• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
NIU Chun-yang, WANG Feng, LI Dan-lei, CHEN Qiao-li, ZHANG Rui-zhi.. Impact of clade 14 R2R3-MYB genes on hypersensitive response of the poplar infected with Melampsora larici-populina.[J]. Journal of Beijing Forestry University, 2016, 38(7): 25-32. DOI: 10.13332/j.1000-1522.20150499
Citation: NIU Chun-yang, WANG Feng, LI Dan-lei, CHEN Qiao-li, ZHANG Rui-zhi.. Impact of clade 14 R2R3-MYB genes on hypersensitive response of the poplar infected with Melampsora larici-populina.[J]. Journal of Beijing Forestry University, 2016, 38(7): 25-32. DOI: 10.13332/j.1000-1522.20150499

Impact of clade 14 R2R3-MYB genes on hypersensitive response of the poplar infected with Melampsora larici-populina.

More Information
  • Received Date: December 13, 2015
  • Published Date: July 29, 2016
  • Leaf rust caused by Melampsora larici-populina is the main disease affecting poplar plantations, causing severe economic losses. To explore the regulatory effects of clade 14 R2R3-MYB genes on hypersensitive response of the poplar infected with M. larici-populina, leaves of two poplar species were inoculated by M. larici-populina E4 pathotypes to observe the symptom and score the infectious index. In addition, changes of the gene expression level of six clade 14 R2R3-MYB genes were analyzed. After seven days of inoculation, the number of uredinium on Populus deltoidesP. trichocarpa (less susceptible to M. larici-populina E4 pathotypes) leaves was significantly less than that on P.euramericana (very susceptible to M. larici-populina E4 pathotypes). On the fourth day of inoculation, symptoms of hypersensitive reaction (HR) were observed on leaves of P. deltoidesP. trichocarpa, but not on Populuseuramericana leaves. It turns out that HR can prevent the formation of uredinium and reduce the susceptibility of poplar. The change trend of R2R3-MYB gene expression level of the two poplar species was contrary. It is estimated that poplar clade 14 R2R3-MYB genes may be positive regulators of the HR in host in response to rust attack. This study provides a theoretical foundation for further studying these transcriptional factors in the control of the HR and the possible usage of these genes for the production of rust-resistant poplar.
  • [1]
    CAO Z M, DU L, WANG Q H, et al. Genetic diversity of poplar rust fungus Melampsora larici-populina in China[J]. Mycosystema, 2012(4): 510-522.
    [1]
    曹支敏,杜林,王秦虎,等. 中国落叶松-杨栅锈菌遗传多样性研究[J]. 菌物学报,2012(4):510-522.
    [2]
    VAN VLOTEN H. Kruisingsproeven met rassen van Melampsora larici-populina Klebahn[J]. European Journal of Plant Pathology, 1949, 55(3): 196-209.
    [3]
    PEI M H, MCCRACKEN A R. Rust diseases of willow and poplar[M]. Wallingford: CABI Publishing, 2005.
    [4]
    DOWKIW A, JORGE V, VILLAR M, et al. Breeding poplars with durable resistance to Melampsora larici-populina leaf rust: a multidisciplinary approach to understand and delay pathogen adaptation[C]∥Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: disease and insect resistance in forest trees, Gen. Tech. Rep. PSW-GTR-240. Albany: Pacific Southwest Research Station, Forest Service, US Department of Agriculture, 2012: 31-38.
    [5]
    PEI M H, YUAN Z W, HUNTER T, et al. Heterogeneous nature of a new pathotype of Melampsora rust on Salix revealed by AFLP[J]. European Journal of Plant Pathology, 2000, 106(8): 771-779.
    [6]
    PEI M H, BAYON C, RUIZ C, et al. Genetic variation in Melampsoralarici-epitea on biomass willows assessed using AFLP[J]. European Journal of Plant Pathology, 2002, 108(3): 229-236.
    [7]
    程曦,田彩娟,李爱宁,等. 植物与病原微生物互作分子基础的研究进展[J]. 遗传,2012,34(2):134-144.
    [8]
    CHENG X, TIAN C J, LI A N, et al. Advances on molecular mechanisms of plant-pathogen interactions[J]. Hereditas, 2012, 34(2): 134-144.
    [9]
    JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444: 323-329.
    [10]
    GREENBERG J T, YAO N. The role and regulation of programmed cell death in plant-pathogen interactions[J]. Cellular Microbiology, 2004, 6(3): 201-211.
    [11]
    DUPLESSIS S, MAJOR I, MARTIN F, et al. Poplar and pathogen interactions: insights from Populus genome-wide analyses of resistance and defense gene families and gene expression profiling[J]. Critical Reviews in Plant Science, 2009, 28(5): 309-334.
    [12]
    陈祖静,费昭雪,曹支敏,等. 杨树与叶锈菌互作中的细胞程序性死亡[J]. 西北林学院学报,2013,28(3):134-137,205.
    [13]
    CHEN Z J, FEI Z X, CAO Z M,et al. Programmed cell death in the interaction between poplar and leaf rust [J].Journal of Northwest Forestry University, 2013, 28(3): 134-137,205.
    [14]
    VAILLEAU F, DANIEL X, TRONCHET M, et al. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack[J]. Proceedings of the National Academy of Sciences, 2002, 99(15): 10179-10184.
    [15]
    王美芳. 转录因子WRKY1和WRKY2在激发子诱导的过敏反应和气孔关闭中的功能研究[D].南京:南京农业大学,2011.
    [16]
    WANG M F. The role of WRKY transcription factors in the elicitor-triggered hypersensitive response and stomatal closure in Nicotiana benthamiana[D]. Nanjing: Nanjing Agricultural University, 2011.
    [17]
    刘蕾,杜海,唐晓凤,等. MYB转录因子在植物抗逆胁迫中的作用及其分子机理[J]. 遗传,2008, 30(10): 1265-1271.
    [18]
    LIU L, DU H, TANG X F,et al.The roles of MYB transcription factors on plant defense responses and its molecular mechanism[J]. Hereditas, 2008, 30(10): 1265-1271.
    [19]
    AMBAWAT S, SHARMA P, YADAV N R, et al. MYB transcription factor genes as regulators for plant responses: an overview[J]. Physiology and Molecular Biology of Plants, 2013, 19(3): 307-321.
    [20]
    AL-ATTALA M N, WANG X J, ABOU-ATTIA M A, et al. A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses [J]. Plant Molecular Biology, 2014, 84(4): 589-603.
    [21]
    AOYAGI L N, LOPES-CAITAR V S, DE CARVALHO M C C G, et al. Genomic and transcriptomic characterization of the transcription factor family R2R3-MYB in soybean and its involvement in the resistance responses to Phakopsora pachyrhizi[J]. Plant Science, 2014, 229: 32-42.
    [22]
    WILKINS O, NAHAL H, FOONG J, et al. Expansion and diversification of the Populus R2R3-MYB family of transcription factors[J]. Plant Physiology, 2009, 149(2): 981-993.
    [23]
    ZOU B H, JIA Z H, TIAN S M, et al. AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis[J]. Functional Plant Biology, 2013, 40(3): 304-313.
    [24]
    PEI M H, RUIZ C, BAYON C, et al. Pathogenic variation in poplar rust Melampsora larici-populina from England[J]. European Journal of Plant Pathology, 2005, 111(2): 147-155.
    [25]
    牛春阳, 李丹蕾,王峰,等. 基于转录组的欧美杨Pnd-WRKY3基因克隆及其抗锈菌表达[J]. 东北林业大学学报,2015,43(9):1-5.
    [26]
    NIU C Y, LI D L, WANG F, et al. Isolation and expression of Pnd-WRKY3 transcription factor gene from poplar (Populus nigraP. deltoides) [J]. Journal of Northeast Forestry University, 2015, 43(9): 1-5.
    [27]
    陈俏丽,李丹蕾,王峰,等. 欧美杂交杨Pnd-LRR3基因克隆及其抗锈菌侵染表达[J]. 东北林业大学学报,2015,43(3):95-98,103.
    [28]
    CHEN Q L, LI D L, WANG F, et al. Genetic cloning and gene expression of Pnd-LRR3 resistance gene from Populus nigraP. deltoids [J]. Journal of Northeast Forestry University, 2015,43(3):95-98,103.
    [29]
    PEI M H, RUIZ C, BAYON C, et al. Rust resistance in Salix to Melampsora larici-epitea[J]. Plant Pathology, 2004, 53(6): 770-779.
    [30]
    PEI M H, LINDEGAARD K, RUIZ C, et al. Rust resistance of some varieties and recently bred genotypes of biomass willows[J]. Biomass and Bioenergy, 2008, 32(5): 453-459.
    [31]
    王峰, 王志英, 李丹蕾.小兴安岭代表性菌物系统进化初步研究[J]. 森林工程, 2012, 38(2):1-5.
    [32]
    WANG F, WANG Z Y, LI D L. Phylogenetic of representative fungi in Xiaoxing an Mountains [J]. Forest Engineering, 2012, 28(2):1-5.
    [33]
    MACINDOE G, MAVRIDIS L, VENKATRAMAN V, et al. HexServer: an FFT-based protein docking server powered by graphics processors[J/OL]. Nucleic Acids Research, 2010,38[2015-11-14]. http:∥www.research.gate.net/publication/44575459. DOI: 10.1093/nar/gkq311.
    [34]
    OGATA K, MORIKAWA S, NAKAMURA H, et al. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices[J]. Cell, 1994, 79(4): 639-648.
    [35]
    LI Q, LIN Y C, SUN Y H, et al. Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa [J]. Proceedings of the National Academy of Sciences, 2012, 109(36): 14699-14704.
    [36]
    DUAN Y, JIANG Y, YE S,et al. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana [J]. Plant Cell Reports, 2015, 34(5): 831-841.
  • Related Articles

    [1]Mei Xuesong, Dong Lingbo, Chen Guanmou. Driving factors of carbon sink in natural Larix gmelinii forests based on structural equation models[J]. Journal of Beijing Forestry University, 2024, 46(9): 1-10. DOI: 10.12171/j.1000-1522.20230284
    [2]Wu Yan, Li Xinyu, Zhang Yiting, Ding Bo, Zhang Yunlin, Fu Yuhong, Liu Xun. Litter carbon, nitrogen, and phosphorus stoichiometric characteristics and their influencing factors of Pinus massoniana plantation with different age groups in karst region of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(2): 87-94. DOI: 10.12171/j.1000-1522.20220052
    [3]Xu Chao, Long Ting, Wu Xinlei, Chen Jie, Liang Yanjun, Li Jingwen. Reintroducing effects and influencing factors of Taxus cuspidata population[J]. Journal of Beijing Forestry University, 2020, 42(8): 34-42. DOI: 10.12171/j.1000-1522.20190423
    [4]Gao Yan, Zhang Yuqing, Qin Shugao, Zhang Jutao, Liu Zhen. Landscape pattern change and its influencing factors of sand-binding vegetation[J]. Journal of Beijing Forestry University, 2020, 42(4): 102-112. DOI: 10.12171/j.1000-1522.20190061
    [5]He Xiao, Cao Lei, Xu Shenglin, Li Haikui. Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 50-58. DOI: 10.13332/j.1000-1522.20190030
    [6]ZHOU Wen-jun, SHA Li-qing, ZHANG Yi-ping, SONG Qing-hai, LIU Yun-tong, DENG Yun, DENG Xiao-bao. Characteristics and influencing factors of soil dissolved organic carbon and nitrogen in a tropical seasonal rainforest in Xishuangbanna,Southwest China.[J]. Journal of Beijing Forestry University, 2016, 38(9): 34-41. DOI: 10.13332/j.1000-1522.20150238
    [7]LI Ning, CHEN Li-hua, YANG Yuan-jun.. Factors influencing root tensile properties of Pinus tabuliformis and Larix principis-rupprechtii.[J]. Journal of Beijing Forestry University, 2015, 37(12): 77-84. DOI: 10.13332/j.1000-1522.20150131
    [8]CHEN Chong, LI Ji-yue, , WANG Yu- tao. Variation of stem sap flow of Salix matsudana and its impact factors.[J]. Journal of Beijing Forestry University, 2008, 30(4): 82-88.
    [9]GUO Hong-wu, WANG Jin-lin, LI Chun-sheng, YAN Hao-Peng. Light-induced discoloration and influencing factors of dyed veneer after painted.[J]. Journal of Beijing Forestry University, 2008, 30(4): 22-27.
    [10]JIAO Wen-jun, ZHU Qing-ke, ZHANG Yu-qing, WU Xiu-qin, WANG Na. Distribution of biotic crusts and its influencing factors in the grain-for-green land of the loess region, northern Shaanxi Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 102-107. DOI: 10.13332/j.1000-1522.2007.01.018
  • Cited by

    Periodical cited type(34)

    1. 孙丽,张颖,李文彬,包红光,孙迎坤. 青岛市3种常绿灌木滞尘量与叶微观特征及光合作用等的相关性分析. 西北林学院学报. 2024(04): 232-241 .
    2. 裴云霞,洪慧,包美玲,邓俊,陈岷轩,张强. 农业环境损害鉴定中受体植物的损害因素判别及损害程度分析. 中国司法鉴定. 2024(04): 40-48 .
    3. 贺丹,李朝梅,华超,李思洁,雷雅凯,张曼. 郑州市10种园林植物叶片滞尘与富集重金属的能力. 西北林学院学报. 2023(01): 230-237 .
    4. 张碧媛,李智琦,阮琳,潘勇军,陈国财,代色平,冯娴慧. 2种常用的植物滞纳能力测定方法对比研究. 林业与环境科学. 2023(01): 112-119 .
    5. 罗建平,王宁,宋菲菲,魏汉博,原白玉,唐钰鑫. 大庆市6种绿化树种对SO_2、NO_2的消减及滞尘效应. 生态学报. 2023(11): 4561-4569 .
    6. 张翠,马瑞,谭立佳,杜婉倩,刘涵科. 兰州市10种常用园林绿化树种叶表面微结构对其滞尘量的影响. 甘肃农业大学学报. 2023(04): 192-200+211 .
    7. 廖慧敏,师凤起,李明,朱逸龙. 长沙市典型园林植物叶片的滞尘等级与模式识别研究. 生态环境学报. 2022(01): 110-116 .
    8. 贺丹,汪安印,李紫萱,王翼飞,李朝梅,雷雅凯,李永华,董娜琳. 郑州市常绿树种滞尘能力与叶片生理结构的响应. 福建农业学报. 2022(02): 203-212 .
    9. 李晓璐,叶锦东,章剑,周毅烈,袁楚阳,于慧,张天然,黄芳,张贵豪,邵锋. 乔木滞留大气颗粒物能力及其与叶表面微结构关系. 中国城市林业. 2022(03): 22-28+120 .
    10. 王军梦,汪安印,王翼飞,贺丹,李永华,董娜琳. 不同污染程度下树种滞尘能力与叶表微形态关系研究. 林业调查规划. 2022(05): 16-21+37 .
    11. 孟畅,彭洋,赵杨,王秀荣,肖枫. 2种叶型膏桐幼苗的形态结构和光合特性. 林业科学. 2022(12): 32-41 .
    12. 岳晨,李广德,席本野,曹治国. 叶片大气颗粒物滞纳能力评估方法的定量对比. 环境科学. 2021(01): 114-126 .
    13. 徐立人,刘宠,张军,柳俊明,王立成,李清泉,杨敏生,李彦慧. 单叶刺槐半同胞子代叶片的滞尘能力及叶表SEM特征分析. 西部林业科学. 2021(01): 124-131 .
    14. 杨克彤,陈国鹏,李广,汤东,张凯. 兰州市常见阔叶树种对大气颗粒物吸滞能力的评估. 东北林业大学学报. 2021(05): 84-89 .
    15. 刘宇,张楠,王晓立,周力行,韩浩章. 冬季苏北8种常绿乔木吸滞颗粒物能力与叶表微结构关系. 西北林学院学报. 2021(03): 80-87+127 .
    16. 王薇,张蕾. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析. 生态环境学报. 2021(06): 1321-1332 .
    17. 谢长坤,郭健康,梁安泽,汪静,姜睿原,车生泉. 园林植物表面对大气颗粒物削减过程研究进展. 世界林业研究. 2021(05): 38-43 .
    18. 吴桂香,徐成林,刘杰,杨燕飞. 城市道路植物叶面滞尘的微观效应研究. 昆明理工大学学报(自然科学版). 2021(06): 109-115 .
    19. 陈胜楠,陈左司南,张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报. 2021(12): 1329-1340 .
    20. 王琴,冯晶红,黄奕,王鹏程,谢梦婷,万好,苏泽琳,王仁鹏,王征洋,余刘思. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征. 生态学报. 2020(01): 213-222 .
    21. 童凌云,何婉璎,裘璐函,陈健,刘美华. 基于层次分析法的杭州市8种园林植物林分环境质量评价. 浙江林业科技. 2020(01): 56-62 .
    22. 苏维,刘苑秋,赖胜男,古新仁,刘青,龚鹏. 南昌市8种乔木叶片性状对叶表滞留颗粒物的影响. 西北林学院学报. 2020(04): 61-67 .
    23. 刘开琳,李学敏,万翔,刘淑娟,李菁菁,徐先英,刘虎俊. 民勤植物园3种灌木的叶面微结构及其滞尘能力研究. 中国农学通报. 2020(26): 62-68 .
    24. 孙应都,陈奇伯,李艳梅,杨思莹. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究. 西南林业大学学报(自然科学). 2019(03): 78-85 .
    25. 张俊叶,邹明,刘晓东,王林,朱晨晨,俞元春. 南京城市森林植物叶面颗粒物的含量特征. 环境污染与防治. 2019(07): 837-843 .
    26. 林星宇,李海梅,李彦华,姜月梅. 八种乔木滞尘效益及其与叶表面特征关系. 北方园艺. 2019(17): 94-101 .
    27. 林星宇,李海梅,李彦华,刘志科. 灌木滞尘能力与重金属含量间的关系. 江苏农业科学. 2019(15): 180-183 .
    28. 姜霞,侯贻菊,刘延惠,舒德远,崔迎春,李成龙,杨冰,丁访军. 3种木樨科树种叶片滞尘效应动态变化及其与叶片特征的关系. 江苏农业科学. 2019(16): 150-154 .
    29. 林星宇,李彦华,李海梅,李士美. 乔木对不同粒径颗粒物吸滞作用研究. 福建农业学报. 2019(08): 912-919 .
    30. 阿丽亚·拜都热拉,甄敬,潘存德,张中远,胡梦玲,喀哈尔·扎依木. 乌鲁木齐市河滩快速路林带内颗粒物浓度变化特征. 新疆农业大学学报. 2019(05): 378-384 .
    31. 林星宇,李海梅,李彦华,郑茗月. 5种灌木的滞尘效益研究. 现代农业科技. 2018(02): 150-151+155 .
    32. 赵文君,侯贻菊,舒德远,刘延惠,崔迎春,丁访军. 贵阳市木兰科树种叶片滞尘效应及影响因素. 贵州林业科技. 2018(02): 19-24 .
    33. 李艳梅,陈奇伯,王邵军,孙应都,杨淏舟,杨思莹. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释. 林业科学. 2018(05): 18-29 .
    34. 朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 . 本站查看

    Other cited types(26)

Catalog

    Article views (1931) PDF downloads (26) Cited by(60)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return