Citation: | NIU Chun-yang, WANG Feng, LI Dan-lei, CHEN Qiao-li, ZHANG Rui-zhi.. Impact of clade 14 R2R3-MYB genes on hypersensitive response of the poplar infected with Melampsora larici-populina.[J]. Journal of Beijing Forestry University, 2016, 38(7): 25-32. DOI: 10.13332/j.1000-1522.20150499 |
[1] |
CAO Z M, DU L, WANG Q H, et al. Genetic diversity of poplar rust fungus Melampsora larici-populina in China[J]. Mycosystema, 2012(4): 510-522.
|
[1] |
曹支敏,杜林,王秦虎,等. 中国落叶松-杨栅锈菌遗传多样性研究[J]. 菌物学报,2012(4):510-522.
|
[2] |
VAN VLOTEN H. Kruisingsproeven met rassen van Melampsora larici-populina Klebahn[J]. European Journal of Plant Pathology, 1949, 55(3): 196-209.
|
[3] |
PEI M H, MCCRACKEN A R. Rust diseases of willow and poplar[M]. Wallingford: CABI Publishing, 2005.
|
[4] |
DOWKIW A, JORGE V, VILLAR M, et al. Breeding poplars with durable resistance to Melampsora larici-populina leaf rust: a multidisciplinary approach to understand and delay pathogen adaptation[C]∥Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: disease and insect resistance in forest trees, Gen. Tech. Rep. PSW-GTR-240. Albany: Pacific Southwest Research Station, Forest Service, US Department of Agriculture, 2012: 31-38.
|
[5] |
PEI M H, YUAN Z W, HUNTER T, et al. Heterogeneous nature of a new pathotype of Melampsora rust on Salix revealed by AFLP[J]. European Journal of Plant Pathology, 2000, 106(8): 771-779.
|
[6] |
PEI M H, BAYON C, RUIZ C, et al. Genetic variation in Melampsoralarici-epitea on biomass willows assessed using AFLP[J]. European Journal of Plant Pathology, 2002, 108(3): 229-236.
|
[7] |
程曦,田彩娟,李爱宁,等. 植物与病原微生物互作分子基础的研究进展[J]. 遗传,2012,34(2):134-144.
|
[8] |
CHENG X, TIAN C J, LI A N, et al. Advances on molecular mechanisms of plant-pathogen interactions[J]. Hereditas, 2012, 34(2): 134-144.
|
[9] |
JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444: 323-329.
|
[10] |
GREENBERG J T, YAO N. The role and regulation of programmed cell death in plant-pathogen interactions[J]. Cellular Microbiology, 2004, 6(3): 201-211.
|
[11] |
DUPLESSIS S, MAJOR I, MARTIN F, et al. Poplar and pathogen interactions: insights from Populus genome-wide analyses of resistance and defense gene families and gene expression profiling[J]. Critical Reviews in Plant Science, 2009, 28(5): 309-334.
|
[12] |
陈祖静,费昭雪,曹支敏,等. 杨树与叶锈菌互作中的细胞程序性死亡[J]. 西北林学院学报,2013,28(3):134-137,205.
|
[13] |
CHEN Z J, FEI Z X, CAO Z M,et al. Programmed cell death in the interaction between poplar and leaf rust [J].Journal of Northwest Forestry University, 2013, 28(3): 134-137,205.
|
[14] |
VAILLEAU F, DANIEL X, TRONCHET M, et al. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack[J]. Proceedings of the National Academy of Sciences, 2002, 99(15): 10179-10184.
|
[15] |
王美芳. 转录因子WRKY1和WRKY2在激发子诱导的过敏反应和气孔关闭中的功能研究[D].南京:南京农业大学,2011.
|
[16] |
WANG M F. The role of WRKY transcription factors in the elicitor-triggered hypersensitive response and stomatal closure in Nicotiana benthamiana[D]. Nanjing: Nanjing Agricultural University, 2011.
|
[17] |
刘蕾,杜海,唐晓凤,等. MYB转录因子在植物抗逆胁迫中的作用及其分子机理[J]. 遗传,2008, 30(10): 1265-1271.
|
[18] |
LIU L, DU H, TANG X F,et al.The roles of MYB transcription factors on plant defense responses and its molecular mechanism[J]. Hereditas, 2008, 30(10): 1265-1271.
|
[19] |
AMBAWAT S, SHARMA P, YADAV N R, et al. MYB transcription factor genes as regulators for plant responses: an overview[J]. Physiology and Molecular Biology of Plants, 2013, 19(3): 307-321.
|
[20] |
AL-ATTALA M N, WANG X J, ABOU-ATTIA M A, et al. A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses [J]. Plant Molecular Biology, 2014, 84(4): 589-603.
|
[21] |
AOYAGI L N, LOPES-CAITAR V S, DE CARVALHO M C C G, et al. Genomic and transcriptomic characterization of the transcription factor family R2R3-MYB in soybean and its involvement in the resistance responses to Phakopsora pachyrhizi[J]. Plant Science, 2014, 229: 32-42.
|
[22] |
WILKINS O, NAHAL H, FOONG J, et al. Expansion and diversification of the Populus R2R3-MYB family of transcription factors[J]. Plant Physiology, 2009, 149(2): 981-993.
|
[23] |
ZOU B H, JIA Z H, TIAN S M, et al. AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis[J]. Functional Plant Biology, 2013, 40(3): 304-313.
|
[24] |
PEI M H, RUIZ C, BAYON C, et al. Pathogenic variation in poplar rust Melampsora larici-populina from England[J]. European Journal of Plant Pathology, 2005, 111(2): 147-155.
|
[25] |
牛春阳, 李丹蕾,王峰,等. 基于转录组的欧美杨Pnd-WRKY3基因克隆及其抗锈菌表达[J]. 东北林业大学学报,2015,43(9):1-5.
|
[26] |
NIU C Y, LI D L, WANG F, et al. Isolation and expression of Pnd-WRKY3 transcription factor gene from poplar (Populus nigraP. deltoides) [J]. Journal of Northeast Forestry University, 2015, 43(9): 1-5.
|
[27] |
陈俏丽,李丹蕾,王峰,等. 欧美杂交杨Pnd-LRR3基因克隆及其抗锈菌侵染表达[J]. 东北林业大学学报,2015,43(3):95-98,103.
|
[28] |
CHEN Q L, LI D L, WANG F, et al. Genetic cloning and gene expression of Pnd-LRR3 resistance gene from Populus nigraP. deltoids [J]. Journal of Northeast Forestry University, 2015,43(3):95-98,103.
|
[29] |
PEI M H, RUIZ C, BAYON C, et al. Rust resistance in Salix to Melampsora larici-epitea[J]. Plant Pathology, 2004, 53(6): 770-779.
|
[30] |
PEI M H, LINDEGAARD K, RUIZ C, et al. Rust resistance of some varieties and recently bred genotypes of biomass willows[J]. Biomass and Bioenergy, 2008, 32(5): 453-459.
|
[31] |
王峰, 王志英, 李丹蕾.小兴安岭代表性菌物系统进化初步研究[J]. 森林工程, 2012, 38(2):1-5.
|
[32] |
WANG F, WANG Z Y, LI D L. Phylogenetic of representative fungi in Xiaoxing an Mountains [J]. Forest Engineering, 2012, 28(2):1-5.
|
[33] |
MACINDOE G, MAVRIDIS L, VENKATRAMAN V, et al. HexServer: an FFT-based protein docking server powered by graphics processors[J/OL]. Nucleic Acids Research, 2010,38[2015-11-14]. http:∥www.research.gate.net/publication/44575459. DOI: 10.1093/nar/gkq311.
|
[34] |
OGATA K, MORIKAWA S, NAKAMURA H, et al. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices[J]. Cell, 1994, 79(4): 639-648.
|
[35] |
LI Q, LIN Y C, SUN Y H, et al. Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa [J]. Proceedings of the National Academy of Sciences, 2012, 109(36): 14699-14704.
|
[36] |
DUAN Y, JIANG Y, YE S,et al. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana [J]. Plant Cell Reports, 2015, 34(5): 831-841.
|
1. |
孙丽,张颖,李文彬,包红光,孙迎坤. 青岛市3种常绿灌木滞尘量与叶微观特征及光合作用等的相关性分析. 西北林学院学报. 2024(04): 232-241 .
![]() | |
2. |
裴云霞,洪慧,包美玲,邓俊,陈岷轩,张强. 农业环境损害鉴定中受体植物的损害因素判别及损害程度分析. 中国司法鉴定. 2024(04): 40-48 .
![]() | |
3. |
贺丹,李朝梅,华超,李思洁,雷雅凯,张曼. 郑州市10种园林植物叶片滞尘与富集重金属的能力. 西北林学院学报. 2023(01): 230-237 .
![]() | |
4. |
张碧媛,李智琦,阮琳,潘勇军,陈国财,代色平,冯娴慧. 2种常用的植物滞纳能力测定方法对比研究. 林业与环境科学. 2023(01): 112-119 .
![]() | |
5. |
罗建平,王宁,宋菲菲,魏汉博,原白玉,唐钰鑫. 大庆市6种绿化树种对SO_2、NO_2的消减及滞尘效应. 生态学报. 2023(11): 4561-4569 .
![]() | |
6. |
张翠,马瑞,谭立佳,杜婉倩,刘涵科. 兰州市10种常用园林绿化树种叶表面微结构对其滞尘量的影响. 甘肃农业大学学报. 2023(04): 192-200+211 .
![]() | |
7. |
廖慧敏,师凤起,李明,朱逸龙. 长沙市典型园林植物叶片的滞尘等级与模式识别研究. 生态环境学报. 2022(01): 110-116 .
![]() | |
8. |
贺丹,汪安印,李紫萱,王翼飞,李朝梅,雷雅凯,李永华,董娜琳. 郑州市常绿树种滞尘能力与叶片生理结构的响应. 福建农业学报. 2022(02): 203-212 .
![]() | |
9. |
李晓璐,叶锦东,章剑,周毅烈,袁楚阳,于慧,张天然,黄芳,张贵豪,邵锋. 乔木滞留大气颗粒物能力及其与叶表面微结构关系. 中国城市林业. 2022(03): 22-28+120 .
![]() | |
10. |
王军梦,汪安印,王翼飞,贺丹,李永华,董娜琳. 不同污染程度下树种滞尘能力与叶表微形态关系研究. 林业调查规划. 2022(05): 16-21+37 .
![]() | |
11. |
孟畅,彭洋,赵杨,王秀荣,肖枫. 2种叶型膏桐幼苗的形态结构和光合特性. 林业科学. 2022(12): 32-41 .
![]() | |
12. |
岳晨,李广德,席本野,曹治国. 叶片大气颗粒物滞纳能力评估方法的定量对比. 环境科学. 2021(01): 114-126 .
![]() | |
13. |
徐立人,刘宠,张军,柳俊明,王立成,李清泉,杨敏生,李彦慧. 单叶刺槐半同胞子代叶片的滞尘能力及叶表SEM特征分析. 西部林业科学. 2021(01): 124-131 .
![]() | |
14. |
杨克彤,陈国鹏,李广,汤东,张凯. 兰州市常见阔叶树种对大气颗粒物吸滞能力的评估. 东北林业大学学报. 2021(05): 84-89 .
![]() | |
15. |
刘宇,张楠,王晓立,周力行,韩浩章. 冬季苏北8种常绿乔木吸滞颗粒物能力与叶表微结构关系. 西北林学院学报. 2021(03): 80-87+127 .
![]() | |
16. |
王薇,张蕾. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析. 生态环境学报. 2021(06): 1321-1332 .
![]() | |
17. |
谢长坤,郭健康,梁安泽,汪静,姜睿原,车生泉. 园林植物表面对大气颗粒物削减过程研究进展. 世界林业研究. 2021(05): 38-43 .
![]() | |
18. |
吴桂香,徐成林,刘杰,杨燕飞. 城市道路植物叶面滞尘的微观效应研究. 昆明理工大学学报(自然科学版). 2021(06): 109-115 .
![]() | |
19. |
陈胜楠,陈左司南,张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报. 2021(12): 1329-1340 .
![]() | |
20. |
王琴,冯晶红,黄奕,王鹏程,谢梦婷,万好,苏泽琳,王仁鹏,王征洋,余刘思. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征. 生态学报. 2020(01): 213-222 .
![]() | |
21. |
童凌云,何婉璎,裘璐函,陈健,刘美华. 基于层次分析法的杭州市8种园林植物林分环境质量评价. 浙江林业科技. 2020(01): 56-62 .
![]() | |
22. |
苏维,刘苑秋,赖胜男,古新仁,刘青,龚鹏. 南昌市8种乔木叶片性状对叶表滞留颗粒物的影响. 西北林学院学报. 2020(04): 61-67 .
![]() | |
23. |
刘开琳,李学敏,万翔,刘淑娟,李菁菁,徐先英,刘虎俊. 民勤植物园3种灌木的叶面微结构及其滞尘能力研究. 中国农学通报. 2020(26): 62-68 .
![]() | |
24. |
孙应都,陈奇伯,李艳梅,杨思莹. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究. 西南林业大学学报(自然科学). 2019(03): 78-85 .
![]() | |
25. |
张俊叶,邹明,刘晓东,王林,朱晨晨,俞元春. 南京城市森林植物叶面颗粒物的含量特征. 环境污染与防治. 2019(07): 837-843 .
![]() | |
26. |
林星宇,李海梅,李彦华,姜月梅. 八种乔木滞尘效益及其与叶表面特征关系. 北方园艺. 2019(17): 94-101 .
![]() | |
27. |
林星宇,李海梅,李彦华,刘志科. 灌木滞尘能力与重金属含量间的关系. 江苏农业科学. 2019(15): 180-183 .
![]() | |
28. |
姜霞,侯贻菊,刘延惠,舒德远,崔迎春,李成龙,杨冰,丁访军. 3种木樨科树种叶片滞尘效应动态变化及其与叶片特征的关系. 江苏农业科学. 2019(16): 150-154 .
![]() | |
29. |
林星宇,李彦华,李海梅,李士美. 乔木对不同粒径颗粒物吸滞作用研究. 福建农业学报. 2019(08): 912-919 .
![]() | |
30. |
阿丽亚·拜都热拉,甄敬,潘存德,张中远,胡梦玲,喀哈尔·扎依木. 乌鲁木齐市河滩快速路林带内颗粒物浓度变化特征. 新疆农业大学学报. 2019(05): 378-384 .
![]() | |
31. |
林星宇,李海梅,李彦华,郑茗月. 5种灌木的滞尘效益研究. 现代农业科技. 2018(02): 150-151+155 .
![]() | |
32. |
赵文君,侯贻菊,舒德远,刘延惠,崔迎春,丁访军. 贵阳市木兰科树种叶片滞尘效应及影响因素. 贵州林业科技. 2018(02): 19-24 .
![]() | |
33. |
李艳梅,陈奇伯,王邵军,孙应都,杨淏舟,杨思莹. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释. 林业科学. 2018(05): 18-29 .
![]() | |
34. |
朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 .
![]() |