• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Yongzhuo, Liu Yalin, Lu Hai, Li Hui. Transcriptome analysis of gene expression profiling in the suspension cells of Populus tomentosa treated by histone deacetylase inhibitor TSA[J]. Journal of Beijing Forestry University, 2018, 40(9): 1-14. DOI: 10.13332/j.1000-1522.20180158
Citation: Zhang Yongzhuo, Liu Yalin, Lu Hai, Li Hui. Transcriptome analysis of gene expression profiling in the suspension cells of Populus tomentosa treated by histone deacetylase inhibitor TSA[J]. Journal of Beijing Forestry University, 2018, 40(9): 1-14. DOI: 10.13332/j.1000-1522.20180158

Transcriptome analysis of gene expression profiling in the suspension cells of Populus tomentosa treated by histone deacetylase inhibitor TSA

More Information
  • Received Date: May 15, 2018
  • Revised Date: July 20, 2018
  • Published Date: August 31, 2018
  • Histone deacetylase (HDAC), which regulates cell proliferation, cell diferentiation and apoptosis, is one of the hot topics in biology in recent years, but rarely reported in woody plants.
    ObjectiveIn this study, the change of gene expression profile was investigated by treating the poplar suspension cells with TSA to change the level of histone acetylation in cells.
    MethodThe suspension cells were treated with 0.5 μmol/L TSA for ten days and were collected for RNA-Seq analysis. Then the gene expression differences were compared between TSA-treated cells and control group suspension cells.
    ResultThe cells in the control group were homogeneous and oval, while the cells after TSA treatment were round and elongated by microscope observation. 4 465 differentially expressed genes (DEGs) were obtained by the transcriptome analysis, of which 2 363 genes were up-regulated and 2 102 genes were down-regulated. Differentially expressed genes were mainly enriched in cell cycle, phenylpropanoid biosynthesis, cell wall structure and acetylation.
    ConclusionBy analyzing the difference of gene expression between TSA-treated and control group suspension cells, our results suggest that TSA can directly or indirectly affect genes that regulate cell growth, cell wall structure and lignin synthesis pathway through affecting the level of histone acetylation, which provide evidence for understanding of histone acetylation on plant growth and development.
  • [1]
    钟理, 杨春燕, 吴佳海.组蛋白去乙酰化酶(HDACs)及其调控的研究进展[J].中国农学通报, 2014, 30(21):1-8. doi: 10.11924/j.issn.1000-6850.2014-0697

    Zhong L, Yang C Y, Wu J H. The progress of histone deacetylases and its regulation [J].China Agricultural Science Bulletin, 2014, 30(21): 1-8. doi: 10.11924/j.issn.1000-6850.2014-0697
    [2]
    Kuo M H, Allis C D. Roles of histone acetyltransferases and deacetylases in gene regulation [J]. Bio Essays, 1998, 20(8):615-626.
    [3]
    Lehrmann H, Pritchard L L, Harelbellan A. Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation [J]. Advances in Cancer Research, 2002, 86:41-65. doi: 10.1016/S0065-230X(02)86002-X
    [4]
    Li C, Huang L, Xu C, et al. Altered levels of histone deacetylase OsHDT1 affect differential gene expression patterns in hybrid rice [J]. PLoS One, 2011, 6(7): e21789[2017-12-10]. https://doi.org/10.1371/journal.pone.0021789.
    [5]
    Wu K Q, Tian L N, Malik K, et al. Functional analysis of HD2 histone deacetylase homologues in Arabidopsis thaliana[J]. The Plant Journal, 2000, 22(1):19-27. doi: 10.1046/j.1365-313x.2000.00711.x
    [6]
    Xu C R, Liu C, Wang Y L, et al. Histone acetylation affects expression of cellular atterning genes in the Arabidopsis root epidermis [J]. Proceedings of the National Academy of Science of the United States of America, 2005, 102(40): 14469-14474. doi: 10.1073/pnas.0503143102
    [7]
    Nelissen H, Flemy D, Bruno L, et al. The elongate mutants identify a functional elongator complex in plants with a role in cell proliferation during organ growth [J]. Proceedings of the National Academy of Science of the United States of America, 2005, 102(21):7754-7759. doi: 10.1073/pnas.0502600102
    [8]
    Huang L, Sun Q, Qin F, et al. Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice [J]. Plant Physiology, 2007, 144(3): 1508-1519. doi: 10.1104/pp.107.099473
    [9]
    Bourque S, Dutartre A, Hammoudi V, et al. Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants [J]. New Phytologist, 2011, 192(1): 127-139. doi: 10.1111/j.1469-8137.2011.03788.x
    [10]
    Sridha S, Wu K. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis [J]. The Plant Journal, 2006, 46(1): 124-133.
    [11]
    Luo M, Wang Y Y, Liu X, et al. HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis[J]. Journal of Experimental Botany, 2012, 63(8): 3297-3306. doi: 10.1093/jxb/ers059
    [12]
    Hu Y, Zhang L, Zhao L, et al. Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize [J]. PLoS One, 2011, 6(7): e22132(2011-06-21)[2017-12-10]. https: //doi.org/10.1371/journal.pone.0022132.
    [13]
    Blackwell L, Norris J, Suto C M, et al. The use of diversity profiling to characterize chemical modulators of the histone deacetylases [J]. Life Sciences, 2008, 82(22): 1050-1058.
    [14]
    Bolden J E, Peart M J, Johnstone R W. Anticancer activities of histone deacetylase inhibitors [J]. Nature Reviews Drug Discovery, 2006, 5(9): 769-784. doi: 10.1038/nrd2133
    [15]
    Kruhlak M J, Hendzel M J, Fischle W, et al. Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin [J]. Journal of Biological Chemistry, 2001, 276(41): 38307-38319. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=307ea3d862e159003ba4b32ffe4d3d1c
    [16]
    Li H, Soriano M, Cordewener J, et al. The histone deacetylase inhibitor trichostatin A promotes totipotency in the male gametophyte [J]. The Plant Cell, 2014, 26(1): 195-209. doi: 10.1105/tpc.113.116491
    [17]
    Su L C, Deng B, Liu S, et al. Isolation and characterization of an osmotic stress and ABA induced histone deacetylases in Arachis hygogaea[J]. Front Plant Science, 2015, 6:512-522.
    [18]
    Zhu Z, Guo H. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis [J]. Proceedings of the National Academy of Science of the United States of America, 2011, 108(30):12539-12544. doi: 10.1073/pnas.1103959108
    [19]
    Murphy J P, Mcaleer J P, Uglialoro A, et al. Histone deacetylase inhibitors and cell proliferation in pea root meristems [J]. Phytochemistry, 2000, 55(1):11-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2361eaca16bf01fb3380f8e1ec5362f5
    [20]
    Jasencakova Z, Meister A, Walter J, et al. Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription [J]. The Plant Cell, 2000, 12(11):2087-2100. doi: 10.1105/tpc.12.11.2087
    [21]
    Belyaev N D, Houben A, Baranczewski P, et al. Histone H4 acetylation in plant heterochromatin is altered during the cell cycle [J]. Chromosoma, 1997, 106(3):193-197. doi: 10.1007/s004120050239
    [22]
    Jasencakova Z, Meister A, Schubert I. Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley [J]. Chromosoma, 2001, 110(2):83-92. doi: 10.1007/s004120100132
    [23]
    Wako T, Fukuda M, Furushima-Shimogawara R, et al. Cell cycle-dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley [J]. Plant Molecular Biology, 2002, 49(6):645-653. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aaf08c3ba7cf4bd4be3f0f9c71d5a53a
    [24]
    Li Y, Butenko Y, Grafi G. Histone deacetylation is required for progression through mitosis in tobacco cells [J]. The Plant Journal, 2005, 41(3): 346-352.
    [25]
    袁力勇, 李绍清, 李阳生, 等.水稻悬浮细胞系的建立[J].云南大学学报(自然科学版), 2003, 25(4): 373-376. doi: 10.3321/j.issn:0258-7971.2003.04.022

    Yuan L Y, Li S Q, Li Y S, et al. Establishment of rice suspension cell line [J]. Journal of Yunnan University (Natural Science Edition), 2003, 25(4): 373-376. doi: 10.3321/j.issn:0258-7971.2003.04.022
    [26]
    雷振东, 赵华, 雷三林, 等.曲古抑菌素A对结肠癌细胞细胞周期影响的机制研究[J].中南药学, 2010, 8(11):869-872. doi: 10.3969/j.issn.1672-2981.2010.11.021

    Lei Z D, Zhao H, Lei S L, et al. Mechanism of the effect of trichostatin A on cell cycle of human colon cancer cell lines [J]. Central South Pharmacy, 2010, 8(11): 869-872. doi: 10.3969/j.issn.1672-2981.2010.11.021
    [27]
    罗深秋.医用细胞生物学[M].上海:第二军医大学出版社, 2004:140-143.

    Luo S Q. Medical cell biology [M]. Shanghai:Second Military Medical University Press, 2004:140-143.
    [28]
    Yang M, Ma H. Male meiotic spindle lengths in normal and mutant Arabidopsis cells [J]. Plant Physiologyogy, 2001, 126(2): 622-630. doi: 10.1104/pp.126.2.622
    [29]
    Benhamed M, Bertrand C, Servet C, et al. Arabidopsis Gcn5, hd1, and taf1/haf2 interact to regulate histone acetylation required for light-responsive gene expression [J]. The Plant Cell, 2006, 18(11): 2893-2903. doi: 10.1105/tpc.106.043489
    [30]
    Kemp M G, Sancar A. DNA excision repair [J]. Cell Cycle, 2012, 11(16): 2997-3002. doi: 10.4161/cc.21126
    [31]
    Hoffmann L, Besseau S, Geoffroy P, et al. Silencing of hydroxycinnamoyl-Coenzyme A shikimate/quinate hydroxycinna-moyltransferase affects phenylpropanoid biosynthesis [J]. The Plant Cell, 2004, 16(6): 1446-1465. doi: 10.1105/tpc.020297
    [32]
    Ramkumar R, Richa G, Marijia K, et al. Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription [J]. Journal of Biomedicine and Biotechnology, 2011, 2011: 368276-368293. http://d.old.wanfangdata.com.cn/Periodical/jcyxylc201407028
    [33]
    Siino J S, Yau P M, Imai B S, et al. Effect of DNA length and H4 acetylation on the thermal stability of reconstituted nucleosome particles [J]. Biochemical & Biophysical Research Communications, 2003, 302(4):885-891.
    [34]
    Dorigo B, Schalch T, Bystricky K, et al. Chromatin fiber folding: requirement for the histone H4 N-terminal tail [J]. Journal of Molecular Biology, 2003, 327(1):85-96. doi: 10.1016/S0022-2836(03)00025-1
    [35]
    Pazin M J, Kadonaga J T. What's up and down with histone deacetylation and transcription? [J]. Cell, 1997, 89(3):325-328. doi: 10.1016/S0092-8674(00)80211-1
    [36]
    Horn P J, Peterson C L. Chromatin higher order folding: wrapping up transcription [J]. Science, 2002, 297:1824-1827. doi: 10.1126/science.1074200
    [37]
    Cress W D, Seto E. Histone deacetylases, transcriptional control, and cancer [J]. Journal of Cellular Physiology, 2000, 184(1):1-16. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028955867/
    [38]
    Luo M, Yu C W, Chen F F, et al. Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in Arabidopsis [J]. PloS Genetics, 2012, 8(12): e1003114[2017-12-11]. http://doi.org/10.1371/journal.pgen.1003114.
    [39]
    Li Y, Butenko Y, Grafi G. Histone deacetylation is required for progression through mitosis in tobacco cells [J]. The Plant Journal, 2005, 41(3):346-352.
    [40]
    Murphy J P, Mcaleer J P, Uglialoro A, et al. Histone deacetylase inhibitors and cell proliferation in pea root meristems [J]. Phytochemistry, 2000, 55(1):11-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2361eaca16bf01fb3380f8e1ec5362f5
    [41]
    Noh E J, Lee J S. Functional interplay between modulation of histone deacetylase activity and its regulatory role in G2-M transition [J]. Biochemical & Biophysical Research Communications, 2003, 310(2):267-273.
    [42]
    Li H, Torres-Garcia J, Latrasse D, et al. Plant-specific histone deacetylases HDT1/2 regulate GIBBERELLIN 2-OXIDASE 2 expression to control Arabidopsis root meristem cell number [J]. The Plant Cell, 2017, 29(9):2183-2196. doi: 10.1105/tpc.17.00366
    [43]
    Nguyen H N, Kim J H, Chan Y J, et al. Inhibition of histone deacetylation alters Arabidopsis root growth in response to auxin via PIN1 degradation [J]. The Plant Cell Reports, 2013, 32(10):1625-1636. doi: 10.1007/s00299-013-1474-6
    [44]
    Desprez T, Juraniec M, Crowell E F, et al. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana[J]. Proceedings of the National Academy of Science of the United States of America, 2007, 104(39):15572-15577. doi: 10.1073/pnas.0706569104
    [45]
    Kumar M, Campbell L, Turner S. Secondary cell walls: biosynthesis and manipulation [J]. Journal of Experimental Botany, 2016, 67(2):515-531. doi: 10.1093/jxb/erv533
    [46]
    Kurdistani S K, Tavazoie S, Grunstein M. Mapping global histone acetylation patterns to gene expression [J]. Cell, 2004, 117(6):721-733. doi: 10.1016/j.cell.2004.05.023
  • Related Articles

    [1]Gao Min, Ren Yunmao, Zhou Xiaodong, Chen Sifan, Gao Yu, Wang Huijuan, Gu Ze, Liu Xiaodong. Effects of thinning on canopy characteristics and potential crown fire behavior of Platycladus orientalis in Xishan Forest Farm of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(8): 56-65. DOI: 10.12171/j.1000-1522.20210455
    [2]Li Bingyi, Liu Guanhong, Shu Lifu. Simulation study on surface fire behavior of main forest types in Mentougou District, Beijing[J]. Journal of Beijing Forestry University, 2022, 44(6): 96-105. DOI: 10.12171/j.1000-1522.20210204
    [3]Chen Minsi, Du Jianhua, Wang Wei, Yu Haichen, Wang Bo, Gu Ze, Liu Xiaodong. Characteristics and potential fire behavior of combustibles in the canopy of Pinus tabuliformis forest in Badaling Forest Farm of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(3): 55-64. DOI: 10.12171/j.1000-1522.20210084
    [4]Li Lianqiang, Niu Shukui, Chen Feng, Tao Changsen, Chen Ling, Zhang Peng. Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2019, 41(3): 58-67. DOI: 10.13332/j.1000-1522.20180361
    [5]Li Lianqiang, Niu Shukui, Tao Changsen, Chen Ling, Chen Feng. Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(1): 73-81. DOI: 10.13332/j.1000-1522.20180304
    [6]Tao Changsen, Niu Shukui, Chen Ling, Li Lianqiang. Canopy characteristics and potential crown fire behavior of main coniferous forest in Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2018, 40(5): 82-89. DOI: 10.13332/j.1000-1522.20170408
    [7]SONG Jie, ZHU Min, LIU Xiao-dong, REN Yun-mao, WANG Qi-feng, JIN Ying-shan. Effects of thinning on fuel characteristics and potential fire behaviors of Pinus tabuliformis forest in Beijing West Mountain[J]. Journal of Beijing Forestry University, 2017, 39(5): 41-47. DOI: 10.13332/j.1000-1522.20160353
    [8]LIU Yu, GUO Jian-bin, DENG Xiu-xiu, LIU Ze-bin. Evaluation of potential water conservation function of the soil of three land use types in Huoditang of Qinling Mountains, northwestern China[J]. Journal of Beijing Forestry University, 2016, 38(3): 73-80. DOI: 10.13332/j.1000-1522.20150372
    [9]NIU Shu-kui, HE Qing-tang, CHEN Feng, WANG San, XU Ge-xi, SUN Wu. Spatial continuity of fuels in major coniferous forests in Beijing mountainous area: fuel horizontal continuity and crown fire spread[J]. Journal of Beijing Forestry University, 2012, 34(4): 1-9.
    [10]NIU Shu-kui, WANG San, HE Qing-tang, SUN Wu, CHEN Feng. Spatial continuity of fuels in major coniferous forests in Beijing mountainous area: fuel vertical continuity and crown fire occurrence.[J]. Journal of Beijing Forestry University, 2012, 34(3): 1-7.
  • Cited by

    Periodical cited type(9)

    1. 王博,杨雪清,蒋春颖,赖光辉,陈锋,刘晓东. 北京山区森林火灾蔓延风险评估. 生态学报. 2025(02): 813-821 .
    2. 马诚,王劲,韩正宝,王秋华. 滇东地区海寨林场针叶林地表可燃物潜在火行为研究. 消防科学与技术. 2024(02): 265-270 .
    3. 张晓迪,李明泽,王斌,吴泽川,莫祝坤,范仲洲. 基于红外序列图像的火线实时提取及蔓延模拟火线优化. 南京林业大学学报(自然科学版). 2023(06): 192-202 .
    4. 陈敏斯,杜建华,王薇,于海晨,王博,顾泽,刘晓东. 八达岭林场油松林冠层可燃物特征及潜在火行为. 北京林业大学学报. 2022(03): 55-64 . 本站查看
    5. 李炳怡,刘冠宏,舒立福. 北京门头沟区主要林分类型地表火行为模拟研究. 北京林业大学学报. 2022(06): 96-105 . 本站查看
    6. 周宇飞,王振师,钟映霞,李强,吴泽鹏,李小川. 基于无人机高光谱遥感的森林可燃物分类方法研究. 林业与环境科学. 2022(05): 57-62 .
    7. 于海晨,王薇,杜建华,刘赵东,陈敏斯,王博,刘晓东. 油松和侧柏林地表可燃物负荷量及影响因素. 北京林业大学学报. 2021(06): 33-40 . 本站查看
    8. 李国辉,王昆伦,许行健,白磊,马瑞杰,陈宏刚,李世友. 土壤有效磷含量对滇中地区5种常见针叶林理化性质的影响. 山东农业大学学报(自然科学版). 2021(04): 545-551 .
    9. 刘冠宏,李炳怡,宫大鹏,李伟克,刘晓东. 林火对北京平谷区油松林土壤化学性质的影响. 北京林业大学学报. 2019(02): 29-40 . 本站查看

    Other cited types(6)

Catalog

    Article views (12794) PDF downloads (507) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return