• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Zhixin, Zheng Senlin, Fang Xiaoshan, Lu Xiaohui, Zhao Lihua. Simulating validation of ENVI-met vegetation model to Ficus microcarpa in hot-humid region of subtropical zone[J]. Journal of Beijing Forestry University, 2018, 40(3): 1-12. DOI: 10.13332/j.1000-1522.20170396
Citation: Liu Zhixin, Zheng Senlin, Fang Xiaoshan, Lu Xiaohui, Zhao Lihua. Simulating validation of ENVI-met vegetation model to Ficus microcarpa in hot-humid region of subtropical zone[J]. Journal of Beijing Forestry University, 2018, 40(3): 1-12. DOI: 10.13332/j.1000-1522.20170396

Simulating validation of ENVI-met vegetation model to Ficus microcarpa in hot-humid region of subtropical zone

More Information
  • Received Date: November 05, 2017
  • Revised Date: January 02, 2018
  • Published Date: February 28, 2018
  • ObjectiveNowadays, with the continuous improvement of computer performance, numerical simulation has become an important study method in predicting and evaluating microclimate. Vegetation is one of the important elements in landscape design and plays a significant role in thermal environment, its simulation performance under hot-humid conditions is worth evaluating comprehensively. This paper is to validate the adaptability of city microclimate simulating software ENVI-met (V4.2 Science) in simulating both physiological and microclimatic performance of Ficus microcarpa in hot-humid region of Guangzhou, southern China.
    MethodBy measuring the crown form, foliage property and root form of Ficus microcarpa in Guangzhou Region and the tree model was built and analyzed by ENVI-met. The simulation result was compared with observation data measured from spring and summer in 2017.
    ResultResults showed that, for physiological parameters, the simulated leaf temperature has the same trend with the measured one, while the simulated data is much higher in the summer afternoon. The simulated transpiration rate was close to the measured data in the morning and evening, while the peak value in midday was obviously lower than the measured one. In microclimatic parameters, the daily changing trends of simulated microclimate parameters (solar radiation, surface temperature, air temperature, and air humidity) were consistent with the measured ones. The reduction rate of solar radiation and reduction value of surface temperature from tree canopy were close to the measured values. The air temperature data under tree and inside tree crown in varied directions were higher than the measured data, and the humidity data were lower. The temperature and humidity difference between the treeless site and the shading site were much smaller than the measured ones. The root mean square error and index of agreement were used as the indicators of statistical evaluation, hence showing that the ENVI-met model was capable of predicting the microclimate with good accuracy. The error was acceptable and may be caused by the software version, the software calculation setting and the grid size resolution ratio of tree modeling.
    ConclusionIn conclusion, ENVI-met can well simulate the physiological property and thermal performance trends of trees in hot-humid climate. This study comprehensively evaluates the performance of vegetation models, hence come up with the optimization suggestions for tree modelling and could be a strong support for the outdoor thermal environmental research in hot-humid regions of further studies.
  • [1]
    Bruse M, Fleer H. Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model[J]. Environmental Modelling & Software, 1998, 13(3): 373-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2da6e45b64bd4d3934213ba9cfcd27cd
    [2]
    杨小山.室外微气候对建筑空调能耗影响的模拟方法研究[D].广州: 华南理工大学, 2012.

    Yang X S.A simulation method for the effects of urban microlimate on building cooling energy use[D]. Guagnzhou: South China University of Technology, 2012.
    [3]
    Ali-Toudert F, Mayer H. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate[J]. Building and Environment, 2006, 41(2): 94-108. doi: 10.1016/j.buildenv.2005.01.013
    [4]
    Lindén J, Simon H, Fonti P, et al. Observed and modeled transpiration cooling from urban trees in Mainz, Germany[C/OL]//ICUC9: 9th International Conference on Urban Climate Jointly with 12th Symposium on the Urban Environment, 2015.[2017-09-01]. https://www.researchgate.net/publication/320517759_Observed_and_modeled_transpiration_cooling_from_urban_trees_in_Mainz_Germany.
    [5]
    Simon H. Modeling urban microclimate: development, implementation and evaluation of new and improved calculation methods for the urban microclimate model ENVI-met[D/OL].Rheinland-Pfalz: Johannes Gutenberg-Universitt Mainz, 2016.[2017-08-20].https://d-nb.info/1102563188/34.
    [6]
    Shinzato P, Yoshida D, Duarte D. Parametrization of tropical plants using ENVI-met V.4 and its impact on urban microclimates: Sao Paulo case study[C/OL]//4th International Conference on Countermeasures To Urban Heat Islands, at Singapore, 2016.[2017-08-20].https://www.researchgate.net/publication/305491391_Parametrization_of_tropical_plants_using_ENVI-met_V4_and_its_impact_on_urban_microclimates_-_Sao_Paulo_case_study.
    [7]
    Picot X. Thermal comfort in urban spaces: impact of vegetation growth: case study:Piazza della Scienza, Milan, Italy[J]. Energy and Buildings Journal, 2004, 36(4):329-334. doi: 10.1016/j.enbuild.2004.01.044
    [8]
    Spangenberg J. Improvement of urban climate in tropical metropolis: a case study in Maracanã/Rio de Janeiro[D]. Cologne: University of Applied Sciences, 2004.
    [9]
    Foley J A, Costa M H, Delire C, et al. Green surprise? How terrestrial ecosystems could affect earth's climate[J]. Frontiers in Ecology and the Environment, 2003, 1(1): 38-44. http://cn.bing.com/academic/profile?id=2899b232c7017a490483210cff43917c&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Moriwaki R, Kanda M. Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area[J]. Journal of Applied Meteorology, 2004, 43(11): 1700-1710. doi: 10.1175/JAM2153.1
    [11]
    Smith D L, Johnson L. Vegetation-mediated changes in microclimate reduce soil respiration as woodlands expand into grasslands[J]. Ecology, 2004, 85(12): 3348-3361. doi: 10.1890/03-0576
    [12]
    Shahidan M F, Jones P. 179: plant canopy design in modifying urban thermal environment: theory and guidelines[C/OL]//PLEA 2008: 25th Conference on Passive and Low Energy Architecture. Dublin, 22nd to 24th, October, 2008.[2017-08-07]. https://www.researchgate.net/publication/220042607.
    [13]
    Huttner S. Further development and application of the 3D microclimate simulation ENVI-met[D/OL]. Mainz: Johannes Gutenberg-Universitat in Mainz, 2012.[2017-09-08]. https://www.mendeley.com/research-papers/further-development-application-3d-microclimate-simulation-envimet/.
    [14]
    刘建锋, 肖文发, 熊定鹏, 等.不同纬度栓皮栎幼苗生理生态特征的比较[J].植物研究, 2011, 31(4): 467-471. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyj201104014

    Liu J F, Xiao W F, Xiong D P, et al. Comparison on the physio-ecological characteristics of Quercus variabilis seedlings from various latitude sites[J]. Bulletin of Botanical Research, 2011, 31(4): 467-471. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyj201104014
    [15]
    李坤明, 张宇峰, 赵立华, 等.热舒适指标在湿热地区城市室外空间的适用性[J].建筑科学, 2017(2):15-19, 166. http://d.old.wanfangdata.com.cn/Periodical/jzkx201702003

    Li K M, Zhang Y F, Zhao L H, et al. Applicability of thermal comfort indices in urban outdoor space in hot and humid zone[J]. Building Science, 2017(2):15-19, 166. http://d.old.wanfangdata.com.cn/Periodical/jzkx201702003
    [16]
    陈卓伦.绿化体系对湿热地区建筑组团室外热环境影响研究[D].广州: 华南理工大学, 2010.

    Chen Z L.Research of vegetation system's effects on outdoor thermal environment of residential communities in hot-humid climate[D]. Guagnzhou: South China University of Technology, 2010.
    [17]
    Lalic B, Mihailovic D T. An empirical relation describing leaf-area density inside the forest for environmental modeling[J]. Journal of Applied Meteorology, 2004, 43(4): 641-645. doi: 10.1175/1520-0450(2004)043<0641:AERDLD>2.0.CO;2
    [18]
    詹慧娟.基于ENVI-met模型的三维植被温度场的时空变化分析[D].北京: 北京林业大学, 2014.

    Zhan H J. The analysis of temporal and spatial variation of three-dimensional vegetation temperature fields based on the ENVI-met model[D].Beijing: Beijing Forestry University, 2014.
    [19]
    牛晓栋, 江洪, 方成圆, 等.天目山常绿落叶阔叶混交林生态系统水汽通量特征[J].浙江农林大学学报, 2016, 33(2):216-224. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201602005

    Niu X D, Jiang H, Fang C Y, et al. Water vapor flux features of an evergreen and deciduous broadleaf mixed forest in Mount Tianmu area[J].Journal of Zhejiang A & F University, 2016, 33(2):216-224. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201602005
    [20]
    Fang X S, Shen L, Meng Q L. The study on microclimate simulation of country park based on ENVI-met software: take the east gate entrance area of Guangdong Tianlu Lake Country Park for example[C/OL]//Proceedings of the 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA). Shenzhen: Chemical Rubber Company, 2015.
    [21]
    Willmott C J. Some comments on the evaluation of model performance[J]. Bulletin of the American Meteorological Society, 1982, 63(11): 1309-1313. doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
  • Related Articles

    [1]Fan Shuxin, Li Kun, Zhang Mengyuan, Xie Yafen, Dong Li. Effects of micro scale underlying surface type and pattern of urban residential area on microclimate: taking Beijing as a case study[J]. Journal of Beijing Forestry University, 2021, 43(10): 100-109. DOI: 10.12171/j.1000-1522.20200256
    [2]Geng Hongkai, Wei Xiao, Zhang Mingjuan, Li Qingwei. Influence of vegetation and architecture on microclimate based on Envi-met: a case study of Nanjing Agricultural University[J]. Journal of Beijing Forestry University, 2020, 42(12): 115-124. DOI: 10.12171/j.1000-1522.20190418
    [3]WEN Yi-bo, CHANG Ying, FAN Wen-yi. Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5): 1-10. DOI: 10.13332/j.1000-1522.20150204
    [4]WANG Hui, HE Kang-ning, XU Te, LIU Yu-juan, LIU Ying, ZHANG Xue. Characteristics and simulation of the canopy conductance of Hippophae rhamnoides in Qaidam Region of northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(8): 1-7. DOI: 10.13332/j.1000-1522.20140457
    [5]ZHAN Hui-juan, XIE Wei-jia, SUN Hao, HUANG Hua-guo. ENVI-met model; sensitivity analysis; three-dimensional temperature field of vegetated scenes[J]. Journal of Beijing Forestry University, 2014, 36(4): 64-74.
    [6]LI Zi-wei, HUAI Yong-jian, FU Hui.. Virtual plant growth simulation based on illumination model.[J]. Journal of Beijing Forestry University, 2013, 35(4): 81-86.
    [7]SONG Fu-qiang, KANG Mu-yi, YANG Peng, CHEN Ya-ru, LIU Yang, XING Kai-xiong.. Comparison and validation of GIMMS, SPOT-VGT and MODIS global NDVI products in the Loess Plateau of northern Shaanxi Province, northwestern China[J]. Journal of Beijing Forestry University, 2010, 32(4): 72-80.
    [8]SUN Qing-yan, YU Xin-xiao, HU Shu-ping, XIAO Yang. SWAT model-based runoff simulation in Banchengzi Reservoir Catchment,Beijing[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 148-154.
    [9]ZHOU Rui, GE Jian-ping, YU Bo, LIU Li-juan, WU Ji-gui. Simulation of forest dynamics at Songshan Mountain, Beijing[J]. Journal of Beijing Forestry University, 2007, 29(1): 19-25. DOI: 10.13332/j.1000-1522.2007.01.004
    [10]XU Xiang-zhou, LIU Da-qing, ZHANG Hong-wu, DONG Zhan-di, ZHU Ming-dong. Laboratory rainfall simulation with controlled rainfall intensity and drainage[J]. Journal of Beijing Forestry University, 2006, 28(5): 52-58.
  • Cited by

    Periodical cited type(17)

    1. 李江波,翟志宏,李海燕,邓燕,陈思豪,王忆娴,丁云飞. 广州地区典型绿化乔木降温增湿效应研究. 气候与环境研究. 2024(01): 13-24 .
    2. 姚玉敏,陶雨,关振,韩旭阳,艾欣洁,常心茹. 基于数值模拟的传统村落公共空间热舒适性研究. 长春师范大学学报. 2024(06): 111-119 .
    3. 顾绍茹,杨兴,陈翰博,杨冰霜,戴志楠,陈俊辉,方铮,王海龙. 小龙虾壳炭和细叶榕枝条炭对土壤养分及镉和铅生物有效性的影响. 浙江农林大学学报. 2023(01): 176-187 .
    4. 肖敏,李翰宇 ,张晓烽. 树冠透射率对微气候和建筑能耗的综合影响. 中国园林. 2023(01): 118-123 .
    5. 孟磊 ,艾如波 ,林晗 ,沈雯 ,谢安强 . 土壤铝胁迫下内生真菌对千年桐幼苗光合作用的影响. 中南林业科技大学学报. 2023(03): 40-49+72 .
    6. 邓毓雯,李丽,庞玥. 乡村振兴视角下临海村落公共建筑气候适应性设计——以硇洲岛港头村“渔村客厅”设计为例. 安徽建筑. 2023(05): 17-19+68 .
    7. 徐欢,朱珈仪,李红. 基于ENVI-met模拟的城市校园绿地夏季微气候适应性优化设计. 现代城市研究. 2023(07): 101-106+114 .
    8. 田菁,陈琳涵,张玉环,赵群,刘云. 基于ENVI-met模拟冷岛效应指标及差异性分析. 北京农学院学报. 2023(04): 105-109 .
    9. 帅林茹,冯莉,阳少奇. 植被种植方式对城市微环境热舒适度影响的数值模拟研究. 生态学杂志. 2022(08): 1611-1618 .
    10. 张常旺,王彦良,孟飞. 城市表面反射率变化对室外热环境的影响研究. 测绘与空间地理信息. 2022(12): 49-52 .
    11. 阳少奇,冯莉,田慧慧,刘艳霞. 无人机热红外支持下的城市微尺度热环境模拟. 环境科学. 2021(01): 492-500 .
    12. 方舒,唐坚,任洁. 亚热带城市中央公园“乔灌草”绿植面积最大化线性规划研究——以广州城市中央公园为例. 环境科学与管理. 2021(02): 34-37+61 .
    13. 胡杨,马克明. 城市街道绿化对空气质量及微气候影响的综合模拟研究. 生态学报. 2021(04): 1314-1331 .
    14. 王月明,乔雨轩,王楠楠,黎俊仪,傅伟聪,董建文. 国内CFD模拟在城市微气候中的应用综述. 中国城市林业. 2021(02): 53-60 .
    15. 蒋毅,易宇,罗松钦,徐峰. 基于热环境模拟和热反应的城市室外热安全风险耦合研究. 城市建筑. 2021(19): 9-12 .
    16. 郭晓华,戴菲,岳峰. 国家自然科学基金视角下风景园林规划设计研究进展——以2008—2018年项目信息及论文产出为据. 中国城市林业. 2020(03): 1-7+12 .
    17. 吴思佳,董丽,贾培义,易慧琳. 基于计算流体力学数值模拟的城市绿地温湿效应及室外热舒适评价研究进展. 风景园林. 2019(12): 79-84 .

    Other cited types(38)

Catalog

    Article views (3696) PDF downloads (176) Cited by(55)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return