• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Shao Yanying, Wu Xiuqin, Zhang Yuqing, Qin Shugao, Wu Bin. Response of vegetation coverage to hydro-thermal change in Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2018, 40(4): 33-42. DOI: 10.13332/j.1000-1522.20170414
Citation: Shao Yanying, Wu Xiuqin, Zhang Yuqing, Qin Shugao, Wu Bin. Response of vegetation coverage to hydro-thermal change in Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2018, 40(4): 33-42. DOI: 10.13332/j.1000-1522.20170414

Response of vegetation coverage to hydro-thermal change in Inner Mongolia of northern China

More Information
  • Received Date: November 21, 2017
  • Revised Date: January 20, 2018
  • Published Date: March 31, 2018
  • ObjectiveOur specific objectives were to track the dynamic changes of vegetation NDVI and its response to climatic factors for different growth stages during recent 32 years (1982-2013) in Inner Mongolia of northern China, which would provide a reference for improving regional ecological environment.
    MethodIn this study, with GIMMS3g NDVI (1982-2013) datasets and meteorological data in Inner Mongolia, the spatio-temporal patterns of changes in seasonly NDVI and their linkages with temperature and precipitation were analyzed at regional and pixel scales. Spatial interpolation of meteorological data was achieved using the thin-plate smoothing spline method of Hutchinson.To detect the trends of NDVI and climatic factors, Theil-Sen linear regression was applied. To further explore the climatic factors driving NDVI change during a given period, correlations between NDVI and climatic variables were calculated using Pearson correlation analysis.
    ResultThe results showed that the vegetation in Inner Mongolia continuously increased from 1982 to 2013, and correlations were different between NDVI and climatic factors in Inner Mongolia, NDVI mostly had a positive correlation with precipitation, but it was more closely related to pre-precipitation. The correlation between NDVI and temperature was mostly negative correlation. The correlation between NDVI and precipitation was higher than temperature.
    ConclusionThe results indicated that the vegetation in Inner Mongolia was continuously improved, and the response of vegetation NDVI to hydro-thermal change for different periods was different in Inner Mongolia. The effect of temperature on vegetation growth was more significant in the northeast region in spring, such as in the eastern and northeastern Hulun beler and the southeast edge of Xilin Gol. The response of NDVI in the central region (e.g. the southwestern Hulun Buir, the most areas of Xilin Gol, the northern Ulanchabu, the most areas of Ordos) was more sensitive to precipitation in summer and autumn, especially lagged effect of vegetation growth on precipitation. Our study suggested that, in ecological restoration and reconstruction project in the future, we should make full use of natural remediation to restore more sustainable vegetation ecosystems; at the same time, in order to avoid land degradation caused by blind large-scale artificial afforestation, it is necessary to consider the current water resources carrying capacity and water supply capacity in the future.
  • [1]
    信忠保, 许炯心, 郑伟.气候变化和人类活动对黄土高原植被覆盖变化的影响[J].中国科学(D辑:地球科学), 2007, 37(11): 1504-1514. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200711009

    Xin Z B, Xu J X, Zheng W. Response of vegetation cover change to climate change and human activities in Loess Plateau[J]. Science in China: Series D, 2007, 37(11): 1504-1514. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200711009
    [2]
    邢著荣, 冯幼贵, 杨贵军, 等.基于遥感的植被覆盖度估算方法述评[J].遥感技术与应用, 2009, 24(6): 849-854. http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy200906023

    Xing Z R, Feng Y G, Yang G J, et al. Method of estimating vegetation coverage based on remote sensing[J]. Remote Sensing Technology and Application, 2009, 24(6): 849-854. http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy200906023
    [3]
    王鸽, 韩琳, 张昱.东北地区地表NDVI的时空变化规律[J].北京林业大学学报, 2012, 34(6): 86-91. http://j.bjfu.edu.cn/article/id/9846

    Wang G, Han L, Zhang Y. Temporal variation and spatial distribution of NDVI in northeastern China[J]. Journal of Beijing Forestry University, 2012, 34(6): 86-91. http://j.bjfu.edu.cn/article/id/9846
    [4]
    Reynolds J F, Smith D M S, Lambin E F, et al. Global desertification: building a science for dryland development[J]. Science, 2007, 316: 847-851. doi: 10.1126/science.1131634
    [5]
    Peng J, Liu Z H, Liu Y H, et al. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent[J]. Ecological Indicators, 2012, 14(1): 28-39. doi: 10.1016/j.ecolind.2011.08.011
    [6]
    Dardel C, Kergoat L, Hiernaux P, et al. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger)[J]. Remote Sensing of Environment, 2014, 140: 350-364. doi: 10.1016/j.rse.2013.09.011
    [7]
    Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 1997, 386: 698-702. doi: 10.1038/386698a0
    [8]
    Zhou L M, Tucker C J, Kaufmann R K, et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999[J]. Journal of Geophysical Research-Atmospheres, 2001, 106(D17): 20069-20083. doi: 10.1029/2000JD000115
    [9]
    Peng S S, Chen A P, Xu L, et al. Recent change of vegetation growth trend in China[J/OL].Environmental Research Letters, 2011, 6(4): 044027[2017-09-25]. http://iopscience.iop.org/article/10.1088/1748-9326/6/4/044027/pdf.
    [10]
    Wu D, Zhao X, Liang S, et al. Time-lag effects of global vegetation responses to climate change[J]. Global Change Biology, 2015, 21(9): 3520-3531. doi: 10.1111/gcb.2015.21.issue-9
    [11]
    Jeong S J, Ho C H, Gim H J, et al. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008[J]. Global Change Biology, 2011, 17: 2385-2399. doi: 10.1111/j.1365-2486.2011.02397.x
    [12]
    Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003, 300:1560-1563. doi: 10.1126/science.1082750
    [13]
    国家林业局.中国荒漠化和沙化简况: 第五次全国荒漠化和沙化监测[Z].北京: 国家林业局, 2015.

    State Forestry Administration, P. R. China. Bulletin of the desertification and sandification state of China: the fifth monitoring of national desertification and sandification[Z]. Beijing: State Forestry Administration, P. R. China, 2015.
    [14]
    陈效逑, 王恒. 1982—2003年内蒙古植被带和植被覆盖度的时空变化[J].地理学报, 2009, 64(1): 84-94. doi: 10.3321/j.issn:0375-5444.2009.01.009

    Chen X Q, Wang H. Spatial and temporal variations of vegetation belts and vegetation cover degrees in Inner Mongolia from 1982 to 2003[J]. Acta Geographica Sinica, 2009, 64(1): 84-94. doi: 10.3321/j.issn:0375-5444.2009.01.009
    [15]
    Li A, Wu J G, Huang J H. Distinguishing between human-induced and climate-driven vegetation changes: a critical application of RESTREND in Inner Mongolia[J]. Landscape Ecology, 2012, 27(7): 969-982. doi: 10.1007/s10980-012-9751-2
    [16]
    Chuai X W, Huang X J, Wang W J, et al. NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998-2007 in Inner Mongolia, China[J]. International Journal of Climatology, 2013, 33(7): 1696-1706. doi: 10.1002/joc.2013.33.issue-7
    [17]
    Holben B N. Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 1986, 7(11): 1417-1434. doi: 10.1080/01431168608948945
    [18]
    Hutchinson M F. ANUSPLIN Version 4.3 user guide[Z/OL].Canberra: the Australia National University, Center for Resource and Environment Studies, 2004[2017-06-04].http://cres.anu.edu.au/outputs/anusplin.Php.]
    [19]
    中国科学院中国植被图编辑委员会. 1:1 000 000中国植被图集[M].北京:科学出版社, 2001.

    The Editing Committee of China Vegetation Map, Chinese Academy of Sciences (1): 1 000 000 vegetation atlas of China[M]. Beijing: Science Press, 2001.
    [20]
    Thomas N E, Huang C, Goward S N, et al. Validation of north American forest disturbance dynamics derived from Landsat time series stacks[J]. Remote Sensing of Environment, 2011, 115(1) :19-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be6c267a7190d37f06b21c6fd881c81a
    [21]
    Jiapaer G, Liang S L, Yi Q X, et al. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator[J]. Ecological Indicators, 2015, 58: 64-76. doi: 10.1016/j.ecolind.2015.05.036
    [22]
    郭继凯.塔里木河流域植被覆盖对气候变化和人类活动的响应[D].北京: 北京林业大学, 2016.

    Guo J K. Responses of vegetation coverage to climate change and human activities in the Tarim River Basin[D]. Beijing: Beijing Forestry University, 2016.
    [23]
    张清雨, 赵东升, 吴绍洪, 等.基于生态分区的内蒙古地区植被覆盖变化及其影响因素研究[J].地理科学, 2013, 33(5) : 594-601. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201305012

    Zhang Q Y, Zhao D S, Wu S H, et al. Research on vegetation changes and influence factors based on eco-geographical regions of Inner Mongolia[J]. Scientia Geographica Sinica, 2013, 33(5) : 594-601. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201305012
    [24]
    Lin Y, Han G D, Zhao M L, et al. Spatial vegetation patterns as early signs of desertification: a case study of a desert steppe in Inner Mongolia, China[J].Landscape Ecology, 2010, 25(10): 1519-1527. doi: 10.1007/s10980-010-9520-z
    [25]
    Nicholson S E, Farrar T J. The influence of soil type on relationship between NDVI, rainfall and soil moisture in semiarid Botswana (Ⅰ): NDVI response to rainfall[J]. Remote Sensing of Environment, 1994, 50(2): 107-120.
    [26]
    Wang J, Price K P, Rich P M. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains[J]. International Journal of Remote Sensing, 2001, 22(18):3827-3844. doi: 10.1080/01431160010007033
    [27]
    Ichii K, Kawabata A, Yamaguchi Y. Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982-1990[J]. International Journal of Remote Sensing, 2002, 23(18): 3873-3878. doi: 10.1080/01431160110119416
    [28]
    Fang J Y, Piao S L, Zhou L M, et al. Precipitation patterns alter growth of temperate vegetation[J/OL]. Geophysical Research Letters, 2005, 32(21): L21411[2017-10-11]. https://doi.org/10.1029/2005GL024231.
    [29]
    Zhang G, Xu X, Zhou C, et al. Responses of grassland vegetation to climatic variations on different temporal scales in Hulun Buir Grassland in the past 30 years[J].Journal of Geographical Sciences, 2011, 21(4): 634-650. doi: 10.1007/s11442-011-0869-y
    [30]
    Yang X, Ding Z, Fan X, et al. Processes and mechanisms of desertification in northern China during the last 30 years, with a special reference to the Hunshandake Sandy Land, eastern Inner Mongolia[J]. Catena, 2007, 71(1): 2-12. doi: 10.1016/j.catena.2006.10.002
    [31]
    杜加强, 赵晨曦, 贾尔恒·阿哈提, 等.近30a新疆月NDVI动态变化及其驱动因子分析[J].农业工程学报, 2016, 32(5): 172-181.

    Du J Q, Zhao C X, Jiaerheng A, et al. Analysis on spatio-temporal trends and drivers in monthly NDVI during recent decades in Xinjiang, China based two datasets[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(5): 172-181.
    [32]
    张戈丽, 徐兴良, 周才平, 等.近30年来呼伦贝尔地区草地植被变化对气候变化的响应[J].地理学报, 2011, 66(1): 47-58. http://d.old.wanfangdata.com.cn/Periodical/dlxb201101005

    Zhang G L, Xu X L, Zhou C P, et al. Responses of vegetation changes to climatic variations in Hulun Buir Grassland in past 30 years[J]. Acta Geographica Sinica, 2011, 66(1): 47-58. http://d.old.wanfangdata.com.cn/Periodical/dlxb201101005
    [33]
    李震, 阎福礼, 范湘涛.中国西北地区NDVI变化及其温度和降水的关系[J].遥感学报, 2005, 9(3): 308-313. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200503013

    Li Z, Yan F L, Fan X T. The variability of NDVI over northwest China and its relation to temperature and precipitation[J]. Journal of Remote Sensing, 2005, 9(3): 308-313. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb200503013
    [34]
    敖艳红, 裴浩, 王永利, 等.浑善达克沙地遥感监测研究[J].中国沙漠, 2010, 30(1): 33-39. http://d.old.wanfangdata.com.cn/Periodical/nmgxmkx201006124

    Ao Y H, Pei H, Wang Y L, et al. Monitoring on land cover dynamics of Hunshandake Sandland by remote sensing[J]. Journal of Desert Research, 2010, 30(1): 33-39. http://d.old.wanfangdata.com.cn/Periodical/nmgxmkx201006124
    [35]
    穆少杰, 李建龙, 陈奕兆, 等. 2001—2010年内蒙古植被覆盖度时空变化特征[J].地理学报, 2012, 67(9):1255-1268. http://www.cnki.com.cn/Article/CJFDTOTAL-DBLY201811007.htm

    Mu S J, Li J L, Chen Y Z, et al. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001-2010[J]. Acta Geographica Sinica, 2012, 67(9):1255-1268. http://www.cnki.com.cn/Article/CJFDTOTAL-DBLY201811007.htm
    [36]
    Li X R, Zhang Z S, Huang L, et al. Review of the ecohydrological processes and feedback mechanisms controlling sand-binding vegetation systems in sandy desert regions of China[J]. Chinese Science Bulletin, 2013, 58(13): 1483-1496. doi: 10.1007/s11434-012-5662-5
    [37]
    Feng X, Fu B, Piao S, et al. Revegetation in China's Loess Plateau is approaching sustainable water resource limits[J].Nature Climate Change, 2016, 6(11): 1019-1022. doi: 10.1038/nclimate3092
    [38]
    Menz M H M, Dixon K W, Hobbs R J. Hurdles and opportunities for landscape-scale restoration[J]. Science, 2013, 339: 526-527. doi: 10.1126/science.1228334
  • Related Articles

    [1]Hu Zhenhong, Zhao Zhuqi, He Xian, Yuan Mengfan, Cheng Lei. Research progress of impacts of tree species diversity on microbial decomposition of forest deadwood and carbon cycling[J]. Journal of Beijing Forestry University, 2024, 46(11): 1-9. DOI: 10.12171/j.1000-1522.20240233
    [2]Zhou Cheng, Liu Tong, Wang Qinggui, Han Shijie. Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(11): 31-40. DOI: 10.12171/j.1000-1522.20210212
    [3]Zhang Yichi, Guo Sujuan, Sun Chuanhao. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46-53. DOI: 10.12171/j.1000-1522.20180437
    [4]He Jingwen, Liu Ying, Yu Hang, Wu Jianzhao, Cui Yu, Lin Yongming, Wang Daojie, Li Jian. Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry[J]. Journal of Beijing Forestry University, 2020, 42(1): 18-26. DOI: 10.12171/j.1000-1522.20190185
    [5]Tong Long, Zhang Lei, Li Bin, Geng Yanghui, Xie Jinzhong, Zhang Wei, Chen Lijie. Effects of different truncation treatments on the stoichiometry of C, N and P in leaves of Dendrocalamus latiflorus[J]. Journal of Beijing Forestry University, 2018, 40(11): 69-75. DOI: 10.13332/j.1000--1522.20180216
    [6]ZHONG Yue-ming, DONG Fang-yu, WANG Wen-juan, WANG Jian-ming, LI Jing-wen, WU Bo, JIA Xiao hong. Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats[J]. Journal of Beijing Forestry University, 2017, 39(10): 53-61. DOI: 10.13332/j.1000-1522.20170089
    [7]ZHANG Min, ZHANG Wei, GONG Zai-xin, ZHENG Cai-xia. Morphologic and anatomical observations in the process of ovulate strobilus generation and development in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2017, 39(6): 1-12. DOI: 10.13332/j.1000-1522.20160411
    [8]ZHAO Yan-xia, LUO You-qing, ZONG Shi-xiang, WANG Rong1, LUO Hong-mei. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn[J]. Journal of Beijing Forestry University, 2012, 34(6): 34-41.
    [9]XIAO Yang, CHEN Li-hua, YU Xin-xiao, WANG Xiao-ping, QIN Yong-sheng, CHEN Jun-qi. Nutrient cycling of N, P and K in a plantation ecosystem of Pinus tabulaeformis in Miyun District, Beijing.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 72-75.
    [10]YU Zhan-yuan, CENG De-hui, JIANG Feng-qi, FAN Zhi-ping, CHEN Fu-sheng, ZHAO Qiong. Responses of key carbon cycling processes to the addition of water and fertilizers to sandy grassland in semi-arid region[J]. Journal of Beijing Forestry University, 2006, 28(4): 45-50.
  • Cited by

    Periodical cited type(35)

    1. 沈汉,郑成忠,张能军,邱勇斌,徐金良,成向荣. 间伐对杉木大径材培育林分的生长和乔木碳储量的影响. 东北林业大学学报. 2025(04): 47-54+60 .
    2. 高彤,宋鑫彧,任允泽,毛亮亮,高然,董希斌. 抚育间伐强度对针阔混交林碳动态变化的影响. 中南林业科技大学学报. 2024(02): 118-128 .
    3. 牛鉴祺,吕彦飞,王树力. 抚育间伐对杨桦次生林非结构性碳水化合物质量分数和碳氮磷生态化学计量特征的影响. 东北林业大学学报. 2024(06): 51-57 .
    4. 赵鹏,刘子玺,李得禄,张俊年,张万科,肖东,杨斌元. 祁连山国家公园典型生态系统固碳功能研究综述. 陕西林业科技. 2024(02): 127-131+134 .
    5. 吴章明,唐思莹,宋思宇,李聪,刘丽鸽,朱鹏,徐红伟,张学强,张健,刘洋. 带状采伐初期对华西雨屏区杉木人工林土壤碳组分及稳定性的影响. 四川农业大学学报. 2024(04): 847-860+878 .
    6. 吕彦飞,牛鉴祺,王树力. 抚育间伐对小黑杨人工林非结构性碳和氮磷钾生态化学计量特征的影响. 森林工程. 2024(05): 62-73 .
    7. 邹丰虎,柴宗政. 近自然经营对马尾松人工林生态系统碳储量的影响. 广西科学. 2024(03): 405-415 .
    8. 赵吉平. 不同结构落叶松天然林生物量及生产力特征. 南方农业. 2023(04): 101-104 .
    9. 高谢雨,董利虎,郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响. 南京林业大学学报(自然科学版). 2023(06): 85-94 .
    10. 杜雪,王海燕,邹佳何,孟海,赵晗,崔雪,董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素. 生态环境学报. 2022(04): 663-669 .
    11. 肖军,雷蕾,曾立雄,李肇晨,马成功,肖文发. 不同经营模式对华北油松人工林碳储量的影响. 生态环境学报. 2022(11): 2134-2142 .
    12. 张乃暄,王韵頔,许中旗,付立华,张菲,程顺. 抚育间伐对塞罕坝地区云杉人工林碳储量及固碳速率的影响. 河北农业大学学报. 2022(06): 81-87 .
    13. 王亚辉,牟长城,杨智慧,刘珽,李轩男. 透光抚育强度对小兴安岭“栽针保阔”红松林碳储量的影响. 北京林业大学学报. 2021(10): 54-64 . 本站查看
    14. 赵状,董希斌,曲杭峰,宋鑫彧,刘慧,毛亮亮. 可拓评判法在红皮云杉碳质量分数评价中的应用. 东北林业大学学报. 2021(10): 71-76 .
    15. 陈俊华,张鑫,谢天资,龚固堂,王琛,慕长龙. 川中丘陵区人工柏木林不同间伐强度效果评价. 四川林业科技. 2021(06): 11-20 .
    16. 南维波. 不同抚育强度对兴安落叶松人工林的影响. 农村实用技术. 2020(06): 121-122 .
    17. 徐清乾,黄帆,张勰,王湘莹,梁贵明. 雪峰山区杉木大径材培育立地及密度控制研究. 湖南林业科技. 2020(03): 32-38 .
    18. 龚映匀,王瑞辉,张斌,刘凯利,董凯丽,刘俊涛,赵苏亚,周钰淮. 抚育间伐对川西柳杉人工林生长和土壤有机碳的影响. 林业资源管理. 2020(06): 96-104 .
    19. 宋重升,张利荣,王有良,游云飞,冯随起,林开敏. 抚育间伐对人工林生态系统影响的研究进展. 亚热带农业研究. 2020(04): 279-288 .
    20. 刘泰瑞,任达,董威,覃志杰,张芸香,郭晋平. 华北落叶松天然林目标树间伐释压与胸径生长关系研究. 中南林业科技大学学报. 2019(01): 20-24+44 .
    21. 廖鋆章,贲丽云. 不同间伐措施强度对杉木人工林碳储量及其分配的影响研究. 低碳世界. 2019(04): 308-309 .
    22. 周焘,王传宽,周正虎,孙志虎. 抚育间伐对长白落叶松人工林土壤碳、氮及其组分的影响. 应用生态学报. 2019(05): 1651-1658 .
    23. Zhenge HUANG,Minyang XIE,Mingbao WEI,Bin HE,Shaozhuang MO,Gang ZHOU,Ji LIANG. Carbon Storage and Distribution of the Mature Pinus massoniana Plantation in Northwest Guangxi. Agricultural Biotechnology. 2019(03): 141-144 .
    24. 管惠文,董希斌,张甜,曲杭峰,王智勇. 抚育间伐后落叶松天然次生林生境恢复效果的评价. 东北林业大学学报. 2019(07): 6-13+24 .
    25. 戎建涛,张晓红,郜爱玲,王艳英,潘凡群. 不同间伐强度经营对柳杉人工林土壤理化性质的影响. 西北林学院学报. 2019(04): 206-211 .
    26. 董莉莉,赵济川,汪成成,刘红民,高英旭,杨鹤. 抚育间伐后蒙古栎阔叶混交林径级结构及生长动态研究. 西南林业大学学报(自然科学). 2019(06): 98-104 .
    27. 董莉莉,刘红民,汪成成,赵济川,高英旭,黄夏,肖尧. 间伐对蒙古栎次生林生态系统碳储量的短期和长期影响. 沈阳农业大学学报. 2019(05): 614-620 .
    28. 韦明宝,王朝健,杨正文,黄振格,王汉敢,何斌. 桂西北马尾松人工林生态系统碳贮量与分布. 亚热带农业研究. 2019(03): 152-156 .
    29. 银彬吾,刘奇林,陆滟灵,何斌,黄振格,谢敏洋. 2种更新方式4年生尾巨桉人工林碳储量及其分布特征. 广西林业科学. 2019(04): 466-471 .
    30. 朱子卉,杨华,张恒,王全军,孙权,杨超. 择伐后落叶松云冷杉林直径结构及生长的动态变化. 北京林业大学学报. 2018(05): 55-62 . 本站查看
    31. 韦家国,周刚,刘凡胜,杨正文,莫少壮,何斌. 秃杉林和连栽杉木林生态系统C积累及其分布格局. 亚热带农业研究. 2018(01): 29-33 .
    32. Zhou Gang,He Bin,Wei Jiaguo,Liu Fansheng,Mo Shaozhuang,Yang Zhengwen. Carbon Accumulation and Distribution in Ecosystems of Taiwania flousiana Plantation and Successive Rotation Plantation of Cunninghamia lanceolata. Meteorological and Environmental Research. 2018(04): 11-14+18 .
    33. 张期奇,董希斌,张甜,曲杭峰,马晓波,管惠文,王智勇,阮加甫,陈蕾. 抚育间伐强度对兴安落叶松中龄林测树因子的影响. 森林工程. 2018(05): 1-7+55 .
    34. 段梦成,王国梁,史君怡,周昊翔. 间伐对油松人工林碳储量的长期影响. 水土保持学报. 2018(05): 190-196 .
    35. 马长明,赵辉,牟洪香,刘炳响. 燕山山地华北落叶松人工林碳密度及分配特征. 水土保持学报. 2017(05): 208-214 .

    Other cited types(35)

Catalog

    Article views (2708) PDF downloads (141) Cited by(70)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return