2018(03): 88-94 .
![]() | |
19. |
杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 内蒙古农业大学学报(自然科学版). 2018(03): 1-7 .
![]() | |
20. |
钟悦鸣,董芳宇,王文娟,王健铭,李景文,吴波,贾晓红. 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报. 2017(10): 53-61 .
![]() | |
21. |
毛晋花,邢亚娟,马宏宇,王庆贵. 氮沉降对植物生长的影响研究进展. 中国农学通报. 2017(29): 42-48 .
![]() | |
22. |
张鑫,邢亚娟,贾翔,王庆贵. 北方森林细根对氮沉降和二氧化碳浓度升高的响应. 中国农学通报. 2017(30): 84-90 .
![]() |