• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Shao Yanying, Wu Xiuqin, Zhang Yuqing, Qin Shugao, Wu Bin. Response of vegetation coverage to hydro-thermal change in Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2018, 40(4): 33-42. DOI: 10.13332/j.1000-1522.20170414
Citation: Shao Yanying, Wu Xiuqin, Zhang Yuqing, Qin Shugao, Wu Bin. Response of vegetation coverage to hydro-thermal change in Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2018, 40(4): 33-42. DOI: 10.13332/j.1000-1522.20170414

Response of vegetation coverage to hydro-thermal change in Inner Mongolia of northern China

More Information
  • Received Date: November 21, 2017
  • Revised Date: January 20, 2018
  • Published Date: March 31, 2018
  • ObjectiveOur specific objectives were to track the dynamic changes of vegetation NDVI and its response to climatic factors for different growth stages during recent 32 years (1982-2013) in Inner Mongolia of northern China, which would provide a reference for improving regional ecological environment.
    MethodIn this study, with GIMMS3g NDVI (1982-2013) datasets and meteorological data in Inner Mongolia, the spatio-temporal patterns of changes in seasonly NDVI and their linkages with temperature and precipitation were analyzed at regional and pixel scales. Spatial interpolation of meteorological data was achieved using the thin-plate smoothing spline method of Hutchinson.To detect the trends of NDVI and climatic factors, Theil-Sen linear regression was applied. To further explore the climatic factors driving NDVI change during a given period, correlations between NDVI and climatic variables were calculated using Pearson correlation analysis.
    ResultThe results showed that the vegetation in Inner Mongolia continuously increased from 1982 to 2013, and correlations were different between NDVI and climatic factors in Inner Mongolia, NDVI mostly had a positive correlation with precipitation, but it was more closely related to pre-precipitation. The correlation between NDVI and temperature was mostly negative correlation. The correlation between NDVI and precipitation was higher than temperature.
    ConclusionThe results indicated that the vegetation in Inner Mongolia was continuously improved, and the response of vegetation NDVI to hydro-thermal change for different periods was different in Inner Mongolia. The effect of temperature on vegetation growth was more significant in the northeast region in spring, such as in the eastern and northeastern Hulun beler and the southeast edge of Xilin Gol. The response of NDVI in the central region (e.g. the southwestern Hulun Buir, the most areas of Xilin Gol, the northern Ulanchabu, the most areas of Ordos) was more sensitive to precipitation in summer and autumn, especially lagged effect of vegetation growth on precipitation. Our study suggested that, in ecological restoration and reconstruction project in the future, we should make full use of natural remediation to restore more sustainable vegetation ecosystems; at the same time, in order to avoid land degradation caused by blind large-scale artificial afforestation, it is necessary to consider the current water resources carrying capacity and water supply capacity in the future.
  • [1]
    信忠保, 许炯心, 郑伟.气候变化和人类活动对黄土高原植被覆盖变化的影响[J].中国科学(D辑:地球科学), 2007, 37(11): 1504-1514. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200711009

    Xin Z B, Xu J X, Zheng W. Response of vegetation cover change to climate change and human activities in Loess Plateau[J]. Science in China: Series D, 2007, 37(11): 1504-1514. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200711009
    [2]
    邢著荣, 冯幼贵, 杨贵军, 等.基于遥感的植被覆盖度估算方法述评[J].遥感技术与应用, 2009, 24(6): 849-854. http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy200906023

    Xing Z R, Feng Y G, Yang G J, et al. Method of estimating vegetation coverage based on remote sensing[J]. Remote Sensing Technology and Application, 2009, 24(6): 849-854. http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy200906023
    [3]
    王鸽, 韩琳, 张昱.东北地区地表NDVI的时空变化规律[J].北京林业大学学报, 2012, 34(6): 86-91. http://j.bjfu.edu.cn/article/id/9846

    Wang G, Han L, Zhang Y. Temporal variation and spatial distribution of NDVI in northeastern China[J]. Journal of Beijing Forestry University, 2012, 34(6): 86-91. http://j.bjfu.edu.cn/article/id/9846
    [4]
    Reynolds J F, Smith D M S, Lambin E F, et al. Global desertification: building a science for dryland development[J]. Science, 2007, 316: 847-851. doi: 10.1126/science.1131634
    [5]
    Peng J, Liu Z H, Liu Y H, et al. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent[J]. Ecological Indicators, 2012, 14(1): 28-39. doi: 10.1016/j.ecolind.2011.08.011
    [6]
    Dardel C, Kergoat L, Hiernaux P, et al. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger)[J]. Remote Sensing of Environment, 2014, 140: 350-364. doi: 10.1016/j.rse.2013.09.011
    [7]
    Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 1997, 386: 698-702. doi: 10.1038/386698a0
    [8]
    Zhou L M, Tucker C J, Kaufmann R K, et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999[J]. Journal of Geophysical Research-Atmospheres, 2001, 106(D17): 20069-20083. doi: 10.1029/2000JD000115
    [9]
    Peng S S, Chen A P, Xu L, et al. Recent change of vegetation growth trend in China[J/OL].Environmental Research Letters, 2011, 6(4): 044027[2017-09-25]. http://iopscience.iop.org/article/10.1088/1748-9326/6/4/044027/pdf.
    [10]
    Wu D, Zhao X, Liang S, et al. Time-lag effects of global vegetation responses to climate change[J]. Global Change Biology, 2015, 21(9): 3520-3531. doi: 10.1111/gcb.2015.21.issue-9
    [11]
    Jeong S J, Ho C H, Gim H J, et al. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008[J]. Global Change Biology, 2011, 17: 2385-2399. doi: 10.1111/j.1365-2486.2011.02397.x
    [12]
    Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003, 300:1560-1563. doi: 10.1126/science.1082750
    [13]
    国家林业局.中国荒漠化和沙化简况: 第五次全国荒漠化和沙化监测[Z].北京: 国家林业局, 2015.

    State Forestry Administration, P. R. China. Bulletin of the desertification and sandification state of China: the fifth monitoring of national desertification and sandification[Z]. Beijing: State Forestry Administration, P. R. China, 2015.
    [14]
    陈效逑, 王恒. 1982—2003年内蒙古植被带和植被覆盖度的时空变化[J].地理学报, 2009, 64(1): 84-94. doi: 10.3321/j.issn:0375-5444.2009.01.009

    Chen X Q, Wang H. Spatial and temporal variations of vegetation belts and vegetation cover degrees in Inner Mongolia from 1982 to 2003[J]. Acta Geographica Sinica, 2009, 64(1): 84-94. doi: 10.3321/j.issn:0375-5444.2009.01.009
    [15]
    Li A, Wu J G, Huang J H. Distinguishing between human-induced and climate-driven vegetation changes: a critical application of RESTREND in Inner Mongolia[J]. Landscape Ecology, 2012, 27(7): 969-982. doi: 10.1007/s10980-012-9751-2
    [16]
    Chuai X W, Huang X J, Wang W J, et al. NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998-2007 in Inner Mongolia, China[J]. International Journal of Climatology, 2013, 33(7): 1696-1706. doi: 10.1002/joc.2013.33.issue-7
    [17]
    Holben B N. Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 1986, 7(11): 1417-1434. doi: 10.1080/01431168608948945
    [18]
    Hutchinson M F. ANUSPLIN Version 4.3 user guide[Z/OL].Canberra: the Australia National University, Center for Resource and Environment Studies, 2004[2017-06-04].http://cres.anu.edu.au/outputs/anusplin.Php.]
    [19]
    中国科学院中国植被图编辑委员会. 1:1 000 000中国植被图集[M].北京:科学出版社, 2001.

    The Editing Committee of China Vegetation Map, Chinese Academy of Sciences (1): 1 000 000 vegetation atlas of China[M]. Beijing: Science Press, 2001.
    [20]
    Thomas N E, Huang C, Goward S N, et al. Validation of north American forest disturbance dynamics derived from Landsat time series stacks[J]. Remote Sensing of Environment, 2011, 115(1) :19-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be6c267a7190d37f06b21c6fd881c81a
    [21]
    Jiapaer G, Liang S L, Yi Q X, et al. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator[J]. Ecological Indicators, 2015, 58: 64-76. doi: 10.1016/j.ecolind.2015.05.036
    [22]
    郭继凯.塔里木河流域植被覆盖对气候变化和人类活动的响应[D].北京: 北京林业大学, 2016.

    Guo J K. Responses of vegetation coverage to climate change and human activities in the Tarim River Basin[D]. Beijing: Beijing Forestry University, 2016.
    [23]
    张清雨, 赵东升, 吴绍洪, 等.基于生态分区的内蒙古地区植被覆盖变化及其影响因素研究[J].地理科学, 2013, 33(5) : 594-601. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201305012

    Zhang Q Y, Zhao D S, Wu S H, et al. Research on vegetation changes and influence factors based on eco-geographical regions of Inner Mongolia[J]. Scientia Geographica Sinica, 2013, 33(5) : 594-601. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201305012
    [24]
    Lin Y, Han G D, Zhao M L, et al. Spatial vegetation patterns as early signs of desertification: a case study of a desert steppe in Inner Mongolia, China[J].Landscape Ecology, 2010, 25(10): 1519-1527. doi: 10.1007/s10980-010-9520-z
    [25]
    Nicholson S E, Farrar T J. The influence of soil type on relationship between NDVI, rainfall and soil moisture in semiarid Botswana (Ⅰ): NDVI response to rainfall[J]. Remote Sensing of Environment, 1994, 50(2): 107-120.
    [26]
    Wang J, Price K P, Rich P M. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains[J]. International Journal of Remote Sensing, 2001, 22(18):3827-3844. doi: 10.1080/01431160010007033
    [27]
    Ichii K, Kawabata A, Yamaguchi Y. Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982-1990[J]. International Journal of Remote Sensing, 2002, 23(18): 3873-3878. doi: 10.1080/01431160110119416
    [28]
    Fang J Y, Piao S L, Zhou L M, et al. Precipitation patterns alter growth of temperate vegetation[J/OL]. Geophysical Research Letters, 2005, 32(21): L21411[2017-10-11]. https://doi.org/10.1029/2005GL024231.
    [29]
    Zhang G, Xu X, Zhou C, et al. Responses of grassland vegetation to climatic variations on different temporal scales in Hulun Buir Grassland in the past 30 years[J].Journal of Geographical Sciences, 2011, 21(4): 634-650. doi: 10.1007/s11442-011-0869-y
    [30]
    Yang X, Ding Z, Fan X, et al. Processes and mechanisms of desertification in northern China during the last 30 years, with a special reference to the Hunshandake Sandy Land, eastern Inner Mongolia[J]. Catena, 2007, 71(1): 2-12. doi: 10.1016/j.catena.2006.10.002
    [31]
    杜加强, 赵晨曦, 贾尔恒·阿哈提, 等.近30a新疆月NDVI动态变化及其驱动因子分析[J].农业工程学报, 2016, 32(5): 172-181.

    Du J Q, Zhao C X, Jiaerheng A, et al. Analysis on spatio-temporal trends and drivers in monthly NDVI during recent decades in Xinjiang, China based two datasets[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(5): 172-181.
    [32]
    张戈丽, 徐兴良, 周才平, 等.近30年来呼伦贝尔地区草地植被变化对气候变化的响应[J].地理学报, 2011, 66(1): 47-58. http://d.old.wanfangdata.com.cn/Periodical/dlxb201101005

    Zhang G L, Xu X L, Zhou C P, et al. Responses of vegetation changes to climatic variations in Hulun Buir Grassland in past 30 years[J]. Acta Geographica Sinica, 2011, 66(1): 47-58. http://d.old.wanfangdata.com.cn/Periodical/dlxb201101005
    [33]
    李震, 阎福礼, 范湘涛.中国西北地区NDVI变化及其温度和降水的关系[J].遥感学报, 2005, 9(3): 308-313. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200503013

    Li Z, Yan F L, Fan X T. The variability of NDVI over northwest China and its relation to temperature and precipitation[J]. Journal of Remote Sensing, 2005, 9(3): 308-313. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200503013
    [34]
    敖艳红, 裴浩, 王永利, 等.浑善达克沙地遥感监测研究[J].中国沙漠, 2010, 30(1): 33-39. http://d.old.wanfangdata.com.cn/Periodical/nmgxmkx201006124

    Ao Y H, Pei H, Wang Y L, et al. Monitoring on land cover dynamics of Hunshandake Sandland by remote sensing[J]. Journal of Desert Research, 2010, 30(1): 33-39. http://d.old.wanfangdata.com.cn/Periodical/nmgxmkx201006124
    [35]
    穆少杰, 李建龙, 陈奕兆, 等. 2001—2010年内蒙古植被覆盖度时空变化特征[J].地理学报, 2012, 67(9):1255-1268. http://www.cnki.com.cn/Article/CJFDTOTAL-DBLY201811007.htm

    Mu S J, Li J L, Chen Y Z, et al. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001-2010[J]. Acta Geographica Sinica, 2012, 67(9):1255-1268. http://www.cnki.com.cn/Article/CJFDTOTAL-DBLY201811007.htm
    [36]
    Li X R, Zhang Z S, Huang L, et al. Review of the ecohydrological processes and feedback mechanisms controlling sand-binding vegetation systems in sandy desert regions of China[J]. Chinese Science Bulletin, 2013, 58(13): 1483-1496. doi: 10.1007/s11434-012-5662-5
    [37]
    Feng X, Fu B, Piao S, et al. Revegetation in China's Loess Plateau is approaching sustainable water resource limits[J].Nature Climate Change, 2016, 6(11): 1019-1022. doi: 10.1038/nclimate3092
    [38]
    Menz M H M, Dixon K W, Hobbs R J. Hurdles and opportunities for landscape-scale restoration[J]. Science, 2013, 339: 526-527. doi: 10.1126/science.1228334
  • Cited by

    Periodical cited type(5)

    1. 乔志宏,侯宏宇,高梅香,卢廷玉. 短时暴雨对小兴安岭凉水阔叶红松林地表甲虫群落的影响. 生态学报. 2020(14): 4994-5007 .
    2. 郑欣颖,佘汉基,薛立,蔡金桓. 外源性氮和磷对火力楠凋落叶分解的影响. 华南农业大学学报. 2018(01): 98-104 .
    3. 李旭华,孙建新. Biome-BGC模型模拟阔叶红松林碳水通量的参数敏感性检验和不确定性分析. 植物生态学报. 2018(12): 1131-1144 .
    4. 毛宏蕊,金光泽. 氮添加对典型阔叶红松林净初级生产力的影响. 北京林业大学学报. 2017(08): 42-49 . 本站查看
    5. 宋蕾,林尤伟,金光泽. 模拟氮沉降对典型阔叶红松林土壤微生物群落特征的影响. 南京林业大学学报(自然科学版). 2017(05): 7-12 .

    Other cited types(9)

Catalog

    Article views (2708) PDF downloads (141) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return