• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Jing-han, Liu Xuan-shao, Jin Hao, Huang Peng, Fu Xiang-xiang, Fang Sheng-zuo, Tian Ye. Leaf angle change and anatomical structure of Populus deltoides, P. cathayana and their hybrid F1[J]. Journal of Beijing Forestry University, 2018, 40(2): 11-21. DOI: 10.13332/j.1000-1522.20170317
Citation: Liu Jing-han, Liu Xuan-shao, Jin Hao, Huang Peng, Fu Xiang-xiang, Fang Sheng-zuo, Tian Ye. Leaf angle change and anatomical structure of Populus deltoides, P. cathayana and their hybrid F1[J]. Journal of Beijing Forestry University, 2018, 40(2): 11-21. DOI: 10.13332/j.1000-1522.20170317

Leaf angle change and anatomical structure of Populus deltoides, P. cathayana and their hybrid F1

More Information
  • Received Date: November 18, 2017
  • Revised Date: December 24, 2017
  • Published Date: January 31, 2018
  • ObjectiveTo provide evidences for selecting appropriate poplar clones for southern mountain area in China, the responses to sunlight and adaptability to habitat for Populus deltoides cv. 'I-69'(♀)(F), P. cathayana (♂) (M) and 3 types of hybrid F1, including female-parent-like (FP), intermediate (I) and male-parent-like (MP), were compared and analyzed.
    MethodThe diurnal changing pattern of twist angles and midrib angles and leaf morphological indexes were measured, and anatomical structures of leaves and petioles were observed by scanning electron microscope.
    ResultThe co-operation of changing in twist angles and midrib angle led to leaf movement for maternal F, while the movement of midrib angles was mainly forced for paternal M. The response to sunlight by changing the leaf orientation for 3 types of F1 was not significant. Obvious differences in anatomical structure were found in parental poplars and F1 types. As the types of isobilateral leaf, F and FP possessed the ratio of 0.87 and 1.02 for stoma density on the upper to the lower of leaf epidermis, no sponge tissue was observed, and 2 layers of palisade tissue, located in the upper and lower of leaf, occupied more than 0.7 of total thickness of leaf. As the types of bifacial leaf, including F, I and FP, the ratios of stoma density on the upper to the lower of leaf epidermis were 0.08, 0.45 and 0.55, respectively; thicker sponge tissue and palisade tissue on the upper leaf were observed, and the rank of the ratio of palisade tissue to sponge tissue was MP(0.75)>I(0.55)>M(0.47). Anatomical structure of F petiole showed the tendency of cross-section shape varying from narrow-oval to wide-heart-shape, with a gradually changing arrangement of vascular bundle from vertical to horizontal along the upper to lower section of petiole. While the structure of M petiole showed small variation, from near round to heart-shape in shape, and radial pattern in arrangement of vascular bundle from the upper to lower section.However, for 3 types of F1, both the shape and arrangement of vascular bundle intervened two parents.
    ConclusionThe results provide possible appropriate poplar clones for South China: I and MP type of F1 are nominated for mountainous area of high altitude; meanwhile, FP may adapt to mountainous area of low altitude.
  • [1]
    姜闯道, 高辉远, 邹琦, 等.叶角、光呼吸和热耗散协同作用减轻大豆幼叶光抑制[J].生态学报, 2005, 25(2): 319-324. doi: 10.3321/j.issn:1000-0933.2005.02.021

    Jiang C D, Gao H Y, Zou Q, et al. The co-operation of leaf orientation, photorespiration and thermal dissipation alleviate photoinhibition in young leaves of soybean plants[J]. Aata Ecologica Sinica, 2005, 25(2): 319-324. doi: 10.3321/j.issn:1000-0933.2005.02.021
    [2]
    Ehleringer J, Foreseth I. Solar tracking by plants[J]. Science, 1980, 210: 1094-1098. doi: 10.1126/science.210.4474.1094
    [3]
    Feng Y L, Cao K F, Feng Z L. Thermal dissipation, leaf rolling and inactivation of PS Ⅱ reaction centers in Amomum villosum[J]. Journal of Tropical Ecology, 2001, 18(6): 865-876. https://www.jstor.org/stable/3068704
    [4]
    Kao W Y, Forseth I N. Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities[J]. Plant, Cell and Environment, 1992, 15(6): 703-710. doi: 10.1111/pce.1992.15.issue-6
    [5]
    Moran N. Osmoregulation of leaf motor cells[J]. FEBS Letters, 2007, 581(12): 2337-2347. doi: 10.1016/j.febslet.2007.04.002
    [6]
    Forseth I, Ehleringer J R. Solar tracking response to drought in a desert annual[J]. Oecologia, 1980, 44(2): 159-63. doi: 10.1007/BF00572673
    [7]
    Ehleringer J R, Comstock J. Leaf absorptance and leaf angle: mechanisms for stress avoidance[J]. Plant Response to Stress, 1987, 15(1): 55-76. http://cn.bing.com/academic/profile?id=0743ffa93ff075ff8cb8e6b6169f1c2d&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    杨玲, 王韶唐.水分胁迫下的大豆叶取向[J].西北植物学报, 1992, 12(1): 46-51. doi: 10.3321/j.issn:1000-4025.1992.01.008

    Yang L, Wang S T. Leaflet orientation in water-stressed soybeans[J]. Acta Botany Boreali-Occidentalia Sinica, 1992, 12(1): 46-51. doi: 10.3321/j.issn:1000-4025.1992.01.008
    [9]
    徐程扬, 翟明普.紫椴幼苗的叶片运动与光截获[J].植物生态学报, 2001, 25(4): 488-493. doi: 10.3321/j.issn:1005-264X.2001.04.018

    Xu C Y, Zhai M P. Leaf movement and sunlight interception of Tilia amurensis seedlings[J]. Acta Phytoecologica Sinica, 2001, 25(4): 488-493. doi: 10.3321/j.issn:1005-264X.2001.04.018
    [10]
    郭志华, 胡启鹏, 王荣, 等.喜树幼苗的叶悬挂角和叶柄角对不同光环境的响应和适应[J].林业科学研究, 2006, 19(5): 647-652. doi: 10.3321/j.issn:1001-1498.2006.05.021

    Guo Z H, Hu Q P, Wang R, et al. Acclmiatization of midrib angle and petiole angle of Camptotheca acuminate decne to different light regimes in evergreen broad leaves forests[J]. Forest Research, 2006, 19(5): 647-652. doi: 10.3321/j.issn:1001-1498.2006.05.021
    [11]
    张守仁, 高荣孚.白杨派新无性系气孔生理生态特性的研究[J].生态学报, 1998, 18(4):358-363. doi: 10.3321/j.issn:1000-0933.1998.04.005

    Zhang S R, Gao R F. Study of the stomatal ecophysiological characters of two new clones of Sect. Luce[J]. Aata Ecologica Sinica, 1998, 18(4):358-363. doi: 10.3321/j.issn:1000-0933.1998.04.005
    [12]
    张守仁, 高荣孚.光诱导下杂种无性系叶角和叶绿体运动[J].生态学报, 2001, 21(1):68-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb200101011

    Zhang S R, Gao R F. Light induces leaf orientation and chloroplast movements of hybrid poplar clones[J]. Aata Ecologica Sinica, 2001, 21(1):68-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb200101011
    [13]
    张世伟, 常福定, 张勇.柳属三种植物叶柄结构的解剖研究[J].张掖师专学报, 1998, 15(1): 140-141.

    Zhang S W, Chang F D, Zhang Y. Anatomical structure of leaf petiole of 3 Salix species[J]. Journal of Zhangye Teachers College, 1998, 15(1): 140-141.
    [14]
    常生辉, 卢龙斗, 高武军, 等.木犀属植物叶柄的比较解剖学结构[J].热带亚热带植物学报, 2008, 16(1): 10-18. doi: 10.3969/j.issn.1005-3395.2008.01.002

    Chang S H, Lu L D, Gao W J, et al. Comparative anatomical studies on petioles of Osmanthus[J]. Journal of Tropical and Subtropical Botany, 2008, 16(1): 10-18. doi: 10.3969/j.issn.1005-3395.2008.01.002
    [15]
    安福全, 于龙凤, 李富恒.辣椒叶柄解剖结构数量特性的研究[J].东北农业大学学报, 2011, 42(7): 139-142. doi: 10.3969/j.issn.1005-9369.2011.07.026

    An F Q, Yu L F, Li F H. Analysis on quantity characteristics of pepper petiole's anatomical structures[J]. Journal of Northeast Agricultural University, 2011, 42(7): 139-142. doi: 10.3969/j.issn.1005-9369.2011.07.026
    [16]
    邴鑫, 张治安, 徐克章, 等.不同叶运动能力大豆品种叶枕结构的比较[J].南京农业大学学报, 2009, 32(4): 18-22. http://d.old.wanfangdata.com.cn/Periodical/njnydxxb200904004

    Bing X, Zhang Z A, Xu K Z, et al. Comparative studies on structure of pulvinus in different capacity of leaf-movement soybean[J]. Journal of Nanjing Agricultural University, 2009, 32(4): 18-22. http://d.old.wanfangdata.com.cn/Periodical/njnydxxb200904004
    [17]
    潘瑞炽.植物生理学[M].北京:高等教育出版社, 2012: 25-27.

    Pan R Z. Plant physiology[M]. Beijing: China Higher Education Press, 2012: 25-27.
    [18]
    Mooney H A, Ehleringer J R. The carbon gain benefits of solar tracking in a desert annual[J]. Plant, Cell and Environment, 1978, 1(4): 307-311. doi: 10.1111/pce.1978.1.issue-4
    [19]
    Rosa L M, Dillenburg L R, Forseth I N. Responses of soybean leaf angle, photosynthesis and stomatal conductance to leaf and soil water potential[J]. Annals of Botany, 1991, 67(1): 51-58. https://www.jstor.org/stable/42758402
    [20]
    张青松, 于兆英.杨属植物叶柄的解剖及系统学研究[J].西北植物学报, 1989, 9(2): 88-91. doi: 10.3321/j.issn:1000-4025.1989.02.005

    Zhang Q S, Yu Z Y. An anatomical study on the petiole in some species of Populus and its systematic significance[J]. Acta Botany Boreali-Occidentalia Sinica, 1989, 9(2): 88-91. doi: 10.3321/j.issn:1000-4025.1989.02.005
    [21]
    高暝, 丁昌俊, 苏晓华, 等.美洲黑杨及其杂种F1无性系光合特性的研究[J].林业科学研究, 2014, 27(6): 721-728. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201406002

    Gao M, Ding C J, Su X H, et al. Comparison of photosynthetic characteristics of Populus deltoides and their F1 hybrid clones[J]. Forest Research, 2014, 27(6): 721-728. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201406002
    [22]
    晏新安, 符毓秦, 刘玉媛.美洲黑杨杂种无性系叶片解剖及同工酶分析[J].陕西林业科技, 1989(4): 5-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002926563

    Yan X A, Fu Y Q, Liu Y Y. Dissecting blade and analysing isoenzyme of hybrid clones of Populus deltoides[J]. Shaanxi Forest Science and Technology, 1989(4): 5-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000002926563
    [23]
    樊汝汶.黑杨派和青杨派叶片的比较解剖[J].南京林学院学报, 1985(2): 40-46. http://www.cnki.com.cn/Article/CJFDTotal-NJLY198502003.htm

    Fan R W. Anatomical observations on leaves of aigeivos and cathay poplars[J]. Journal of Nanjing Institute of Forestry, 1985(2): 40-46. http://www.cnki.com.cn/Article/CJFDTotal-NJLY198502003.htm
    [24]
    潘存娥, 田丽萍, 李贞贞, 等. 5种杨树无性系叶片解剖结构的抗旱性研究[J].中国农学通报, 2011, 27(2): 21-25. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201102005

    Pan C E, Tiang L P, Li Z Z, et al. Studies on drought resistance on anatomical structure of leaves of 5 poplar clones[J]. Chinese Agricultural Science Bulletin, 2011, 27(2): 21-25. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201102005
    [25]
    方炎明.植物学[M].北京:中国林业出版社, 2006:93.

    Fang Y M. Botany[M]. Beijing: China Forestry Publishing House, 2006:93.
  • Related Articles

    [1]Wang Qingni, Cao Xiaojuan, Liu Ying, Zhang Fengbao. Response of runoff and sediment production on sand-covered loess slopes to slope length and sand covering thickness[J]. Journal of Beijing Forestry University, 2024, 46(10): 81-89. DOI: 10.12171/j.1000-1522.20240229
    [2]Liu Pan, Lu Mei, Lü Jinghua, Yang Zhidong, Zhao Dingrong, Sun Guanfa, Shan Shengyang, Li Cong, Zhao Xuyan, Chen Zhiming. Effects of ant colonization on carbon accumulation and distribution in the forests of neighbouring mountains in the Napahai Wetlands, Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(5): 114-125. DOI: 10.12171/j.1000-1522.20220507
    [3]Yan Min, Zuo Hejun, Guo Yue, Jia Guangpu, Qiao Shuo, Xi Cheng. Wind tunnel simulation of complex deformation law on retaining wall under aeolian sand environment[J]. Journal of Beijing Forestry University, 2021, 43(5): 108-117. DOI: 10.12171/j.1000-1522.20200339
    [4]Zhang Shuai, Ding Guodong, Gao Guanglei, Sun Guili, Zhao Yuanyuan, Yu Minghan, Cong Zhijie, Bao Yanfeng. Wind tunnel test on windproof benefit of horniness HDPE sand barrier[J]. Journal of Beijing Forestry University, 2020, 42(3): 127-133. DOI: 10.12171/j.1000-1522.20180282
    [5]SUN Hao, LIU Jin-hao, HUANG Qing-qing, ZHAO Ke. Research on the windproof efficiency of polygonal straw sand barrier[J]. Journal of Beijing Forestry University, 2017, 39(10): 90-94. DOI: 10.13332/j.1000-1522.20170173
    [6]DANG Xiao-hong, GAO Yong, YU Yi, LI Qian, WANG Shan, WU Hao, WANG Hong-xia, ZHAO Peng-yu. Windproof efficiency with new biodegradable PLA sand barrier and traditional straw sand barrier[J]. Journal of Beijing Forestry University, 2015, 37(3): 118-125. DOI: 10.13332/j.1000-1522.20140245
    [7]YANG Teng, DUAN Jie, MA L&uuml, -yi, JIA Li-ming, PENG Zuo-deng, CHEN Chuang, CHEN Jing. Effects of N application rates on growth, nutrient accumulation and translocation of Xanthoceras sorbifolia[J]. Journal of Beijing Forestry University, 2014, 36(3): 57-62. DOI: 10.13332/j.cnki.jbfu.2014.03.008
    [8]GAO Han, ZHANG Yu-qing, WU Bin, DING Guo-dong. Simulating efficiency of wind-speed reduction and sand-break of Caragana korshinskii coppice[J]. Journal of Beijing Forestry University, 2010, 32(4): 175-180.
    [9]FENG Hai-xia, , FENG Zhong-ke, ZHANG Qiu-hong. Route selection of roads in forest area based on 3S.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 127-132.
    [10]TANG Jin-nian, XU Xian-ying, JIN Hong-xi, ZHANG Dun-ming. Shape characteristics of the natural aeolian sand ripples and their relations with the physical characteristics of surface sand[J]. Journal of Beijing Forestry University, 2007, 29(2): 111-115.
  • Cited by

    Periodical cited type(7)

    1. 万常兴,吕帅元,马仁跃. 基于风洞模拟的高原积沙公路护栏选型研究. 北方交通. 2024(05): 52-56 .
    2. 王翠,李生宇,朱丽,戚跃,贾文茹. 风沙区高速公路波形梁护栏附属设施影响下的气流变化及蚀积特征. 干旱区资源与环境. 2023(05): 155-161 .
    3. 吕帅元,田荣燕,万常兴,马仁跃. 常用护栏类型对风沙粒子运动的影响研究. 西藏科技. 2023(07): 74-80 .
    4. 张克存,安志山,何明珠,肖建华,张宏雪. 中国沙区公路风沙危害及防治研究进展. 中国沙漠. 2022(03): 222-232 .
    5. 李文辉. 风沙地区公路设计探讨. 科技创新与应用. 2021(13): 87-89 .
    6. 李生宇,范敬龙,王海峰,崔珂军,雷加强. 蒙古高原交通干线风沙(雪)危害防治技术方案. 干旱区研究. 2021(06): 1760-1770 .
    7. 菲力敦. 轮台至民丰沙漠公路设计. 时代汽车. 2020(20): 187-188 .

    Other cited types(3)

Catalog

    Article views (2317) PDF downloads (119) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return