• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yan Xiao, Wei Chi, Zhang Dong-mei, Jia Gui-xia. Inheritance stability and drought stress test for P5CS-F129A transgenic lily[J]. Journal of Beijing Forestry University, 2018, 40(2): 98-105. DOI: 10.13332/j.1000-1522.20170379
Citation: Yan Xiao, Wei Chi, Zhang Dong-mei, Jia Gui-xia. Inheritance stability and drought stress test for P5CS-F129A transgenic lily[J]. Journal of Beijing Forestry University, 2018, 40(2): 98-105. DOI: 10.13332/j.1000-1522.20170379

Inheritance stability and drought stress test for P5CS-F129A transgenic lily

More Information
  • Received Date: October 23, 2017
  • Revised Date: November 30, 2017
  • Published Date: January 31, 2018
  • ObjectiveLilium spp. is one of the main commercial flowers in the world which possesses both high ornamental and economic value. However, the current leading cultivars of Lilium Oriental hybrid are lack of drought and saline-alkaline tolerance thus it is crucial to improve the above properties.
    MethodBased on four-year subculture and one-year greenhouse culture, the stability of the target gene and changes of the phenotypes and physiological indices were tested for the single copy transformation line L89 and double copy line L31 with the P5CS-F129A gene of Lilium Oriental hybrid 'Sorbonne'. The Southern blot and cDNA detection showed stable inheritance of the target gene.
    ResultThe results of drought stress treatments demonstrated that the leaves of both transgenic lines contained higher proline content than the common 'Sorbonne', of which L31 contained the highest proline level. Though the relative leaf ion leakage of both transgenic lines and the common 'Sorbonne' rose in the drought stress process, the transgenic lines showed lower relative leaf ion leakage than the common 'Sorbonne'. After the second watering, the relative leaf ion leakage of both transgenic lines recovered to normal level, while the common 'Sorbonne' didn't. In the aspect of phenotype, both L89 and L31 grew well after the second watering, showing no obvious damage on growth, while the common 'Sorbonne' showed severe leaf etiolation and growth retardation.
    ConclusionThe above research indicated that the P5CS-F129A transgenic gene lines possessed stronger drought tolerance which would be significant to the cultivation of new cultivars of stress-tolerant lily.
  • [1]
    北京林业大学园林系花卉教研组.花卉学[M].北京:中国林业出版社, 1988.

    Flower Teaching and Research Group of Landscape Department, Beijing Forestry University. Flower science[M].Beijing:China Forestry Publishing House, 1988.
    [2]
    熊丽, 王祥宁, 张艺萍, 等.百合种球国产化的回顾及发展商榷[J].西南农业学报, 2008, 21(3):859-862. doi: 10.3969/j.issn.1001-4829.2008.03.068

    Xiong L, Wang X N, Zhang Y P, et al.Review and development discussion on domestic production of Lilium bulbs[J]. Southwest China Journal of Agricultural Science, 2008, 21(3):859-862. doi: 10.3969/j.issn.1001-4829.2008.03.068
    [3]
    高霞.三类观赏百合组织培养技术的研究[M].北京:农业出版社, 1991.

    Gao X. Study on tissue culture technique of 3 fancy Lilium scale[M].Beijing:Agriculture Press, 1991.
    [4]
    段德玉, 刘小京, 李存桢, 等.N素营养对NaCl胁迫下盐地碱蓬幼苗生长及渗透调节物质变化的影响[J].草业学报, 2005, 14(1):63-68. doi: 10.3321/j.issn:1004-5759.2005.01.012

    Duan D Y, Liu X J, Li C Z, et al. The effects of nitrogen on the growth and solutes of halophyte Suaeda salsa seedlings under the stress of NaCl[J]. Acta Pratacultural Science, 2005, 14(1):63-68. doi: 10.3321/j.issn:1004-5759.2005.01.012
    [5]
    谢振宇, 杨光穗.牧草耐盐性研究进展[J].草业科学, 2003, 20(8):11-17. doi: 10.3969/j.issn.1001-0629.2003.08.004

    Xie Z Y, Yang G S. Advances in salt tolerance of pasture[J]. Pratacultural Science, 2003, 20(8):11-17. doi: 10.3969/j.issn.1001-0629.2003.08.004
    [6]
    吕芝香, 王正刚.盐胁迫下小麦苗叶片吡咯-5-羧酸还原酶活性和游离脯氨酸积累[J].植物生理学报, 1993, 19(2):1111-1114.

    Lü Z X, Wang Z G.Pyrroline-5-Carboxy late reductase activity and free proline aeeumulation in leaves of wheat seedlings under salt stress[J]. Journal of Plant Physiology and Molecular Biology, 1993, 19(2):1111-1114.
    [7]
    Delauney A J, Verma D P S.Proline biosynthesis and osmoregulation in plants[J].Plant J, 1993, 4:215-223. doi: 10.1046/j.1365-313X.1993.04020215.x
    [8]
    Hervieu F, Le Dily F, Billard J P, et al.Effects of water-stress on proline content and ornithine aminotransferase activity of radish cotyledons [J].Phytochemistry, 1994, 37:1227-1231. doi: 10.1016/S0031-9422(00)90389-3
    [9]
    Zhang C S, Lu Q, Verma D P S.Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of praline biosynthesis in plants [J].The Joural of Biological Chemistry, 1995, 270(35):20491-20496. doi: 10.1074/jbc.270.35.20491
    [10]
    Kavi Kishor P B, Sangam S, Amrutha R N, et al.Regulation of proline biosynthesis, degradation, uptake and transport in high erplants: its implications in plant growth and abiotic stress tolerance [J].Current Science, 2005, 88(3):424-438.
    [11]
    Verbruggen N, Hermans C. Proline accumulation in plants:a review[J].Amino Acid, 2008, 35(4):753-759. doi: 10.1007/s00726-008-0061-6
    [12]
    程继东.抗旱、耐盐基因P5CS转化向日葵自交系[D].呼和浩特: 内蒙古农业大学, 2007.

    Cheng J D. Drought and salt-alkali resistance gene P5CS transformation of sunflower inbred lines[D].Huhhot: Inner Mongolia Agriculture University, 2007.
    [13]
    Hu C A, Delauney A J, Verma D P.A bifunctional enzyme(Δ1-pyrroline-5-carboxylate synthetase)catalyzes the first two steps in proline biosynthesis in plants[C/OL]//Proceedings of the National Academy of Sciences of USA, 1992, 89(19): 9354-9358. [2017-06-06]. http://www.pnas.org/content/89/19/9354.full.pdf.
    [14]
    Hong Z L, Lakkineni K, Zhang G Z H, et al.Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology, 2000, 122:1129-1136. doi: 10.1104/pp.122.4.1129
    [15]
    Fagard M, Vaucheret H.(Trans) gene silencing in plants:how many mechanisms?[J].Annual Review of Plant Biology, 2000, 51(1):167-194. doi: 10.1146/annurev.arplant.51.1.167
    [16]
    Li J, Brunner A M, Meilan R, et al.Stability of transgenes in trees:expression of two reporter genes in poplar over three field seasons[J].Tree Physiology, 2009, 29(2):299-312. http://www.cabdirect.org/abstracts/20093169012.html
    [17]
    Li S, Du Y P, Wu Z Y, et al. Excision of a selectable marker in transgenic Lilium (Sorbonne) using the Cre/loxP DNA excision system [J].Canadian Journal of Plant Science, 2013, 93 (5): 903-912. doi: 10.4141/cjps2013-037
    [18]
    陈建勋, 王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社, 2006:64-66.

    Cheng J X, Wang X F. Experimental gide for plant physiology[M].Guangzhou:South China University of technology Press, 2006:64-66.
    [19]
    Bates L, Waldren R, Teare I.Rapid determination of free proline for water-stress studies[J].Plant and Soil, 1973, 39(1):205-207. doi: 10.1007/BF00018060
    [20]
    Matzke M, Mette M, Matzke A.Transgene silencing by the host genome defense:implications for the evolution of epigenetic control mechanisms in plants and vertebrates[J].Plant Molecular Biology, 2000, 43(2-3):401-415.
    [21]
    Broer I.Stress inactivation of foreign genes in transgenic plants[J].Field Crops Research, 1996, 45(1):19-25. http://www.researchgate.net/publication/222972567_Stress_inactivation_of_foreign_genes_in_transgenic_plants
    [22]
    Kamo K.Long term, transgene expression in Lilium longiflorum 'Nellie White'grown outdoors and in the greenhouse[J].Scientia Horticulturae, 2014, 167:158-163. doi: 10.1016/j.scienta.2013.12.011
    [23]
    郝曜山, 孙毅, 杜建中, 等.转双价抗虫基因BmkIT-Chitinase玉米株系的获得[J].分子植物育种, 2012, 10(2):147-154. doi: 10.3969/mpb.010.000147

    Hao Y X, Sun Y, Du J Z, et al. Acquirement of transgenic maize lines with binary insect resistant BmkIT-Chitinase[J]. Molecular Plant Breeding, 2012, 10(2):147-154. doi: 10.3969/mpb.010.000147
    [24]
    徐春波, 米福贵, 王勇.转基因冰草植株耐盐性研究[J].草地学报, 2006, 14(1):20-23. http://d.old.wanfangdata.com.cn/Periodical/cdxb200601005

    Xu C B, Mi F G, Wang Y.Research on salt-tolerance of transgenic Agropyron cristatum [J]. Acta Agrestia Sinica, 2006, 14(1):20-23. http://d.old.wanfangdata.com.cn/Periodical/cdxb200601005
    [25]
    Zhu B, Su J, Chang M, et al.Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice[J].Plant Science, 1998, 139:41-48. doi: 10.1016/S0168-9452(98)00175-7
    [26]
    Dibax R, Deschamps C, Filho J C B, et al. Organo genesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene[J]. Biologia Plantarum, 2010, 54(1):6-12. doi: 10.1007/s10535-010-0002-6
    [27]
    Maggio A, Miyazaki S, Veronese P, et al.Does proline accumulation play an active role in stress-induced growth reduction?[J]. The Plant Journal, 2002, 31(6):699-712. doi: 10.1046/j.1365-313X.2002.01389.x
    [28]
    Sharma S, Verslues P E. Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential[J]. Plant Physiology, 2011, 157(1):292-304. doi: 10.1104/pp.111.183210
    [29]
    Verslues P E, Sharma S. Proline metabolism and its implications for plant-environment interaction[J/OL]. Arabidopsis Book, 2010, 8: e0140.[2017-08-08]. http://paperuri(a37d9173ada20cef3068db73cdecb467).
  • Related Articles

    [1]Wang Qingni, Cao Xiaojuan, Liu Ying, Zhang Fengbao. Response of runoff and sediment production on sand-covered loess slopes to slope length and sand covering thickness[J]. Journal of Beijing Forestry University, 2024, 46(10): 81-89. DOI: 10.12171/j.1000-1522.20240229
    [2]Liu Pan, Lu Mei, Lü Jinghua, Yang Zhidong, Zhao Dingrong, Sun Guanfa, Shan Shengyang, Li Cong, Zhao Xuyan, Chen Zhiming. Effects of ant colonization on carbon accumulation and distribution in the forests of neighbouring mountains in the Napahai Wetlands, Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(5): 114-125. DOI: 10.12171/j.1000-1522.20220507
    [3]Yan Min, Zuo Hejun, Guo Yue, Jia Guangpu, Qiao Shuo, Xi Cheng. Wind tunnel simulation of complex deformation law on retaining wall under aeolian sand environment[J]. Journal of Beijing Forestry University, 2021, 43(5): 108-117. DOI: 10.12171/j.1000-1522.20200339
    [4]Zhang Shuai, Ding Guodong, Gao Guanglei, Sun Guili, Zhao Yuanyuan, Yu Minghan, Cong Zhijie, Bao Yanfeng. Wind tunnel test on windproof benefit of horniness HDPE sand barrier[J]. Journal of Beijing Forestry University, 2020, 42(3): 127-133. DOI: 10.12171/j.1000-1522.20180282
    [5]SUN Hao, LIU Jin-hao, HUANG Qing-qing, ZHAO Ke. Research on the windproof efficiency of polygonal straw sand barrier[J]. Journal of Beijing Forestry University, 2017, 39(10): 90-94. DOI: 10.13332/j.1000-1522.20170173
    [6]DANG Xiao-hong, GAO Yong, YU Yi, LI Qian, WANG Shan, WU Hao, WANG Hong-xia, ZHAO Peng-yu. Windproof efficiency with new biodegradable PLA sand barrier and traditional straw sand barrier[J]. Journal of Beijing Forestry University, 2015, 37(3): 118-125. DOI: 10.13332/j.1000-1522.20140245
    [7]YANG Teng, DUAN Jie, MA L&uuml, -yi, JIA Li-ming, PENG Zuo-deng, CHEN Chuang, CHEN Jing. Effects of N application rates on growth, nutrient accumulation and translocation of Xanthoceras sorbifolia[J]. Journal of Beijing Forestry University, 2014, 36(3): 57-62. DOI: 10.13332/j.cnki.jbfu.2014.03.008
    [8]GAO Han, ZHANG Yu-qing, WU Bin, DING Guo-dong. Simulating efficiency of wind-speed reduction and sand-break of Caragana korshinskii coppice[J]. Journal of Beijing Forestry University, 2010, 32(4): 175-180.
    [9]FENG Hai-xia, , FENG Zhong-ke, ZHANG Qiu-hong. Route selection of roads in forest area based on 3S.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 127-132.
    [10]TANG Jin-nian, XU Xian-ying, JIN Hong-xi, ZHANG Dun-ming. Shape characteristics of the natural aeolian sand ripples and their relations with the physical characteristics of surface sand[J]. Journal of Beijing Forestry University, 2007, 29(2): 111-115.
  • Cited by

    Periodical cited type(7)

    1. 万常兴,吕帅元,马仁跃. 基于风洞模拟的高原积沙公路护栏选型研究. 北方交通. 2024(05): 52-56 .
    2. 王翠,李生宇,朱丽,戚跃,贾文茹. 风沙区高速公路波形梁护栏附属设施影响下的气流变化及蚀积特征. 干旱区资源与环境. 2023(05): 155-161 .
    3. 吕帅元,田荣燕,万常兴,马仁跃. 常用护栏类型对风沙粒子运动的影响研究. 西藏科技. 2023(07): 74-80 .
    4. 张克存,安志山,何明珠,肖建华,张宏雪. 中国沙区公路风沙危害及防治研究进展. 中国沙漠. 2022(03): 222-232 .
    5. 李文辉. 风沙地区公路设计探讨. 科技创新与应用. 2021(13): 87-89 .
    6. 李生宇,范敬龙,王海峰,崔珂军,雷加强. 蒙古高原交通干线风沙(雪)危害防治技术方案. 干旱区研究. 2021(06): 1760-1770 .
    7. 菲力敦. 轮台至民丰沙漠公路设计. 时代汽车. 2020(20): 187-188 .

    Other cited types(3)

Catalog

    Article views (2069) PDF downloads (36) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return