• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
YU Teng-fei, FENG Qi, SI Jian-hua, ZHANG Xiao-you, ZHAO Chun-yan. Nocturnal transpiration of Populus euphratica authenticated by measurements of stem sap flux, leaf gas exchange and stomatal microsturcture[J]. Journal of Beijing Forestry University, 2017, 39(9): 8-16. DOI: 10.13332/j.1000-1522.20160332
Citation: YU Teng-fei, FENG Qi, SI Jian-hua, ZHANG Xiao-you, ZHAO Chun-yan. Nocturnal transpiration of Populus euphratica authenticated by measurements of stem sap flux, leaf gas exchange and stomatal microsturcture[J]. Journal of Beijing Forestry University, 2017, 39(9): 8-16. DOI: 10.13332/j.1000-1522.20160332

Nocturnal transpiration of Populus euphratica authenticated by measurements of stem sap flux, leaf gas exchange and stomatal microsturcture

More Information
  • Received Date: October 19, 2016
  • Revised Date: January 15, 2017
  • Published Date: August 31, 2017
  • Nocturnal transpiration, as a consequence of incomplete stomatal closure, is prevalent across species and environments, and high nocturnal atmospheric vapor pressure deficit (VPD) along with high soil water availability are the most commonly reported environmental drivers of it, which is coincided with the conditions of riparian forest in extremely arid region. Based on the measurements of xylem sap flux, leaf gas exchange, stomatal microstructure and environmental factors, we confirmed the occurrence of nocturnal transpiration in P. euphratica from followings: 1) incomplete stomatal closure was observed and mean stomatal conductance was 45 mmol/(m2·s), greater than the minimum stomatal conductance of Populus spp. reported in the literature (approximately 5 mmol/(m2·s)), and along with mean transpiration of 0.7 mmol/(m2·s), both accounting for 26% and 17% of daytime, respectively. This suggested that high stomatal conductance and transpiration are largely resulted from stomatal opening. 2) On average, sap velocity was 31.3 cm/hour at daytime and 16.5 cm/hour at nighttime, which accounting for 53% of daytime. Whether during daytime or nighttime, sap velocity was logarithmic positively related with VPD, and this could explain 55% of nighttime sap velocity change, suggesting that nighttime sap flow was composed of transpiration and tissue refilling. Thus, further research to distinguish the nocturnal transpiration and tissue refilling is needed. Noteworthly, the abruptly increased sap flow after midnight was synchronized with the stem radius change and water potential, but oppositely with VPD, showing that increased sap flow after midnight was induced by tissue refilling but not transpiration.
  • [1]
    RAWSON H M, CLARKE J M. Nocturnal transpiration in wheat[J]. Australian Journal of Plant Physiology, 1988, 15: 397-406.
    [2]
    CAIRD M A, RICHARDS J H, DONOVAN L A. Nighttime stomatal conductance and transpiration in C3 and C4 plants[J]. Plant Physiology, 2007, 143(1): 4-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000001681649
    [3]
    SNYDER K A, RICHARDS J H, DONOVAN L A. Night-time conductance in C3 and C4 species: do plants lose water at night?[J]. Journal of Experiment Botany, 2003, 54: 861-865. doi: 10.1093/jxb/erg082
    [4]
    DAWSON T E, BURGESS S S O, TU K P, et al. Nighttime transpiration in woody plants from contrasting ecosystems[J]. Tree Physiology, 2007, 27: 561-575. doi: 10.1093/treephys/27.4.561
    [5]
    OGLE K, LUCAS R W, BENTLEY L P, et al. Differential daytime and night-time stomatal behavior in plants from North American deserts[J]. New Phytologist, 2012, 194(2): 464-476. doi: 10.1111/j.1469-8137.2012.04068.x
    [6]
    MOORE G W, CLEVERLY J R, OWENS M K. Nocturnal transpiration in riparian Tamarix thickets authenticated by sap flux, eddy covariance and leaf gas exchange measurements[J]. Tree Physiology, 2008, 28: 521-528. doi: 10.1093/treephys/28.4.521
    [7]
    HOWARD A R, DONOVAN L A. Soil nitrogen limitation does not impact nighttime water loss in Populus[J]. Tree Physiology, 2010, 30(1): 23-31. https://www.ncbi.nlm.nih.gov/pubmed/19959599
    [8]
    DAMIÁN C, MARÍA A E, VICTOR J L, et al. Populus species from diverse habitats maintain high night-time conductance under drought[J]. Tree Physiology, 2016, 36(2): 229-242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84d9f60cc24ba0df2777b42dce988b40
    [9]
    YU T F, FENG Q, SI J H, et al. Tamarix ramosissima stand evapotranspiration and its association with hydroclimatic factors in an arid region in northwest China[J]. Journal of Arid Environments, 2017, 138: 18-26. doi: 10.1016/j.jaridenv.2016.11.006
    [10]
    司建华, 冯起, 鱼腾飞, 等.植物夜间蒸腾及其生态水文效应研究进展[J].水科学进展, 2014, 25(6): 907-914. http://d.old.wanfangdata.com.cn/Periodical/skxjz201406017

    SI J H, FENG Q, YU T F, et al. Research advances in nighttime transpiration and its eco-hydrological implications[J]. Advances in Water Science, 2014, 25(6): 907-914. http://d.old.wanfangdata.com.cn/Periodical/skxjz201406017
    [11]
    NADEZHDINA N. Sap flow index as an indicator of plant water status[J]. Tree Physiology, 1999, 19: 885-891. doi: 10.1093/treephys/19.13.885
    [12]
    BURGESS S S O, ADAMS M A, TURNER N C, et al. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants[J]. Tree Physiology, 2001, 21: 589-598. doi: 10.1093/treephys/21.9.589
    [13]
    ZEPPEL M J, LEWIS J D, MEDLYN B, et al. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna[J]. Tree Physiology, 2011, 31(9): 932-944. doi: 10.1093/treephys/tpr024
    [14]
    PHILLIPS N G, LEWIS J D, LOGAN B A, et al. Inter- and intra-specific variation in nocturnal water transport in Eucalyptus[J]. Tree Physiology, 2010, 30: 586-596. doi: 10.1093/treephys/tpq009
    [15]
    YU T F, FENG Q, SI J H, et al. Hydraulic redistribution of soil water by roots of two desert riparian phreatophytes in northwest China's extremely arid region[J]. Plant and Soil, 2013, 372: 297-308. doi: 10.1007/s11104-013-1727-8
    [16]
    IPCC. Climate change 2007: the physical science basis[M]. Cambridge: Cambridge University Press, 2007.
    [17]
    鱼腾飞, 冯起, 司建华, 等.胡杨根系水力再分配的模式、大小及其影响因子[J].北京林业大学学报, 2014, 36(2): 22-29. http://j.bjfu.edu.cn/article/id/9977

    YU T F, FENG Q, SI J H, et al. Patterns, magnitude and controlling factors of hydraulic redistribution by Populus euphratica roots[J]. Journal of Beijing Forestry University, 2014, 36(2) 22-29. http://j.bjfu.edu.cn/article/id/9977
    [18]
    ALLEN R G, PEREIRA L S, RAES D. Crop evapotranspiration: guidelines for computing crop water requirements: FAO irrigation and drainage paper 56[C]. Rome: FAO, 1998.
    [19]
    YANG Y T, GUAN H D, HUTSON J L, et al. Examination and parameterization of the root water uptake model from stem water potential and sap flow measurements[J]. Hydrological Processes, 2013, 27: 2857-2863. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/hyp.9406
    [20]
    赵传燕, 赵阳, 彭守璋, 等.黑河下游绿洲胡杨生长状况与叶生态特征[J].生态学报, 2014, 34(16): 4518-4525. http://d.old.wanfangdata.com.cn/Periodical/stxb201416007

    ZHAO C Y, ZHAO Y, PENG S Z, et al. The growth state of Populus euphratica Oliv. and its leaf ecological characteristics in the lower reaches of Heihe River[J]. Acta Ecologica Sinica, 2014, 34(16): 4518-4525. http://d.old.wanfangdata.com.cn/Periodical/stxb201416007
    [21]
    BURGESS S S O, DAWSON T E. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration[J]. Plant, Cell and Environment, 2004, 27: 1023-1034. doi: 10.1111/j.1365-3040.2004.01207.x
    [22]
    GOLDSMITH G R. Changing directions: the atmosphere-plant-soil continuum[J]. New Phytologist, 2013, 199(1): 4-6. doi: 10.1111/nph.12332
    [23]
    DALEY M J, PHILLIPS N G. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest[J]. Tree Physiology, 2006, 26: 411-419. doi: 10.1093/treephys/26.4.411
    [24]
    GOLDSTEIN G, ANDRADE J L, MEINZER F C, et al. Stem water storage and diurnal patterns of water use in tropical forest[J]. Plant, Cell and Environment, 1998, 21: 397-406. doi: 10.1046/j.1365-3040.1998.00273.x
    [25]
    WANG H, ZHAO P, WANG Q, et al. Nocturnal sap flow characteristics and stem water recharge of Acacia mangium[J]. Frontiers of Forestry in China, 2008, 3(1): 72-78. doi: 10.1007/s11461-008-0005-z
    [26]
    OREN R, PHILLIPS N G, EWERS B E, et al. Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest[J]. Tree Physiology, 1999, 19: 337-347. doi: 10.1093/treephys/19.6.337
    [27]
    PHILLIPS N G, RYAN M G, BOND B J, et al. Reliance on stored water increases with tree size in three species in the Pacific Northwest[J]. Tree Physiology, 2003, 23: 237-245. doi: 10.1093/treephys/23.4.237
    [28]
    KAVANAGH K L, PANGLE R P, SCHOTZKO A D. Nocturnal transpiration causing disequilibrium between soil and stem predawn water potential in mixed conifer forests of Idaho[J]. Tree Physiology, 2007, 27: 621-629. doi: 10.1093/treephys/27.4.621
    [29]
    HOGG E H, HURDLE P A. Sap flow in trembling aspen implications for stomatal responses to vapor pressure deficit[J]. Tree Physiology, 1997, 17: 501-509. doi: 10.1093/treephys/17.8-9.501
    [30]
    BENYON R G. Nighttime water use in an irrigated Eucalyptus grandis plantation[J]. Tree Physiology, 1999, 19: 853-859. doi: 10.1093/treephys/19.13.853
    [31]
    ALVARADO-BARRIENTOS M S, HOLWERDA F, GEISSERT D R, et al. Nighttime transpiration in a seasonally dry tropical montane cloud forest environment[J]. Trees, 2014, 29(1): 259-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f9c209cebdb64fb217cb137aafdff8d3
    [32]
    BUCKLEY T N, TURNBULL T L, PFAUTSCH S, et al. Nocturnal water loss in mature subalpine Eucalyptus delegatensis tall open forests and adjacent E. pauciflora woodlands[J]. Ecology Evolution, 2011, 1(3): 435-450. doi: 10.1002/ece3.44
    [33]
    徐世琴, 吉喜斌, 金博文.西北干旱区典型固沙植物夜间耗水及其影响因素[J].西北植物学报, 2015, 35(7): 1443-1450. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201507022

    XU S Q, JI X B, JIN B W. Nighttime water use and its influencing factors for typical sand binding plants in the arid region of northwest China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(7): 1443-1450. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201507022
    [34]
    王艳兵, 德永军, 熊伟, 等.华北落叶松夜间树干液流特征及生长季补水格局[J].生态学报, 2013, 33(5): 1375-1385. http://d.old.wanfangdata.com.cn/Periodical/stxb201305005

    WANG Y B, DE Y J, XIONG W, et al. The characteristics of nocturnal sap flow and stem water recharge pattern in growing season for a Larix principis-rupprechtii plantation[J]. Acta Ecologica Sinica, 2013, 33(5): 1375-1385. http://d.old.wanfangdata.com.cn/Periodical/stxb201305005
    [35]
    周翠鸣, 赵平, 倪广艳, 等.广州地区荷木夜间树干液流补水的影响因子及其对蒸腾的贡献[J].应用生态学报, 2012, 23(7): 1751-1757. http://d.old.wanfangdata.com.cn/Periodical/yystxb201207003

    ZHOU C M, ZHAO P, NI G Y, et al. Water recharge through nighttime stem sap flow of Schima superba in Guangzhou Region of Guangdong Province, South China: affecting factors and contribution to transpiration[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1751-1757. http://d.old.wanfangdata.com.cn/Periodical/yystxb201207003
    [36]
    尹立河, 黄金廷, 王晓勇, 等.陕西榆林地区旱柳和小叶杨夜间树干液流变化特征分析[J].西北农林科技大学学报(自然科学版), 2013, 41(8): 85-90. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201308014

    YIN L H, HUANG J T, WANG X Y, et al. Characteristice of nighttime sap flow of Salix matsudana and Populus simonii in Yulin, Shaanxi[J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(8): 85-90. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201308014
    [37]
    赵春彦, 司建华, 冯起, 等.胡杨(Populus euphratica)树干液流特征及其与环境因子的关系[J].中国沙漠, 2014, 34(3): 718-724. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm201403014

    ZHAO C Y, SI J H, FENG Q, et al. Xylem sap flow of Populus euphratica in relation to environmental factors in the lower reaches of Heihe River[J]. Journal of Desert Research, 2014, 34(3): 718-724. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm201403014
    [38]
    司建华, 冯起, 张小由, 等.极端干旱区荒漠河岸林胡杨生长季树干液流变化[J].中国沙漠, 2007, 27(3): 442-447. doi: 10.3321/j.issn:1000-694X.2007.03.016

    SI J H, FENG Q, ZHANG X Y, et al. Sap flow of Populus euphratica in desert riparian forest in extreme arid region during the growing season[J]. Journal of Desert Research, 2007, 27(3): 442-447. doi: 10.3321/j.issn:1000-694X.2007.03.016
    [39]
    FISHER J B, BALDOCCHI D D, MISSON L, et al. What the towers don't see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California[J]. Tree Physiology, 2007, 27: 597-610. doi: 10.1093/treephys/27.4.597
    [40]
    RESCO DE DIOS V, DIAZ-SIERRA R, GOULDEN M L, et al. Woody clockworks: circadian regulation of night-time water use in Eucalyptus globulus[J]. New Phytologist, 2013, 200(3): 743-752. doi: 10.1111/nph.12382
  • Related Articles

    [1]Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022
    [2]He Xin, Ma Wenxu, Zhao Tiantian, Yang Xiaohong, Ma Qinghua, Liang Lisong, Wang Guixi, Yang Zhen. Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial[J]. Journal of Beijing Forestry University, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350
    [3]Zhou Yuting, Ge Xuezhen, Zou Ya, Guo Siwei, Wang Tao, Tao Jing, Zong Shixiang. Prediction of the potential geographical distribution of Hylurgus ligniperda at the global scale and in China using the Maxent model[J]. Journal of Beijing Forestry University, 2022, 44(11): 90-99. DOI: 10.12171/j.1000-1522.20210345
    [4]Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360
    [5]Wang Yanjun, Gao Tai, Shi Juan. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt[J]. Journal of Beijing Forestry University, 2021, 43(9): 59-69. DOI: 10.12171/j.1000-1522.20200416
    [6]Huang Ruizhi, Yu Tao, Zhao Hui, Zhang Shengkai, Jing Yang, Li Junqing. Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33-43. DOI: 10.12171/j.1000-1522.20200254
    [7]Huang Mengyi, Zhao Jiaqiang, Shi Juan. Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt[J]. Journal of Beijing Forestry University, 2020, 42(11): 64-71. DOI: 10.12171/j.1000-1522.20190053
    [8]Yang Furong, Qi Yaodong, Liu Haitao, Xie Caixiang, Song Jingyuan. Global potential suitable area and ecological characteristics of Moringa oleifera[J]. Journal of Beijing Forestry University, 2020, 42(10): 45-54. DOI: 10.12171/j.1000-1522.20190375
    [9]ZHANG Chao, CHEN Lei, TIAN Cheng-ming, LI Tao, WANG Rong, YANG Qi-qing. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5): 23-32. DOI: 10.13332/j.1000-1522.20150516
    [10]SONG Yan, JI Jing-jun, ZHU Lin-hong, ZHANG Shi-ying. Characteristics of Asian-African summer monsoon pre-and post-global warming in mid-1980s[J]. Journal of Beijing Forestry University, 2007, 29(2): 24-33.
  • Cited by

    Periodical cited type(4)

    1. 齐婉芯,陈婷婷,宋佳力,安新民. 基于转基因741杨与新疆杨杂交创制抗虫非整倍体毛白杨新种质. 北京林业大学学报. 2024(12): 92-102 . 本站查看
    2. 汪格格,邱诗蕊,张琳晗,杨国伟,徐小云,汪爱羚,曾淑华,刘雅洁. 异源三倍体普通烟草(SST)减数分裂期的分子细胞学研究. 生物技术通报. 2023(02): 183-192 .
    3. 刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
    4. 庞俊秀,薛惠芬,刘婉秋,龙鸿. 三倍体丹参杂交种的花粉形态研究. 广西植物. 2021(12): 1996-2003 .

    Other cited types(3)

Catalog

    Article views (2199) PDF downloads (55) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return