• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Cun-guo, CHEN Zheng-xia, MA Cheng-en, LIN Gui-gang, HAN Shi-jie. Three potential pathways influencing contrasting decomposition rates of fine roots[J]. Journal of Beijing Forestry University, 2016, 38(4): 123-128. DOI: 10.13332/j.1000-1522.20150437
Citation: WANG Cun-guo, CHEN Zheng-xia, MA Cheng-en, LIN Gui-gang, HAN Shi-jie. Three potential pathways influencing contrasting decomposition rates of fine roots[J]. Journal of Beijing Forestry University, 2016, 38(4): 123-128. DOI: 10.13332/j.1000-1522.20150437

Three potential pathways influencing contrasting decomposition rates of fine roots

More Information
  • Received Date: November 29, 2015
  • Published Date: April 29, 2016
  • Plant root decomposition is one of the critical processes of carbon and nutrient cycling in terrestrial ecosystems. Plant roots less than 2 mm in diameter constitute a heterogeneous branching system. Within the system, lower order roots (e.g. 1-3 order) or fine roots in smaller diameter (e.g. less than 0.5 mm in diameter) which mainly serve for water and nutrient uptake have fast turnover rates (0.5-2.5 times per year), and contribute greatly to soil carbon and nutrients pools. Recently, increasing number of studies have shown that lower order roots decompose more slowly than higher order roots (e.g. more than 3 order) or fine roots in larger diameter (e.g. more than 0.5 mm in diameter) which mainly serve for water-nutrient transport and carbon storage. Here, we review three main factors explaining the contrasting decomposition rates across different root orders or diameter classes: mycorrhizal, carbon quality and nitrogen content. Overall, we intend to provide insights into the important roles of functional traits (e.g. diameter) of fine roots that play in ecosystem carbon and nutrient cycling in a changing world.
  • [1]
    PENG S L, LIU Q. The dynamics of forest litter and its responses to global warming[J]. Acta Ecologica Sinica,2002,22(9):1534-1544.
    [1]
    PRESCOTT C E. Do rates of litter decomposition tell us anything we really need to know [J]. Forest Ecology and Management,2005,220(1-3):66-74.
    [2]
    SHAN J P, TAO D L, WANG M, et al. Fine roots turnover in a broad-leaved Korean pine forest of Changbai mountain[J]. Chinese Journal of Applied Ecology,1993,4(3):241-245.
    [2]
    AERTS R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems [J]. Oikos,1997,79:439-449.
    [3]
    CANADELL J G, LE QUERE C, RAUPACH M R, et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks[J]. Proceedings of the National Academy of Sciences,2007,104(47):18866-18870.
    [3]
    LIN C F, GUO J F, CHEN G S, et al. Research progress in fine root decompostion in forest ecosystem[J]. Chinese Journal of Ecology,2008,27(6):1029-1036.
    [4]
    MA C N, KONG D L, CHEN Z X, et al. Root growth into litter layer and its impact on litter decompostion: a review[J]. Chinese Journal of Plant Ecology,2012,36(11):1197-1204.
    [4]
    FRESCHET G T, CORNWELL W K, WARDLE D A, et al. Linking litter decomposition of above-and below-ground organs to plant-soil feedbacks worldwide [J]. Journal of Ecology,2013,101:943-952.
    [5]
    PARTON W, SILVER W L, BURKE I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition [J]. Science,2007,315:361-364.
    [6]
    MANZONI S, JACKSON R B, TROFYMOW J A, et al. The global stoichiometry of litter nitrogen mineralization [J]. Science,2008,321:684-686.
    [7]
    彭少麟,刘强. 森林凋落物动态及其对全球变暖的响应[J]. 生态学报,2002,22(9):1534-1544.
    [8]
    CLEMMENSEN K E, BAHR A, OVASKAINEN O, et al. Roots and associated fungi drive long-term carbon sequestration [J]. Science,2013,339:1615-1618.
    [9]
    VAN GROENIGEN K J, QI X, OSENBERG C W, et al. Faster decomposition under increased atmospheric CO2 limits soil carbon storage [J]. Science,2014,344:508-509.
    [10]
    JACKSON R B, MOONEY H A, SCHULZE E D. A global budget for fine root biomass, surface area, and nutrient contents [J]. Proceedings of the National Academy of Sciences,1997,94(14):7362-7366.
    [11]
    NADELHOFFER K J, RAICH J W. Fine root production estimates and belowground carbon allocation in forest ecosystems [J]. Ecology,1992,73(4):1139-1147.
    [12]
    VOGT K A, VOGT D J, PALMIOTTO P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species [J]. Plant and Soil,1996,187(2):159-219.
    [13]
    单建平,陶大立,王 淼,等. 长白山阔叶红松林细根周转的研究[J]. 应用生态学报,1993,4(3):241-245.
    [14]
    SILVER W L, MIYA R K. Global patterns in root decomposition: comparisons of climate and litter quality effects [J]. Oecologia,2001,129(3):407-419.
    [15]
    WELLS C E, EISSENSTAT D M. Marked differences in survivorship among apple roots of different diameters [J]. Ecology,2001,82(3):882-892.
    [16]
    GUO D L, LI H, MITCHELL R J, et al. Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods [J]. New Phytologist,2008a,177(2):443-56.
    [17]
    LI A, GUO D L, WANG Z Q, et al. Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern [J]. Functional Ecology,2010,24(1):224-232.
    [18]
    PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees [J]. Ecological Monographs,2002,72(2):293-309.
    [19]
    GUO D L, XIA M X, WEI X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species [J]. New Phytologist,2008c,180(3):673-683.
    [20]
    EISSENSTAT D, ACHOR D. Anatomical characteristics of roots of citrus rootstocks that vary in specific root length [J]. New Phytologist,2002,141(2):309-321.
    [21]
    PREGITZER K S, KUBISKE M E, YU C K, et al. Relationships among root branch order, carbon, and nitrogen in four temperate species [J]. Oecologia,1997,111(3):302-308.
    [22]
    XIA M X, GUO D L, PREGITZER K S. Ephemeral root modules in Fraxinus mandshurica [J]. New Phytologist,2010,188(4):1065-1074.
    [23]
    ADAMS T S, MCCORMACK M L, EISSENSTAT D M. Foraging strategies in trees of different root morphology: the role of root lifespan [J]. Tree Physiology,2013,33(9):940-948.
    [24]
    MCCORMACK M L, EISSENSTAT D M, PRASAD A M, et al. Regional scale patterns of fine root lifespan and turnover under current and future climate [J]. Global Change Biology,2013,19:1697-1708.
    [25]
    XIONG Y M, FAN P P, FU S L, et al. Slow decomposition and limited nitrogen release by lower order roots in eight Chinese temperate and subtropical trees [J]. Plant and Soil,2013,363(1-2):19-31.
    [26]
    FAN P P, GUO D L. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil [J]. Oecologia,2010,163(2):509-515.
    [27]
    GOEBEL M, HOBBIE S E, BULAJ B, et al. Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure [J]. Ecological Monographs,2011,81(1):89-102.
    [28]
    CORNELISSEN J H C, PEREZ-HARGUINDEGUY N, DIAZ S, et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents [J]. New Phytologist,1999,143(1):191-200.
    [29]
    YANG Y S, CHEN G S, GUO J F, et al. Decomposition dynamic of fine roots in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum in mid-subtropics [J]. Annals of Forest Science,2004,61(1):65-72.
    [30]
    HISHI T. Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions [J]. Journal of Forest Research,2007,12(2):126-133.
    [31]
    MCCLAUGHERTY C A, ABER J D, MELILLO J M. Decomposition dynamics of fine roots in forested ecosystems [J]. Oikos,1984,42(3):378-386.
    [32]
    FAHEY T J, HUGHES J W, PU M, et al. Root decomposition and nutrient flux following whole-tree harvest of northern hardwood forest [J]. Forest Science,1988,34(3):744-768.
    [33]
    LÕ, HMUS K, IVASK M. Decomposition and nitrogen dynamics of fine roots of Norway spruce (Picea abies (L.) Karst.) at different sites [J]. Plant and Soil,1995,168(1):89-94.
    [34]
    SUN T, MAO Z J, HAN Y Y. Slow decomposition of very fine roots and some factors controlling the process: a 4-year experiment in four temperate tree species [J]. Plant and Soil,2013,372(1):445-458.
    [35]
    SMITH S W, WOODIN S J, PAKEMAN R J, et al. Root traits predict decomposition across a landscape-scale grazing experiment [J]. New Phytologist,2014,203(3):851-862.
    [36]
    GRAAFF M A D, SIX J, JASTROW J D, et al. Variation in root architecture among switchgrass cultivars impacts root decomposition rates [J]. Soil Biology and Biochemistry,2013,58:198-206.
    [37]
    DE DEYN G B, CORNELISSEN J H, BARDGETT R D. Plant functional traits and soil carbon sequestration in contrasting biomes [J]. Ecology Letters,2008,11(5):516-531.
    [38]
    BONFANTE P, GENRE A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis [J]. Nature Communications,2010,1:1-11.
    [39]
    ALLEN M F. Mycorrhizal fungi: highways for water and nutrients in arid soils [J]. Vadose Zone Journal,2007,6(2):291-297.
    [40]
    LEHTO T, ZWIAZEK J J. Ectomycorrhizas and water relations of trees: a review [J]. Mycorrhiza,2011,21(2):71-90.
    [41]
    LANGLEY J A, HUNGATE B A. Mycorrhizal controls on belowground litter quality [J]. Ecology,2003,84(9):2302-2312.
    [42]
    GADKAR V, DAVID-SCHWARTZ R, KUNIK T, et al. Arbuscular mycorrhizal fungal colonization factors involved in host recognition [J]. Plant Physiology,2001,127(4):1493-1499.
    [43]
    DE DEYN G B, BIERE A, VAN DER PUTTEN W H, et al. Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L [J]. Oecologia,2009,160(3):433-442.
    [44]
    BRUNDRETT M C. Coevolution of roots and mycorrhizas of land plants [J]. New Phytologist,2002,154(2):275-304.
    [45]
    LANGLEY J A, CHAPMAN S K, HUNGATE B A. Ectomycorrhizal colonization slows root decomposition: the post mortem fungal legacy [J]. Ecology Letters,2006,9(8):955-959.
    [46]
    林成芳,郭剑芬,陈光水,等. 森林细根分解研究进展[J]. 生态学杂志,2008,27(6):1029-1036.
    [47]
    URCELAY C, VAIERETTI M V, P REZ M, et al. Effects of arbuscular mycorrhizal colonisation on shoot and root decomposition of different plant species and species mixtures [J]. Soil Biology and Biochemistry,2011,43(2):466-468.
    [48]
    OKAFOR N. Estimation of the decomposition of chitin in soil by the method of carbon dioxide release [J]. Soil Science,1966,102:140-142.
    [49]
    TROFYMOW J, MORLEY C, COLEMAN D, et al. Mineralization of cellulose in the presence of chitin and assemblages of microflora and fauna in soil [J]. Oecologia,1983,60:103-110.
    [50]
    WALLANDER H, MASSICOTTE H, NYLUND J E. Seasonal variation in protein, ergosterol and chitin in flve morphotypes of Pinus sylvestris L. ectomycorrhizae in a mature Swedish forest [J]. Soil Biology and Biochemistry,1997,29:45-53.
    [51]
    EKBLAD A, WALLANDER H, NASHOLM T. Chitin and ergosterol combined to measure total and living fungal biomass in ectomycorrhizas [J]. New Phytologist,1998,138:143-149.
    [52]
    KOIDE R T, FERNANDEZ C W, PEOPLES M S. Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition[J]. New Phytologist,2011,191(2):508-514.
    [53]
    KOIDE R T, MALCOLM G M. N concentration controls decomposition rates of different strains of ecotomycorrhizal fungi [J]. Fungal Ecology,2009,2:197-202.
    [54]
    HOBBIE S E. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian Montane forest [J]. Ecosystems,2000,3(5):484-494.
    [55]
    HOBBIE E A, COLPAERT J V, WHITE M W, et al. Nitrogen form, availability, and mycorrhizal colonization affect biomass and nitrogen isotope patterns in Pinus sylvestris [J]. Plant and Soil,2008,310(1-2):121-136.
    [56]
    GUO D L, MITCHELL R J, HENDRICKS J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest [J]. Oecologia,2004,140(3):450-457.
    [57]
    HENDRICKS J J, ABER J D, NADELHOFFER K J, et al. Nitrogen controls on fine root substrate quality in temperate forest ecosystems [J]. Ecosystems,2000,3(1):57-69.
    [58]
    WANG W, ZHANG X Y, TAO N, et al. Effects of litter types, microsite and root diameters on litter decomposition in Pinus sylvestris plantations of northern China [J]. Plant and Soil,2014,374(1-2):677-688.
    [59]
    HÄ, TTENSCHWILER S, COQ S, BARANTAL S, et al. Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis [J]. New Phytologist,2011,189(4):950-965.
    [60]
    CARREIRO M M, SINSABAUGH R L, REPERT D A, et al. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition [J]. Ecology,2000,81(9):2359-2365.
    [61]
    SINSABAUGH R L, CARREIRO M M, REPERT D A. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss [J]. Biogeochemistry,2002,60(1):1-24.
    [62]
    MAGILL A H, ABER J D. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems [J]. Plant and Soil,1998,203(2):301-311.
    [63]
    BERG B, MCCLAUGHERTY C. Plant litter: decomposition, humus formation, carbon sequestration[M]. 2nd ed. Berlin: Springer-Verlag, 2008.
    [64]
    WALDROP M P, ZAK D R. Responses of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon[J]. Ecosystems,2006,9(6):921-933.
    [65]
    DIJKSTRA F A, HOBBIE S E, KNOPS J M H, et al. Nitrogen deposition and plant species interact to influence soil carbon stabilization [J]. Ecology Letters,2004,7(12):1192-1198.
    [66]
    MOORHEAD D L, SINSABAUGH R L. A theoretical model of litter decay and microbial interaction [J]. Ecological Monographs,2006,76(2):151-174.
    [67]
    LANGLEY J A, DIJKSTRA P, DRAKE B G, et al. Ectomycorrhizal colonization, biomass, and production in a regenerating scrub oak forest in response to elevated CO2 [J]. Ecosystems,2003,6(5):424-430.
    [68]
    NIEROP K G J. Origin of aliphatic compounds in a forest soil [J]. Organic Geochemistry,1998,29(4):1009-1016.
    [69]
    RASSE D P, RUMPEL C, DIGNAC M F. Is soil carbon mostly root carbon: mechanisms for a specific stabilisation [J]. Plant and Soil,2005,269(1):341-356.
    [70]
    GUO D L, MITCHELL R J, WITHINGTON J M, et al. Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates [J]. Journal of Ecology,2008b,96(4):737-745.
    [71]
    SEASTEDT T R, MURRAY P J. Root herbivory in grassland ecosystems[M]// JOHNSON S N , MURRAY P J.Root feeders: an ecosystem perspective. Wallingford: CABI, 2008:54-67.
    [72]
    马承恩,孔德良,陈正侠,等. 根系在凋落物层中的生长及其对凋落物分解的影响[J]. 植物生态学报,2012,36(11):1197-1204.
    [73]
    JEONG J, KIM C. Carbon and nitrogen status of decomposing roots in three adjacent coniferous plantations [J]. Annals of Forest Research,2014,57(1):109-117.
  • Related Articles

    [1]Chen Jiayi, Dai Ying, Zhang Naili. Effects of forest tree species diversity on soil carbon and nitrogen contents in China[J]. Journal of Beijing Forestry University, 2025, 47(2): 23-31. DOI: 10.12171/j.1000-1522.20220400
    [2]Chen Guilan, Bu Qingyu, Wang Xiuwei, Gu Huiyan. Conservation effects of different tree species of soil and water conservation forests on soil nitrogen on slopes in black soil region of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(7): 27-35. DOI: 10.12171/j.1000-1522.20230293
    [3]Li Ying, Guo Yafen, Cui Xiaoyang. Effects of amino acid addition on carbon and nitrogen content and CH4 emission in temperate dark brown soil under different water conditions[J]. Journal of Beijing Forestry University, 2024, 46(5): 103-113. DOI: 10.12171/j.1000-1522.20230290
    [4]Zhou Hangyu, Fu Qiyao, Liang Wanting, Song Zhaopeng, Hou Jihua. Changing patterns of nitrogen and phosphorus contents in leaf-branch-root of natural Pinus tabuliformis with precipitation and temperature[J]. Journal of Beijing Forestry University, 2024, 46(1): 44-54. DOI: 10.12171/j.1000-1522.20210275
    [5]Hao Guobao, Wang Lidong, Li Yan, Li Fan, Cui Jingting, Jia Zhongkui. Effects of nitrogen addition on the branch CO2 efflux of Larix principis-rupprechtii[J]. Journal of Beijing Forestry University, 2023, 45(10): 28-35. DOI: 10.12171/j.1000-1522.20220336
    [6]Yang Jiaming, Hu Jian, Pan Junxiao, Peng Yifei, Wei Chunxue, Wang Jinsong, Tian Dashuan, Zhou Qingping. Effects of nitrogen addition on soil aggregate distribution and carbon and nitrogen contents in alpine meadow[J]. Journal of Beijing Forestry University, 2022, 44(12): 102-110. DOI: 10.12171/j.1000-1522.20210439
    [7]Hao Longfei, Hao Wenying, Liu Tingyan, Zhang Min, Xu Jikang, Siqinbilige. Responses of root morphology and nutrient content of Pinus sylvestris var. mongolica seedlings to nitrogen addition and inoculation treatments[J]. Journal of Beijing Forestry University, 2021, 43(4): 1-7. DOI: 10.12171/j.1000-1522.20200071
    [8]Xing Lei, Xue Hai-xia, Li Qing-he, Gao Ting-ting. Scaling from leaf to whole plant in biomass and nitrogen content of Nitraria tangutorum seedlings[J]. Journal of Beijing Forestry University, 2018, 40(2): 76-81. DOI: 10.13332/j.1000-1522.20170338
    [9]WANG Jin-song, ZHAO Xiu-hai, ZHANG Chun-yu, LI Hua-shan, WANG Na, ZHAO Bo. Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 88-94. DOI: 10.13332/j.1000-1522.20140294
    [10]WANG Wei-wei, L&Uuml, Rui-heng, LIU Yong, CHEN Xiao, LI Guo-lei. Nitrogen releasing dynamics of needle litter affected by thinning intensity and litter N content in a Larix principis-rupprechtii plantation[J]. Journal of Beijing Forestry University, 2014, 36(3): 63-68. DOI: 10.13332/j.cnki.jbfu.2014.03.009
  • Cited by

    Periodical cited type(5)

    1. 刘思琪,满秀玲,张頔,徐志鹏. 寒温带4种乔木树种不同径级根系分解及碳氮释放动态. 北京林业大学学报. 2023(07): 36-46 . 本站查看
    2. 王晓荣,牛红玉,曾立雄,雷蕾,潘磊,胡文杰,肖文发. 不同营林措施对马尾松细根分解与养分释放的影响. 生态学杂志. 2019(08): 2337-2345 .
    3. 贾丙瑞. 凋落物分解及其影响机制. 植物生态学报. 2019(08): 648-657 .
    4. 王娜,程瑞梅,肖文发,沈雅飞. 三峡库区马尾松细根分解及其养分释放. 林业科学研究. 2017(01): 18-24 .
    5. 王娜,程瑞梅,肖文发,沈雅飞. 三峡库区马尾松不同直径细根分解动态及其影响因素. 应用生态学报. 2017(02): 391-398 .

    Other cited types(11)

Catalog

    Article views (1932) PDF downloads (28) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return