• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHANG Gang, AN Hai-long, SHI Jun-na, LIU Chao, TIAN Ju, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Deposition and absorption capacity of Populus deltoides × P. nigra to different size zinc oxide aerosol[J]. Journal of Beijing Forestry University, 2017, 39(4): 46-54. DOI: 10.13332/j.1000-1522.20160376
Citation: ZHANG Gang, AN Hai-long, SHI Jun-na, LIU Chao, TIAN Ju, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Deposition and absorption capacity of Populus deltoides × P. nigra to different size zinc oxide aerosol[J]. Journal of Beijing Forestry University, 2017, 39(4): 46-54. DOI: 10.13332/j.1000-1522.20160376

Deposition and absorption capacity of Populus deltoides × P. nigra to different size zinc oxide aerosol

More Information
  • Received Date: November 15, 2016
  • Revised Date: January 16, 2017
  • Published Date: March 31, 2017
  • To investigate the deposition and absorption of particulate matters on leaves, this study firstly uses the zinc oxide (ZnO) nanoparticles to simulate sedimentation, attachment and retention of fine particulate matter (PM2.5) on Populus deltoides × P. nigra leaves. The contents of ZnO on the leaf surface and in the leaf tissue were quantitatively determined by water-washing and inductively coupled plasma mass spectrometry (ICP-MS), respectively. Furthermore, ZnO particle number on the leaf surface and its microstructure were analyzed by an scan electron microscope (SEM)and the response characteristics of photosynthetic physiology was also investigated by the Li-COR 6400 portable photosynthesis system. The results showed that ZnO particles could be adhered by leaves which were treated with NPs (particles with a mean diameter of 30 nm), BPs (particles with a mean diameter of 100 nm) or MPs (particles with a mean diameter of 1 μm). The deposition capacity of Populus deltoides × P. nigra to different particles was mainly analyzed from two aspects of total quality and total particle number. The mass concentration of MPs on leaf surface was the highest after treated for 16 days, reaching 653.03 mg/g, which was significantly higher than NPs. Analyzed by Image J software, the number of particles on the foliar surface was the highest under NPs treatment, followed by BPs and MPs, indicating that the smaller the size of the particles were, the larger the number of particles distributed on the surface of the leaves, while the weight of the smaller particles was relatively lower. Moreover, P. deltoides × P. nigra could uptake particle less than 1 μm. Compared with weight of deposition, the uptake of NPs by leaves was higher, reaching 1.17 mg/g after 16 day treatment, which was 2.59 and 2.89 times of BPs and MPs, respectively. This indicated that the smaller size of particle was easily absorbed by plants. Phytotoxicity was tested for plants exposed to different size of ZnO aerosol. Leaf surface microstructure had obvious change, stomata was often filled with ZnO particles or was also clogged and injured cells, and slightly disturbed striations were also visible in the ZnO-treated leaves. Moreover, acute phytotoxicity was also observed in photosynthetic. After 16 days treatment of NPs, BPs and MPs, net photosynthetic rate (Pn) was reduced by 22%, 44% and 19%, respectively, which was caused by stomatal and non-stomatal factors.
  • [1]
    LI Z Q, NIU F, FAN J W, et al. Long-term impacts of aerosols on the vertical development of clouds and precipitation[J]. Nature Geoscience, 2011, 4(12): 888-894. doi: 10.1038/ngeo1313
    [2]
    POSFAI M, BUSECK P R. Nature and climate effects of individual tropospheric aerosol particles[J]. Annual Review of Earth and Planetary Sciences, 2010, 38(1): 17-43. doi: 10.1146/annurev.earth.031208.100032
    [3]
    WANG Y, WAN Q, MENG W, et al. Long-term impacts of aerosols on precipitation and lightning over the pearl river delta megacity area in China[J]. Atmospheric Chemistry and Physics, 2011, 11(23): 12421-12436. doi: 10.5194/acp-11-12421-2011
    [4]
    DING X, WANG M, CHU H, et al. Global gene expression profiling of human bronchial epithelial cells exposed to airborne fine particulate matter collected from Wuhan, China[J]. Toxicology Letters, 2014, 228(1): 25-33. doi: 10.1016/j.toxlet.2014.04.010
    [5]
    YU H, KAUFMAN Y J, CHIN M, et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing[J]. Atmospheric Chemistry and Physics, 2006, 6: 613-666. doi: 10.5194/acp-6-613-2006
    [6]
    MORGENSTERN V, ZUTAVERN A, CYRYS J, et al. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children[J]. Occupational and Environmental Medicine, 2007, 64(1): 8-16. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2092590
    [7]
    ARNOLD C. Disease burdens associated with PM2.5 exposure how a new model provided global estimates[J]. Environmental Health Perspectives, 2014, 122(4): 111-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=94e90f9ebb63eb6ba27225396c6b8b9c
    [8]
    NGUYEN T, YU X, ZHANG Z, et al. Relationship between types of urban forest and PM2. 5 capture at three growth stages of leaves[J]. Journal of Environmental Sciences-China, 2015, 27: 33-41. doi: 10.1016/j.jes.2014.04.019
    [9]
    刘庆倩, 石婕, 安海龙, 等.应用15N示踪研究欧美杨对PM2.5无机成分NH4+和NO3-的吸收与分配[J].生态学报, 2015, 35(19): 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201519032

    LIU Q Q, SHI J, AN H L, et al. Absorption and distribution of NH4+ and NO3- in PM2.5 in Populus euramericana Neva. by 15N Tracing[J]. Acta Ecologica Sinica, 2015, 35(19): 1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201519032
    [10]
    HU Y, FERNANDEZ V, MA L, et al. Nitrate transporters in leaves and their potential roles in foliar uptake of nitrogen dioxide[J]. Frontiers in Plant Science, 2014, 5: 360. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004618335
    [11]
    安海龙, 刘庆倩, 曹学慧, 等.不同PM2.5污染区常见树种叶片对PAHs的吸收特征分析[J].北京林业大学学报, 2016, 38(1): 59-66. doi: 10.13332/j.1000--1522.20150164

    AN H L, LIU Q Q, CAO X H, et al. Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places[J]. Journal of Beijing Forestry University, 2016, 38(1): 59-66. doi: 10.13332/j.1000--1522.20150164
    [12]
    曹学慧, 安海龙, 刘庆倩, 等.欧美杨对PM2.5中重金属铅的吸附、吸收及适应性变化[J].生态学杂志, 2015, 34(12): 1-9. http://d.old.wanfangdata.com.cn/Periodical/stxzz201512015

    CAO X H, AN H L, LIU Q Q, et al. Adhesion and absorption of Pb in PM2.5 and adaptative changes in Populous euramericana[J]. Chinese Journal of Ecology, 2015, 34(12): 1-9. http://d.old.wanfangdata.com.cn/Periodical/stxzz201512015
    [13]
    谢滨泽, 王会霞, 杨佳, 等.北京常见阔叶绿化植物滞留PM2.5能力与叶面微结构的关系[J].西北植物学报, 2014, 34(12): 2432-2438. doi: 10.7606/j.issn.1000-4025.2014.12.2432

    XIE B Z, WANG H X, YANG J, et al. Retention capability of PM2.5 and explanation by leaf surface microstructure of commom bread leaves plant species in Beijing[J]. Acta Botanica Borealioccidentalia Sinica, 2014, 34(12): 2432-2438. doi: 10.7606/j.issn.1000-4025.2014.12.2432
    [14]
    SONG Y S, MAHER B A, LI F, et al. Particulate matter deposited on leaf of five evergreen species in Beijing, China: source identification and size distribution[J]. Atmospheric Environment, 2015, 105: 53-60. doi: 10.1016/j.atmosenv.2015.01.032
    [15]
    NOWAK D J, HIRABAYASHI S, BODINE A, et al. Modeled PM2.5 removal by trees in ten USA cities and associated health effects[J]. Environmental Pollution, 2013, 178: 395-402. doi: 10.1016/j.envpol.2013.03.050
    [16]
    HWANG H J, YOOK S J, AHN K H. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves[J]. Atmospheric Environment, 2011, 45(38): 6987-6994. doi: 10.1016/j.atmosenv.2011.09.019
    [17]
    梁丹, 王彬, 王云琦, 等.北京市典型绿化灌木阻滞吸附PM2.5能力研究[J].环境科学, 2014, 35(9): 3605-3611. http://d.old.wanfangdata.com.cn/Periodical/hjkx201409055

    LIANG D, WANG B, WANG Y Q, et al. Ability of typical greenery shrubs of Beijing to adsorb and arrest PM2.5[J]. Environmental Science, 2014, 35(9): 3605-3611. http://d.old.wanfangdata.com.cn/Periodical/hjkx201409055
    [18]
    GUO S, HU M, ZAMORA M L, et al. Elucidating severe urban haze formation in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(49): 17373-17378. doi: 10.1073/pnas.1419604111
    [19]
    MIRALLES P, CHURCH T L, HARRIS A T. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants[J]. Environmental Science and Technology, 2012, 46(17): 9224-9239. doi: 10.1021/es202995d
    [20]
    王晴晴, 马永亮, 谭吉华, 等.北京市冬季PM2.5中水溶性重金属污染特征[J].中国环境科学, 2014, 34(9): 2204-2210. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201409006

    WANG Q Q, MA Y L, TAN J H, et al. Characterization of water-soluble heavy metals of PM2.5 during winter in Beijing[J]. China Environmental Science, 2014, 34(9): 2204-2210. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201409006
    [21]
    于扬, 岑况, Stefan Norra, 等.北京市PM2.5中主要重金属元素污染特征及季节变化分析[J].现代地质, 2012, 26(5): 975-982. doi: 10.3969/j.issn.1000-8527.2012.05.018

    YU Y, CEN K, NORRA S, et al. Concentration characteristics and seasonal trend of main heavy metal elements of PM2.5 in Beijing[J]. Geoscience, 2012, 26(5): 975-982. doi: 10.3969/j.issn.1000-8527.2012.05.018
    [22]
    HONG J, PERALTAVIDEA J R, RICO C, et al. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants[J]. Environment Science and Technology, 2014, 48(8): 4376-4385. doi: 10.1021/es404931g
    [23]
    OTTELE M, BOHEMEN H D V, FRAAIJ A L A. Quantifying the deposition of particulate matter on climber vegetation on living walls[J]. Ecological Engineering, 2010, 36(2): 154-162. doi: 10.1016/j.ecoleng.2009.02.007
    [24]
    JANHALL S. Review on urban vegetation and particle air pollution deposition and dispersion[J]. Atmospheric Environment, 2015, 105: 130-137. doi: 10.1016/j.atmosenv.2015.01.052
    [25]
    王晓磊, 王成.城市森林调控空气颗粒物功能研究进展[J].生态学报, 2014, 34(8): 1910-1921. http://d.old.wanfangdata.com.cn/Periodical/stxb201408002

    WANG X L, WANG C. Research status and prospects on functions of urban forests in regulating the air particulate matter[J]. Acta Ecologica Sinica, 2014, 34(8): 1910-1921. http://d.old.wanfangdata.com.cn/Periodical/stxb201408002
    [26]
    杨佳, 王会霞, 谢滨泽, 等.北京9个树种叶片滞尘量及叶面微形态解释[J].环境科学研究, 2015, 28(3): 384-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=664064541

    YANG J, WANG H X, XIE Z B, et al. Accumulation of particulate matter on leaves of nine urban greening plant species with different micromorphological structures in Beijing[J]. Research of Environmental Sciences, 2015, 28(3): 384-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=664064541
    [27]
    陈波, 鲁绍伟, 李少宁, 等.北京城市森林不同天气状况下PM2.5浓度变化[J].生态学报, 2016, 36(5): 1391-1399. http://d.old.wanfangdata.com.cn/Periodical/stxb201605023

    CHEN B, LU S W, LI S N, et al. Dynamic analysis of PM2.5 concentration in urban forests in Beijing for various weather conditions[J]. Acta Ecologica Sinica, 2016, 36(5): 1391-1399. http://d.old.wanfangdata.com.cn/Periodical/stxb201605023
    [28]
    戴斯迪, 马克明, 宝乐, 等.北京城区公园及其邻近道路国槐叶面尘分布与重金属污染特征[J].环境科学学报, 2013, 33(1): 154-162. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201301022

    DAI S D, MA K M, BAO L, et al. Distribution of particle matters and contamination of heavy metals in the foliar dust of Sophora japonica in parks and their neighboring roads in Beijing[J]. Acta Scientiae Circumstantiae, 2013, 33(1): 154-162. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201301022
    [29]
    杨柳, 吴烨, 宋少洁, 等.不同交通状况下道路边大气颗粒物数浓度粒径分布特征[J].环境科学, 2012, 33(3): 694-700. http://d.old.wanfangdata.com.cn/Periodical/hjkx201203004

    YANG L, WU Y, SONG S J, et al. Particle number size distribution near a major road with different traffic conditions[J]. Environmental Science, 2012, 33(3): 694-700. http://d.old.wanfangdata.com.cn/Periodical/hjkx201203004
    [30]
    赵松婷, 李新宇, 李延明.园林植物滞留不同粒径大气颗粒物的特征及规律[J].生态环境学报, 2014, 23(2): 271-276. doi: 10.3969/j.issn.1674-5906.2014.02.014

    ZHAO S T, LI X Y, LI Y M. The characteristics of deposition of airborne particulate matters with different size on certain plants[J]. Ecology and Environmental Sciences, 2014, 23(2): 271-276. doi: 10.3969/j.issn.1674-5906.2014.02.014
    [31]
    TERZAGHI E, WILD E, ZACCHELLO G, et al. Forest filter effect: role of leaves in capturing/releasing air particulate matter and its associated PAHs[J]. Atmospheric Environment, 2013, 74(2): 378-384. https://www.sciencedirect.com/science/article/pii/S1352231013002586
    [32]
    TEPER E. Dust-particle migration around flotation tailings ponds: pine needles as passive samplers[J]. Environmental Monitoring and Assessment, 2009, 154(1-4): 383-391. doi: 10.1007/s10661-008-0405-4
    [33]
    王慧, 刘庆倩, 安海龙, 等.城市环境中毛白杨和油松叶片表面颗粒污染物的观察[J].北京林业大学学报, 2016, 38(8): 28-35. doi: 10.13332/j.1000-1522.20160065

    WANG H, LIU Q Q, AN H L, et al. Observation of particulate pollutants retained on Populus tomentosa and Pinus tabulaeformis leaves in urban environment[J]. Journal of Beijing Forestry University, 2016, 38(8): 28-35. doi: 10.13332/j.1000-1522.20160065
    [34]
    史军娜, 张罡, 安海龙, 等.北京市16种树木吸附大气颗粒物的差异及颗粒物研究[J].北京林业大学学报, 2016, 38(12): 84-91. doi: 10.13332/j.1000-1522.20160053

    SHI J N, ZHANG G, AN H L, et al. Differences in atmospheric particle accumulation on leaf surface in sixteen tree species in Beijing and characteristics of particles[J]. Journal of Beijing Forestry University, 2016, 38(12): 84-91. doi: 10.13332/j.1000-1522.20160053
    [35]
    EICHERT T, KURTZ A, STEINER U, et al. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles[J]. Physiologia Plantarum, 2008, 134(1): 151-160. doi: 10.1111/j.1399-3054.2008.01135.x
    [36]
    XIONG T T, LEVEQUE T, AUSTRUY A, et al. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter[J]. Environmental Geochemistry and Health, 2014, 36(5): 897-909. doi: 10.1007/s10653-014-9607-6
    [37]
    陈世宝, 孙聪, 魏威, 等.根细胞壁及其组分差异对植物吸附、转运Zn的影响[J].中国环境科学, 2012, 32(9): 1670-1676. doi: 10.3969/j.issn.1000-6923.2012.09.019

    CHEN S B, SUN C, WEI W, et al. Difference in cell wall components of roots and its effect on the transfer factor of Zn by plant species[J]. China Environmental Science, 2012, 32(9): 1670-1676. doi: 10.3969/j.issn.1000-6923.2012.09.019
    [38]
    PRAJAPATI S K, TRIPATHI B D. Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution[J]. Journal of Environmental Quality, 2008, 37(3): 865-870. doi: 10.2134/jeq2006.0511
    [39]
    FERNANDEZ V, EICHERT T. Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization[J]. Critical Reviews in Plant Sciences, 2009, 28(1): 36-68. doi: 10.1080/07352680902743069?journalCode=bpts20
    [40]
    李威, 黄进, 李其昌, 等.纳米颗粒对植物光合作用影响机制的研究[J].生物学杂志, 2015(5): 63-66. doi: 10.3969/j.issn.2095-1736.2015.05.063

    LI W, HUANG J, LI Q C, et al. Effect of nanoparticles on plant photosynthesis mechanism[J]. Journal of Biology, 2015(5): 63-66. doi: 10.3969/j.issn.2095-1736.2015.05.063
    [41]
    许大全.光合作用气孔限制分析中的一些问题[J].植物生理学报, 1997, 33(4): 241-244. doi: 10.1063-1.1913612/

    XU D Q. Some problem in stomatal limitation analysis of photosynthesis[J]. Plant Physiology Communication, 1997, 33(4): 241-244. doi: 10.1063-1.1913612/
    [42]
    宋丽莉, 赵华强, 朱小倩, 等.高温胁迫对水稻光合作用和叶绿素荧光特性的影响[J].安徽农业科学, 2011, 39(22): 13348-13353. doi: 10.3969/j.issn.0517-6611.2011.22.035

    SONG L L, ZHAO H Q, ZHU X Q, et al. Effect of high temperature stress on photosynthesis and chlorophyll fluorescence of rice[J]. Journal of Anhui Agriculture Science, 2011, 39(22): 13348-13353. doi: 10.3969/j.issn.0517-6611.2011.22.035
    [43]
    裴斌, 张光灿, 张淑勇, 等.土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J].生态学报, 2013, 33(5): 1386-1396. http://d.old.wanfangdata.com.cn/Periodical/stxb201305006

    PEI B, ZHANG G C, ZHANG S Y, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides seedings[J]. Acta Ecologica Sinica, 2013, 33(5): 1386-1396. http://d.old.wanfangdata.com.cn/Periodical/stxb201305006
  • Related Articles

    [1]Feng Xiao, Tian Ling, Yin Qun, Jia Zhongkui. Response of growth and physiological characteristics of three Magnolia spp. seedlings to drought stress[J]. Journal of Beijing Forestry University, 2024, 46(9): 57-67. DOI: 10.12171/j.1000-1522.20230312
    [2]Zhang Yi, Baiketuerhan Yeerjiang, Wang Xuanying, Zhang Xinna, Cheng Yanxia. Response of photosynthetic physiological characteristics of rare broadleaved tree species Juglans mandshurica seedlings to simulated nitrogen deposition[J]. Journal of Beijing Forestry University, 2024, 46(1): 10-18. DOI: 10.12171/j.1000-1522.20220225
    [3]Liang Qinglan, Han Youji, Qiao Yanhui, Xie Kongan, Li Shuangyun, Dong Yufeng, Li Shanwen, Zhang Shengxiang. Effects of drought stress on the growth and physiological characteristics of Sect. Aigeiros clones[J]. Journal of Beijing Forestry University, 2023, 45(10): 81-89. DOI: 10.12171/j.1000-1522.20220266
    [4]Dong Zhijun, Gao Jianzhou, Yu Xiaonan. Effects of uniconazole on the physiological characteristics and microstructure of potted Paeonia lactiflora[J]. Journal of Beijing Forestry University, 2022, 44(7): 117-125. DOI: 10.12171/j.1000-1522.20210325
    [5]Liu Chenyu, Ma Rui, Luo Wenjing, Han Lu, Wang Haizhen. Effects of super absorbent polymer dosage on growth, photosynthetic characteristics and stress-resistance physiology of Populus euphratica seedlings[J]. Journal of Beijing Forestry University, 2022, 44(3): 36-44. DOI: 10.12171/j.1000-1522.20210300
    [6]Li Meng, Guo Ye, Liu Songshan, Pang Xiaoming, Li Yingyue. Physiological characteristics and transcriptomics analysis in diploid Ziziphus jujuba Mill. var. spinosa and its autotetraploid[J]. Journal of Beijing Forestry University, 2019, 41(7): 57-67. DOI: 10.13332/j.1000-1522.20190118
    [7]YANG Xiao-yan, YANG Miao-yan, WANG En-heng, XIA Xiang-you, CHEN Xiang-wei. Soil phosphorus sorption and desorption characteristics of larch plantations at different ages in black soil region[J]. Journal of Beijing Forestry University, 2014, 36(5): 39-43. DOI: 10.13332/j.cnki.jbfu.2014.05.008
    [8]LI Jing, LIU Qun-lu, TANG Dong-qin, ZHANG Ting-ting. Effects of salt stress and salt leaching on the physiological characteristics of Chaenomeles speciosa[J]. Journal of Beijing Forestry University, 2011, 33(6): 40-46.
    [9]LIU Zi-fan, WANG Jun, LIN Wei-fu. Physiological characteristics of latex regeneration and latex flow of supper-high-yield rubber budding tree[J]. Journal of Beijing Forestry University, 2010, 32(4): 106-109.
    [10]LU Xian-kai, MO Jiang-ming, LI De-jun, ZHANG Wei, FANG Yun-ting. Effects of simulated N deposition on the photosynthetic and physiologic characteristics of dominant understorey plants in Dinghushan Mountain of subtropical China[J]. Journal of Beijing Forestry University, 2007, 29(6): 1-9. DOI: 10.13332/j.1000-1522.2007.06.030
  • Cited by

    Periodical cited type(9)

    1. 李博,朱俊访,潘晓瑜,杨悦. 酶解辅助提取结合超滤技术分离淡竹叶黄酮. 海峡药学. 2023(08): 41-44 .
    2. 邓巧平,王龙. 竹叶提取物竹叶多糖的研究进展. 中国食品工业. 2022(23): 80-82 .
    3. 许子竞,戴天伦,王世彬,张芳,张雄. 毛竹屑多糖的提取精制及体外抗氧化研究. 大众科技. 2020(06): 24-26 .
    4. 许子竞,王世彬,戴天伦,张芳,张雄. 响应面优化微波辅助提取毛竹兜水溶性多糖工艺. 大众科技. 2020(08): 36-38+66 .
    5. 许子竞,杨玉琼,刘茜. 毛竹屑多糖分离纯化及抗炎活性研究. 湖南师范大学自然科学学报. 2020(06): 61-65 .
    6. 薛淑龙,范昊安,陈小伟,程勇杰,沙如意,毛建卫. 竹叶酵素发酵过程中代谢产物及抗氧化活性的变化. 现代食品科技. 2019(05): 228-235+174 .
    7. 郭静,王浩然,沈周媛,张彤,袁秀荣,丁越. 3种竹叶抗氧化有效成分分析. 中成药. 2019(11): 2688-2694 .
    8. 张勇,周丽明,黄章平. 比清除率衡量Sevage法脱茶籽多糖蛋白的效果. 南方农业学报. 2016(01): 107-111 .
    9. 张勇,周丽明,郭庆. 茶籽多糖对食用油脂抗氧化作用的初步研究. 上饶师范学院学报. 2015(03): 77-79 .

    Other cited types(8)

Catalog

    Article views (2326) PDF downloads (27) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return