• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Jiang Jing, Li Xiaoyuan, Wang Chu, Wang Fang, Jiang Jing. Evaluation of salt tolerant performance of BpCHS3 transgenic plants in Betula platyphylla[J]. Journal of Beijing Forestry University, 2019, 41(4): 1-7. DOI: 10.13332/j.1000-1522.20180224
Citation: Jiang Jing, Li Xiaoyuan, Wang Chu, Wang Fang, Jiang Jing. Evaluation of salt tolerant performance of BpCHS3 transgenic plants in Betula platyphylla[J]. Journal of Beijing Forestry University, 2019, 41(4): 1-7. DOI: 10.13332/j.1000-1522.20180224

Evaluation of salt tolerant performance of BpCHS3 transgenic plants in Betula platyphylla

More Information
  • Received Date: July 11, 2018
  • Revised Date: July 22, 2018
  • Available Online: April 01, 2019
  • Published Date: March 31, 2019
  • ObjectiveChalcone synthase (CHS) is a key enzyme in the biosynthesis pathway of flavonoids. Overexpression of CHS promotes an accumulation of flavonoids and enhances the ability of plants to resist abiotic stresses such as salinity and drought. The objective of the study is to elucidate the function of BpCHS3 to salt tolerance.
    MethodOur previously obtained transgenic birch plants of BpCHS3 were used in this study. The content of anthocyanins in leaves, salt stress index, chlorophyll fluorescence and photosynthetic parameters under NaCl stress were determined. qRT-PCR and Northern Blot were used to determine the relative expression levels of five key enzyme genes of downstream of CHS and BpCHS family members in the flavonoid metabolic pathway.
    ResultThe wild type (WT) had a salt damage index of 83% in the 25th day under 0.3% NaCl stress, whereas transgenic birch was only 39%. The chlorophyll fluorescence and photosynthetic parameters of transgenic Betula platyphylla seedlings under 0.4% NaCl stress showed that the maximum light energy conversion efficiency (Fv/Fm) for most transgenic lines was still normal in the 9th day, while Fv/Fm was reduced to 0.66 and the actual photochemical efficiency (ΦPSII) and photochemical quenching coefficient (qP) showed a decreasing trend for WT. The WT strain had a higher decline than the transgenic lines. The mean value of net photosynthetic rate (Pn) for five transgenic lines was still higher than 43.47% of WT under salt stress in 6 days. It is believed that the overexpression of BpCHS3 gene in Betula platyphylla under salt stress can maintain its higher photoelectron transport activity, increase the primary light energy conversion efficiency of PSII reaction center, and maintain a higher net photosynthetic efficiency. qRT-PCR and Northern Blot showed that the introduced target gene BpCHS3 was expressed in BpCHS3 transgenic lines. All of them showed up-regulated expression in different levels. Only BpCHS3 expression was significantly up-regulated in BpCHS family members. Both BpCHS1 and BpCHS2 were down-regulated or not significantly different from WT lines. Anthocyanin content of BpCHS3 overexpression lines was significantly lower than that of WT lines. It is speculated that overexpression of BpCHS3 results in co-suppression of two other CHS family members affects the synthesis of anthocyanins.
    ConclusionThe salt tolerance of BpCHS3 transgenic birch was increased, which was not related to the content of anthocyanin. The overexpression of BpCHS3 may promote the accumulation of other flavonoids, thus enhancing the salt tolerance of Betula platyphylla.
  • [1]
    徐秀荣, 马燕, 臧德奎. 桂花查耳酮合酶chs基因的克隆及序列分析[J]. 中国农学通报, 2016, 32(1):118−124.

    Xu X R, Ma Y, Zang D K. Cloning and sequencing analysis of Osmanthus fragrans chalcone synthase gene[J]. Chinese Agricultural Science Bulletin, 2016, 32(1): 118−124.
    [2]
    蔡建平, 侯和胜. 葡萄查耳酮合酶基因克隆及其进化分析[J]. 天津农业科学, 2015, 21(1):6−8. doi: 10.3969/j.issn.1006-6500.2015.01.002

    Cai J P, Hou H S. Cloning and evolution analysis of chalcone synthase from vitis vinifera[J]. Tianjin Agricultural Sciences, 2015, 21(1): 6−8. doi: 10.3969/j.issn.1006-6500.2015.01.002
    [3]
    陈洁, 安利清, 王涛, 等. 百合查尔酮合成酶基因克隆及其转化烟草的花色表达分析[J]. 西北植物学报, 2012, 32(8):1511−1517. doi: 10.3969/j.issn.1000-4025.2012.08.002

    Chen J, An L Q, Wang T, et al. Cloning of chalcone synthase gene in lilium and expression analysis of flower colour changes in transgenic tobacco[J]. Acta Botabtica Boreali-Occidentalia Sinica, 2012, 32(8): 1511−1517. doi: 10.3969/j.issn.1000-4025.2012.08.002
    [4]
    李晓艳, 裴嘉博, 张志东, 等. 越橘查耳酮合酶基因的克隆及表达分析[J]. 东北林业大学学报, 2012, 40(11):60−65. doi: 10.3969/j.issn.1000-5382.2012.11.016

    Li X Y, PeiJ B, Zhang Z D, et al. Molecular cloning and expression of chalcone synthase gene in blueberry[J]. Journal of Northeast Forestry University, 2012, 40(11): 60−65. doi: 10.3969/j.issn.1000-5382.2012.11.016
    [5]
    廖靖军, 安成才, 吴思, 等. 查尔酮合酶基因在植物防御反应中的调控作用[J]. 北京大学学报, 2000, 36(4):567−575.

    Liao J J, An C C, Wu S, et al. The role of chalcone synthase gene in the defense response of higher plants against pathogens[J]. Acta Scientiarum Naturalium, 2000, 36(4): 567−575.
    [6]
    Zhang H L, Yang B, Liu J, et al. Analysis of structural genes and key transcription factors related to anthocyanin biosynthesis in potato tubers[J]. Scientia Horticulturae, 2017, 225: 310−316. doi: 10.1016/j.scienta.2017.07.018
    [7]
    Wang H X, Fan W J, Li H, et al. Functional characterization of dihydroflavonol-4reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses[J/OL]. PLoS One, 2013, 8(11): e78484 [2018−05−11]. http://10.1371/journal.pone.0078484.
    [8]
    Nik K, Gilbert K, Alexandra C, et al. Abiotic stresses induce different localizations of anthocyanins in arabidopsis[J/OL]. Plant Signaling & Behavior, 2015, 10(7): e1027850 [2018−03−11]. https://doi.org/10.1080/15592324.2015.1027850.
    [9]
    吕东林, 林琳, 郭译文, 等. 紫雨桦耐盐性及花色苷合成相关基因的表达特性[J]. 南京林业大学学报, 2018, 42(2):25−32.

    Lü D L, Lin L, Guo Y W, et al. Characterization of gene expression in anthocyanin synthesis and salt tolerance of Betula pendula ‘Purple Rain’[J]. Journal of Nanjing Forestry University, 2018, 42(2): 25−32.
    [10]
    Lin L, Mu H Z, Jiang J, et al. Transcriptomic analysis of purple leaf determination in birch [J]. Gene, 2013, 526(2): 251−258.
    [11]
    范志勇, 姜晶, 王芳, 等. 转BpCHS基因过量表达白桦叶片和韧皮部色素含量及植株表型分析[J]. 东北林业大学学报, 2018, 16(6):8−13. doi: 10.3969/j.issn.1000-5382.2018.06.002

    Fan Z Y, Jiang J, Wang F, et al. Overexpression of BpCHS confers changes of pigment content in leaves and phloem and other phenotypic traits in transgenci Birch[J]. Journal of Northeast Forestry University, 2018, 16(6): 8−13. doi: 10.3969/j.issn.1000-5382.2018.06.002
    [12]
    Huang H J, Wang S, Jiang J, et al. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla × Betula pendula[J]. Physiologia Plantarum, 2014, 151: 495−506. doi: 10.1111/ppl.2014.151.issue-4
    [13]
    Joseph S, David W.R. Molecular cloning a laboratory manual[M]. Beijing: Science Press, 2002.
    [14]
    杨洋. 白桦BpTCP7基因的功能研究[D]. 哈尔滨: 东北林业大学, 2016.

    Yang Y. Function analysis of BpTCP7 gene in Betula platyphylla[D]. Harbin: Northeast Forestry University, 2016.
    [15]
    姜晶. 白桦BpCHS基因的功能研究[D]. 哈尔滨: 东北林业大学, 2017.

    Jiang J. Function analysis of BpCHS gene in Betula platyphylla[D]. Harbin: Northeast Forestry University, 2017.
    [16]
    布坎南B B, 格鲁依森姆W, 琼斯R L. 植物生物化学与分子生物学[M]. 北京: 科学出版社, 2004.

    Buchanan B B, Wilhelm G, Russell L J. Biochemistry & molecular biology of plants[M]. Beijing: Science Press, 2004
    [17]
    李伟. 小麦类黄酮合成途径基因TaFLS1与TaANS1的逆境应答机制研究[D]. 济南: 山东大学, 2011.

    Li W. Study on mechanism of TaFLS1 and TaANS1 of triticum in abiotic stress response[D]. Jinan: Shandong University, 2011.
    [18]
    杨飞芸, 刘坤, 崔爽, 等. 转CiCHS基因拟南芥的黄酮代谢及抗氧化能力分析[J]. 西北植物学报, 2018, 38(3):393−400.

    Yang F Y, Liu K, Cui S, et al. Metablism of flavonoids and the antioxdant capacity of transgenic Arabidopsis thaliana expressing CiCHS gene[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(3): 393−400.
    [19]
    Coberly L C, Rausher M D. Analysis of a chalcone synthase mutantin Ipomoea purpurea reveals a novel function for flavonoids: amelioration of heat stress[J]. Molecular Ecology, 2003, 12(9): 1113−1124.
    [20]
    闫楠. 白菜、甘蓝、甘蓝型油菜CHS基因家族的补充克隆和RNAi功能鉴定[D]. 重庆: 西南大学, 2011.

    Yan N. Supplementary cloning and RNAi functional identification of CHS gene families from Brassica rapa, B. oleracea and B. napus[D]. Chongqing: Southwest University, 2011.
    [21]
    柳忠玉, 赵树进. 虎杖查耳酮合酶基因 RNAi 载体的构建及其遗传转化[J]. 中草药, 2015, 46(3):412−417.

    Liu Z Y, Zhao S J. Construction of RNA interference vector of Polygonum cuspidatum chalcone synthase gene and its genetic transformation[J]. Chinese Traditional and Herbal Drugs, 2015, 46(3): 412−417.
    [22]
    耿晓娜. 转查尔酮合酶基因对烟草花色及其形态的影响[D]. 石家庄: 河北师范大学, 2009.

    Geng X N.The influence of chs gene expression on flower colour and flower morphology of transgenic tobaccos[D]. Shijiazhuang: Hebei Normal University, 2009.
    [23]
    Li F, Jin Z, Qu W, et al. Cloning of a cDNA encoding the saussurea medusa chalcone isomerase and its expression in transgenic tobacco[J]. Plant Physiology and Biochemistry, 2006, 44: 455−461. doi: 10.1016/j.plaphy.2006.08.006
    [24]
    Song X Y, Diao J J, Ji J, et al. Molecular cloning and identification of a flavanone 3-hydroxylase gene from Lycium chinense, and its overexpression enhances drought stress in tobacco[J]. Plant Physiology and Biochemistry, 2006, 98: 89−100.
    [25]
    Tattini M, Galardi C, Pinrlli P, et al. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress[J]. New Phytologist, 2004, 163: 547−561. doi: 10.1111/nph.2004.163.issue-3
    [26]
    Treutter D. Significance of flavonoids in plant resistance: a review[J]. Environmental Chemistry Letters, 2006, 4: 147. doi: 10.1007/s10311-006-0068-8
  • Related Articles

    [1]Zhan Ting, Ren Jinyuan, Peng Yao, Cao Jinzhen. Influence of bamboo fiber particle size and addition ratio on the properties of bamboo fiber/polypropylene/CaCO3 composite[J]. Journal of Beijing Forestry University, 2024, 46(1): 131-140. DOI: 10.12171/j.1000-1522.20230262
    [2]Hao Qian, Wang Yida, Ge Ying, Zhou Jing, Liu Zhenbo. Acoustic vibration performance of birch veneer-metal copper mesh composites[J]. Journal of Beijing Forestry University, 2023, 45(1): 148-158. DOI: 10.12171/j.1000-1522.20220378
    [3]Lin Bin, Zhai Xueyong, Li Rui, Sun Lipeng, Zhang Yuanting, Yin Yuxue, Liu Zhenbo. Optimization of preparation process of birch veneer/glass fiber composite[J]. Journal of Beijing Forestry University, 2019, 41(4): 127-135. DOI: 10.13332/j.1000-1522.20190049
    [4]WANG Dan-dan, CAO Yang, WANG Cui-cui, WEI Wen-bang, ZHANG Shuang-bao. Effect of silane coupling agent on mechanical properties of eucalyptus veneer/polyvinyl chloride (PVC) composites[J]. Journal of Beijing Forestry University, 2016, 38(2): 120-123. DOI: 10.13332/j.1000-1522.20150258
    [5]ZHAO Jun-shi, XU Zheng-dong, WANG Jin-lin, ZHANG Shuang-bao. Influence of fiber-glass on mechanical properties of composite laminates.[J]. Journal of Beijing Forestry University, 2014, 36(2): 129-132.
    [6]SUN Feng, ZHOU Yong-dong, LI Xiao-ling, LvJian-xiong, HAN Chen-jing, ZHAN Man-jun. Effects of species, diameter and processing equipment on veneer recovery of Eucalyptus spp.[J]. Journal of Beijing Forestry University, 2013, 35(4): 128-133.
    [7]ZHANG Ying, YU Zhi-ming, WANG Nan.. Quantitative evaluation of veneer gelatinize process and its effect[J]. Journal of Beijing Forestry University, 2010, 32(4): 251-255.
    [8]GUO Hong-wu, WANG Jin-lin, LI Chun-sheng, YAN Hao-Peng. Light-induced discoloration and influencing factors of dyed veneer after painted.[J]. Journal of Beijing Forestry University, 2008, 30(4): 22-27.
    [9]ZHANG De-rong, YU Zhi-ming, LI Jian-zhang, JIN Xiao-juan. Technical parameters of Laminated Veneer Lumber manufactured with dyeing and fire-retardant treated veneers[J]. Journal of Beijing Forestry University, 2005, 27(3): 83-86.
    [10]WANG Zheng, ZHAO Xing-zhi, GUO Wen-jing. Process factors and performances of recycled plastic-wood fiber composites.[J]. Journal of Beijing Forestry University, 2005, 27(1): 1-5.
  • Cited by

    Periodical cited type(15)

    1. 李潇潇. 古建筑木构件损伤及耐久性研究综述. 低温建筑技术. 2025(01): 16-19 .
    2. 麻胜兰,陈志宁,邵顺安,姜绍飞,许跃飞. 基于声发射多参数耦合的木材裂缝检测方法. 建筑结构. 2024(02): 136-144 .
    3. 赵东,马荣宇,于立川,赵健,刘嘉辉. 基于经验模态分解和小波包能量熵的杉木加载过程中细观损伤监测与识别. 北京林业大学学报. 2024(03): 123-131 . 本站查看
    4. 刘佳,于孟言,高珊,陈昱龙,冯蔓萱,杜鑫宇. 基于AE-BP模型的杨木胶合板应力损伤识别. 中南林业科技大学学报. 2024(04): 169-179 .
    5. 张萌,王灵芝,李守宇,张庆文,杨宇彤. 不同变量圆竹建筑填充组合节点轴压损伤声发射特性研究. 林产工业. 2024(07): 17-22 .
    6. 刘陈陈,黄奥,李昇昊,陈昕煜,顾华志. 基于机器视/听觉的耐火材料蚀损行为表征评价研究进展. 钢铁研究学报. 2024(10): 1247-1266 .
    7. 何佳明,李猛,蔡高洁,胡彬,佘艳华. 不同含水率雪松木的裂纹演化规律试验研究. 科学技术与工程. 2023(05): 1888-1894 .
    8. 李猛,佘艳华,何学杰,王俊辉,何佳明. 基于PZT和DIC对木构件榫卯松动监测试验研究. 林产工业. 2023(06): 20-26 .
    9. 李猛,佘艳华,贺才豪,何佳明,陈迪. 不同温度下的柏木构件顺纹压缩损伤规律研究. 西南林业大学学报(自然科学). 2023(05): 153-163 .
    10. 赖菲,王明华,肖洒,丁锐,罗蕊寒,邓婷婷,李明. 应用声发射技术和图像分形理论对樟子松木材裂纹演化特征的检测. 东北林业大学学报. 2022(07): 89-93 .
    11. 邢雪峰,李善明,金菊婉,林兰英,周永东,傅峰. 高能微波处理辐射松木材的抗弯力学性能与损伤演化特征. 北京林业大学学报. 2022(08): 107-116 . 本站查看
    12. 邢雪峰,李善明,周永东,林兰英,傅峰. 声发射技术在木质材料损伤监测中的应用研究进展. 世界林业研究. 2022(06): 63-68 .
    13. 杨丽华. 基于数字林业技术加强林业管理的研究. 造纸装备及材料. 2022(11): 96-98 .
    14. 陈泽华,杨小军,张璐,董浩然,赵琦. 防腐处理胶合木的层间界面断裂韧性研究. 森林与环境学报. 2021(02): 219-224 .
    15. 杜永刚,周伟,刘朔,刘亚萍,刘佳,马连华. 含夹渣缺陷Q245R钢的声发射特性和DIC研究. 电子测量技术. 2021(18): 1-6 .

    Other cited types(9)

Catalog

    Article views (1653) PDF downloads (129) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return