• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
YU Teng-fei, FENG Qi, SI Jian-hua, ZHANG Xiao-you, ZHAO Chun-yan. Nocturnal transpiration of Populus euphratica authenticated by measurements of stem sap flux, leaf gas exchange and stomatal microsturcture[J]. Journal of Beijing Forestry University, 2017, 39(9): 8-16. DOI: 10.13332/j.1000-1522.20160332
Citation: YU Teng-fei, FENG Qi, SI Jian-hua, ZHANG Xiao-you, ZHAO Chun-yan. Nocturnal transpiration of Populus euphratica authenticated by measurements of stem sap flux, leaf gas exchange and stomatal microsturcture[J]. Journal of Beijing Forestry University, 2017, 39(9): 8-16. DOI: 10.13332/j.1000-1522.20160332

Nocturnal transpiration of Populus euphratica authenticated by measurements of stem sap flux, leaf gas exchange and stomatal microsturcture

More Information
  • Received Date: October 19, 2016
  • Revised Date: January 15, 2017
  • Published Date: August 31, 2017
  • Nocturnal transpiration, as a consequence of incomplete stomatal closure, is prevalent across species and environments, and high nocturnal atmospheric vapor pressure deficit (VPD) along with high soil water availability are the most commonly reported environmental drivers of it, which is coincided with the conditions of riparian forest in extremely arid region. Based on the measurements of xylem sap flux, leaf gas exchange, stomatal microstructure and environmental factors, we confirmed the occurrence of nocturnal transpiration in P. euphratica from followings: 1) incomplete stomatal closure was observed and mean stomatal conductance was 45 mmol/(m2·s), greater than the minimum stomatal conductance of Populus spp. reported in the literature (approximately 5 mmol/(m2·s)), and along with mean transpiration of 0.7 mmol/(m2·s), both accounting for 26% and 17% of daytime, respectively. This suggested that high stomatal conductance and transpiration are largely resulted from stomatal opening. 2) On average, sap velocity was 31.3 cm/hour at daytime and 16.5 cm/hour at nighttime, which accounting for 53% of daytime. Whether during daytime or nighttime, sap velocity was logarithmic positively related with VPD, and this could explain 55% of nighttime sap velocity change, suggesting that nighttime sap flow was composed of transpiration and tissue refilling. Thus, further research to distinguish the nocturnal transpiration and tissue refilling is needed. Noteworthly, the abruptly increased sap flow after midnight was synchronized with the stem radius change and water potential, but oppositely with VPD, showing that increased sap flow after midnight was induced by tissue refilling but not transpiration.
  • [1]
    RAWSON H M, CLARKE J M. Nocturnal transpiration in wheat[J]. Australian Journal of Plant Physiology, 1988, 15: 397-406.
    [2]
    CAIRD M A, RICHARDS J H, DONOVAN L A. Nighttime stomatal conductance and transpiration in C3 and C4 plants[J]. Plant Physiology, 2007, 143(1): 4-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000001681649
    [3]
    SNYDER K A, RICHARDS J H, DONOVAN L A. Night-time conductance in C3 and C4 species: do plants lose water at night?[J]. Journal of Experiment Botany, 2003, 54: 861-865. doi: 10.1093/jxb/erg082
    [4]
    DAWSON T E, BURGESS S S O, TU K P, et al. Nighttime transpiration in woody plants from contrasting ecosystems[J]. Tree Physiology, 2007, 27: 561-575. doi: 10.1093/treephys/27.4.561
    [5]
    OGLE K, LUCAS R W, BENTLEY L P, et al. Differential daytime and night-time stomatal behavior in plants from North American deserts[J]. New Phytologist, 2012, 194(2): 464-476. doi: 10.1111/j.1469-8137.2012.04068.x
    [6]
    MOORE G W, CLEVERLY J R, OWENS M K. Nocturnal transpiration in riparian Tamarix thickets authenticated by sap flux, eddy covariance and leaf gas exchange measurements[J]. Tree Physiology, 2008, 28: 521-528. doi: 10.1093/treephys/28.4.521
    [7]
    HOWARD A R, DONOVAN L A. Soil nitrogen limitation does not impact nighttime water loss in Populus[J]. Tree Physiology, 2010, 30(1): 23-31. https://www.ncbi.nlm.nih.gov/pubmed/19959599
    [8]
    DAMIÁN C, MARÍA A E, VICTOR J L, et al. Populus species from diverse habitats maintain high night-time conductance under drought[J]. Tree Physiology, 2016, 36(2): 229-242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84d9f60cc24ba0df2777b42dce988b40
    [9]
    YU T F, FENG Q, SI J H, et al. Tamarix ramosissima stand evapotranspiration and its association with hydroclimatic factors in an arid region in northwest China[J]. Journal of Arid Environments, 2017, 138: 18-26. doi: 10.1016/j.jaridenv.2016.11.006
    [10]
    司建华, 冯起, 鱼腾飞, 等.植物夜间蒸腾及其生态水文效应研究进展[J].水科学进展, 2014, 25(6): 907-914. http://d.old.wanfangdata.com.cn/Periodical/skxjz201406017

    SI J H, FENG Q, YU T F, et al. Research advances in nighttime transpiration and its eco-hydrological implications[J]. Advances in Water Science, 2014, 25(6): 907-914. http://d.old.wanfangdata.com.cn/Periodical/skxjz201406017
    [11]
    NADEZHDINA N. Sap flow index as an indicator of plant water status[J]. Tree Physiology, 1999, 19: 885-891. doi: 10.1093/treephys/19.13.885
    [12]
    BURGESS S S O, ADAMS M A, TURNER N C, et al. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants[J]. Tree Physiology, 2001, 21: 589-598. doi: 10.1093/treephys/21.9.589
    [13]
    ZEPPEL M J, LEWIS J D, MEDLYN B, et al. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna[J]. Tree Physiology, 2011, 31(9): 932-944. doi: 10.1093/treephys/tpr024
    [14]
    PHILLIPS N G, LEWIS J D, LOGAN B A, et al. Inter- and intra-specific variation in nocturnal water transport in Eucalyptus[J]. Tree Physiology, 2010, 30: 586-596. doi: 10.1093/treephys/tpq009
    [15]
    YU T F, FENG Q, SI J H, et al. Hydraulic redistribution of soil water by roots of two desert riparian phreatophytes in northwest China's extremely arid region[J]. Plant and Soil, 2013, 372: 297-308. doi: 10.1007/s11104-013-1727-8
    [16]
    IPCC. Climate change 2007: the physical science basis[M]. Cambridge: Cambridge University Press, 2007.
    [17]
    鱼腾飞, 冯起, 司建华, 等.胡杨根系水力再分配的模式、大小及其影响因子[J].北京林业大学学报, 2014, 36(2): 22-29. http://j.bjfu.edu.cn/article/id/9977

    YU T F, FENG Q, SI J H, et al. Patterns, magnitude and controlling factors of hydraulic redistribution by Populus euphratica roots[J]. Journal of Beijing Forestry University, 2014, 36(2) 22-29. http://j.bjfu.edu.cn/article/id/9977
    [18]
    ALLEN R G, PEREIRA L S, RAES D. Crop evapotranspiration: guidelines for computing crop water requirements: FAO irrigation and drainage paper 56[C]. Rome: FAO, 1998.
    [19]
    YANG Y T, GUAN H D, HUTSON J L, et al. Examination and parameterization of the root water uptake model from stem water potential and sap flow measurements[J]. Hydrological Processes, 2013, 27: 2857-2863. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/hyp.9406
    [20]
    赵传燕, 赵阳, 彭守璋, 等.黑河下游绿洲胡杨生长状况与叶生态特征[J].生态学报, 2014, 34(16): 4518-4525. http://d.old.wanfangdata.com.cn/Periodical/stxb201416007

    ZHAO C Y, ZHAO Y, PENG S Z, et al. The growth state of Populus euphratica Oliv. and its leaf ecological characteristics in the lower reaches of Heihe River[J]. Acta Ecologica Sinica, 2014, 34(16): 4518-4525. http://d.old.wanfangdata.com.cn/Periodical/stxb201416007
    [21]
    BURGESS S S O, DAWSON T E. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration[J]. Plant, Cell and Environment, 2004, 27: 1023-1034. doi: 10.1111/j.1365-3040.2004.01207.x
    [22]
    GOLDSMITH G R. Changing directions: the atmosphere-plant-soil continuum[J]. New Phytologist, 2013, 199(1): 4-6. doi: 10.1111/nph.12332
    [23]
    DALEY M J, PHILLIPS N G. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest[J]. Tree Physiology, 2006, 26: 411-419. doi: 10.1093/treephys/26.4.411
    [24]
    GOLDSTEIN G, ANDRADE J L, MEINZER F C, et al. Stem water storage and diurnal patterns of water use in tropical forest[J]. Plant, Cell and Environment, 1998, 21: 397-406. doi: 10.1046/j.1365-3040.1998.00273.x
    [25]
    WANG H, ZHAO P, WANG Q, et al. Nocturnal sap flow characteristics and stem water recharge of Acacia mangium[J]. Frontiers of Forestry in China, 2008, 3(1): 72-78. doi: 10.1007/s11461-008-0005-z
    [26]
    OREN R, PHILLIPS N G, EWERS B E, et al. Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest[J]. Tree Physiology, 1999, 19: 337-347. doi: 10.1093/treephys/19.6.337
    [27]
    PHILLIPS N G, RYAN M G, BOND B J, et al. Reliance on stored water increases with tree size in three species in the Pacific Northwest[J]. Tree Physiology, 2003, 23: 237-245. doi: 10.1093/treephys/23.4.237
    [28]
    KAVANAGH K L, PANGLE R P, SCHOTZKO A D. Nocturnal transpiration causing disequilibrium between soil and stem predawn water potential in mixed conifer forests of Idaho[J]. Tree Physiology, 2007, 27: 621-629. doi: 10.1093/treephys/27.4.621
    [29]
    HOGG E H, HURDLE P A. Sap flow in trembling aspen implications for stomatal responses to vapor pressure deficit[J]. Tree Physiology, 1997, 17: 501-509. doi: 10.1093/treephys/17.8-9.501
    [30]
    BENYON R G. Nighttime water use in an irrigated Eucalyptus grandis plantation[J]. Tree Physiology, 1999, 19: 853-859. doi: 10.1093/treephys/19.13.853
    [31]
    ALVARADO-BARRIENTOS M S, HOLWERDA F, GEISSERT D R, et al. Nighttime transpiration in a seasonally dry tropical montane cloud forest environment[J]. Trees, 2014, 29(1): 259-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f9c209cebdb64fb217cb137aafdff8d3
    [32]
    BUCKLEY T N, TURNBULL T L, PFAUTSCH S, et al. Nocturnal water loss in mature subalpine Eucalyptus delegatensis tall open forests and adjacent E. pauciflora woodlands[J]. Ecology Evolution, 2011, 1(3): 435-450. doi: 10.1002/ece3.44
    [33]
    徐世琴, 吉喜斌, 金博文.西北干旱区典型固沙植物夜间耗水及其影响因素[J].西北植物学报, 2015, 35(7): 1443-1450. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201507022

    XU S Q, JI X B, JIN B W. Nighttime water use and its influencing factors for typical sand binding plants in the arid region of northwest China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(7): 1443-1450. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201507022
    [34]
    王艳兵, 德永军, 熊伟, 等.华北落叶松夜间树干液流特征及生长季补水格局[J].生态学报, 2013, 33(5): 1375-1385. http://d.old.wanfangdata.com.cn/Periodical/stxb201305005

    WANG Y B, DE Y J, XIONG W, et al. The characteristics of nocturnal sap flow and stem water recharge pattern in growing season for a Larix principis-rupprechtii plantation[J]. Acta Ecologica Sinica, 2013, 33(5): 1375-1385. http://d.old.wanfangdata.com.cn/Periodical/stxb201305005
    [35]
    周翠鸣, 赵平, 倪广艳, 等.广州地区荷木夜间树干液流补水的影响因子及其对蒸腾的贡献[J].应用生态学报, 2012, 23(7): 1751-1757. http://d.old.wanfangdata.com.cn/Periodical/yystxb201207003

    ZHOU C M, ZHAO P, NI G Y, et al. Water recharge through nighttime stem sap flow of Schima superba in Guangzhou Region of Guangdong Province, South China: affecting factors and contribution to transpiration[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1751-1757. http://d.old.wanfangdata.com.cn/Periodical/yystxb201207003
    [36]
    尹立河, 黄金廷, 王晓勇, 等.陕西榆林地区旱柳和小叶杨夜间树干液流变化特征分析[J].西北农林科技大学学报(自然科学版), 2013, 41(8): 85-90. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201308014

    YIN L H, HUANG J T, WANG X Y, et al. Characteristice of nighttime sap flow of Salix matsudana and Populus simonii in Yulin, Shaanxi[J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(8): 85-90. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201308014
    [37]
    赵春彦, 司建华, 冯起, 等.胡杨(Populus euphratica)树干液流特征及其与环境因子的关系[J].中国沙漠, 2014, 34(3): 718-724. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm201403014

    ZHAO C Y, SI J H, FENG Q, et al. Xylem sap flow of Populus euphratica in relation to environmental factors in the lower reaches of Heihe River[J]. Journal of Desert Research, 2014, 34(3): 718-724. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm201403014
    [38]
    司建华, 冯起, 张小由, 等.极端干旱区荒漠河岸林胡杨生长季树干液流变化[J].中国沙漠, 2007, 27(3): 442-447. doi: 10.3321/j.issn:1000-694X.2007.03.016

    SI J H, FENG Q, ZHANG X Y, et al. Sap flow of Populus euphratica in desert riparian forest in extreme arid region during the growing season[J]. Journal of Desert Research, 2007, 27(3): 442-447. doi: 10.3321/j.issn:1000-694X.2007.03.016
    [39]
    FISHER J B, BALDOCCHI D D, MISSON L, et al. What the towers don't see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California[J]. Tree Physiology, 2007, 27: 597-610. doi: 10.1093/treephys/27.4.597
    [40]
    RESCO DE DIOS V, DIAZ-SIERRA R, GOULDEN M L, et al. Woody clockworks: circadian regulation of night-time water use in Eucalyptus globulus[J]. New Phytologist, 2013, 200(3): 743-752. doi: 10.1111/nph.12382
  • Related Articles

    [1]Niu Yunming, Jia Guodong, Liu Zihe, Wang Xin, Liu Ziqiang. Soil moisture absorption and utilization of Quercus variabilis in Beijing mountain area[J]. Journal of Beijing Forestry University, 2022, 44(7): 16-24. DOI: 10.12171/j.1000-1522.20210208
    [2]AN Hai-long, LIU Qing-qian, CAO Xue-hui, ZHANG Gang, WANG Hui, LIU Chao, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places[J]. Journal of Beijing Forestry University, 2016, 38(1): 59-66. DOI: 10.13332/j.1000--1522.20150164
    [3]QIN Jing, ZHAO Guang-jie, SHANG Jun-bo, PANG Jiu-yin. Electroconductivity and electromagnetic shielding effect of copper plating poplar veneers[J]. Journal of Beijing Forestry University, 2014, 36(6): 149-153. DOI: 10.13332/j.cnki.jbfu.2014.06.001
    [4]YU Lu, SU De-rong, LIU Yi-shan. Characters of leaf water absorption for three turfgrasses.[J]. Journal of Beijing Forestry University, 2013, 35(3): 97-101.
    [5]ZHANG Yun, CUI Xiao-yang. Nitrogen absorption and assimilation characteristics of Pinus koraiensis seedings in different NH+4/NO-3 ratios[J]. Journal of Beijing Forestry University, 2011, 33(5): 61-64.
    [6]ZHANG Yun, CUI Xiao-yang. NH+4/NO-3 absorption characteristics of Betula platyphylla seedlings[J]. Journal of Beijing Forestry University, 2011, 33(3): 26-30.
    [7]DONG Wen-yi, NIE Li-shui, LI Ji-yue, , SHEN Ying -bai, ZHANG Zhi-yi. Effects of nitrogen forms on the absorption and distribution of nitrogen in Populus tomentosa seedlings using the technique of 15N tracing.[J]. Journal of Beijing Forestry University, 2009, 31(4): 97-101.
    [8]ZHANG Xue-xia, CHEN Li-hua. . Effects of watershed landscape pattern on soil and water loss in the Loess Plateau Region.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 95-102.
    [9]LI Suyan1, HUANG Yu2, ZHANG Jianguo. The effects of fir plantation thinning on soil and water loss.[J]. Journal of Beijing Forestry University, 2008, 30(3): 120-123.
    [10]ZHAI Ming-pu, JIANG San-nai. Dynamics of nutrient absorption in root systems of Populus×xiao zhuanica and Robinia pseudoacacia[J]. Journal of Beijing Forestry University, 2006, 28(2): 29-33.
  • Cited by

    Periodical cited type(9)

    1. 王喜刚,郭成瑾,焦杨,赵沛,田静,张丽荣,沈瑞清. 哈茨木霉M-17厚垣孢子可湿性粉剂的研制及其对马铃薯干腐病的田间防效. 中国生物防治学报. 2024(06): 1319-1330 .
    2. 申云鑫,李铭刚,施竹凤,赵江源,王楠,李者芬,杨明英,陈齐斌,杨佩文. 贝莱斯芽胞杆菌SH-1471可湿性粉剂研制及其对番茄枯萎病的防治效果. 中国生物防治学报. 2023(04): 904-914 .
    3. 薛德星,李美,高兴祥,李健. 生防菌棘孢木霉的分离鉴定及生物学特性研究. 山东农业科学. 2023(10): 118-123 .
    4. 张成,李欣雨,邹艺琴,王睿,侯巨梅,廖文敏,刘铜. 木霉菌Trichoderma brev可湿性粉剂的研制. 农药. 2022(05): 329-335 .
    5. 胡建坤,黄蓉,黄瑞荣,朱植银,王玉,曾钦华. 2种化学杀菌剂与木霉及其组配制剂对辣椒疫病防控效果研究. 生物灾害科学. 2021(04): 460-464 .
    6. 庄新亚,程亮,郭青云. 燕麦镰刀菌GD-2可湿性粉剂研制及对野燕麦的防除效果. 青海大学学报. 2020(03): 9-17+43 .
    7. 遇文婧,宋小双,邓勋,平晓帆,周琦,刘志华. 刺激植物响应蛋白基因Epl1克隆、原核表达及功能初探. 北京林业大学学报. 2018(01): 17-26 . 本站查看
    8. 徐沛东,朱植银,黄加诚,肖永良,谢远芳,魏方林. 新型生物农药棘孢木霉菌防治辣椒疫病应用研究. 生物灾害科学. 2017(03): 172-175 .
    9. 罗洋,滕应,罗绪强,李振高. 里氏木霉FS10-C可湿性粉剂的研制及其促生效果测定. 生物技术通报. 2016(08): 194-199 .

    Other cited types(8)

Catalog

    Article views (2199) PDF downloads (55) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return