• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Lin Bin, Miao Yuanyuan, Li Rui, Jin Xianglong, Li Muzhi, Liu Zhenbo. Acoustic vibration properties of birch veneer/glass fiber composites[J]. Journal of Beijing Forestry University, 2019, 41(1): 126-133. DOI: 10.13332/j.1000-1522.20180317
Citation: Lin Bin, Miao Yuanyuan, Li Rui, Jin Xianglong, Li Muzhi, Liu Zhenbo. Acoustic vibration properties of birch veneer/glass fiber composites[J]. Journal of Beijing Forestry University, 2019, 41(1): 126-133. DOI: 10.13332/j.1000-1522.20180317

Acoustic vibration properties of birch veneer/glass fiber composites

More Information
  • Received Date: October 09, 2018
  • Revised Date: November 05, 2018
  • Published Date: December 31, 2018
  • ObjectiveIt is very necessary to find new materials to replace the traditional wood materials for sound boards in China because of the serious shortage of wood materials for sound boards in our country.
    MethodIn this paper, birch veneer/glass fiber composites were prepared using glass fiber as reinforcement and birch veneer as matrix according to the structure design of veneer laminated building blocks. By testing and analyzing the acoustic and vibration properties of the composites, the effects of the placement position and the number of layers of glass fiber cloth on the acoustic and vibration properties of the composites were investigated.
    ResultThe specific dynamic elastic modulus and E/G value of composite A with one layer of glass fiber cloth under the surface layer were 22.20GPa and 16.55, respectively, which were 8.7% and 17.8% higher than those of composite material B with one layer of glass fiber cloth at the center layer. The specific dynamic elastic modulus and E/G value of composite C with two layers of glass fiber cloth in the upper and lower layers were 25.04GPa and 17.04, respectively, which were 7.5% and 18% higher than those of composite material D with glass fiber cloth in the center layer. The placement of fiber had little effect on acoustic radiation quality constant and acoustic impedance. There were no linear relationships between the layers of glass fiber cloth and the acoustic vibration properties of the composites. The composites with two layers of glass fiber cloth had better specific dynamic elastic modulus and E/G value. The specific dynamic elastic modulus of the composites with three or four layers of glass fiber cloth was lower than that of the composites with two layers of glass fiber cloth. With the increase of the number of layers, the sound radiation quality constant decreased. Through the comprehensive coordinate analysis, it was found that the composite score of glass fiber cloth on the surface was higher than the central layer, and the composite score of two layers of glass fiber cloth reached the maximum.
    ConclusionThe acoustic vibration properties of the composites with glass fiber cloth on the surface layer were better than those with glass fiber cloth on the center layer. The composite C with 2 layers of glass fiber cloth has the best acoustic vibration performance. Although the E/G value of composite C is about 80% of Picea sitchensis, the specific dynamic modulus of elasticity is similar to Picea sitchensis, indicating that the birch veneer/glass fiber composite has the possibility of being used as a wood substitute for musical instruments.
  • [1]
    刘镇波, 刘一星.乐器共鸣板用木材声学振动性能改良研究现状及趋势[J].世界林业研究, 2012, 25(1): 44-48. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201201009

    Liu Z B, Liu Y X. Research status and prospect of acoustic vibration properties modification of wood used for soundboard[J]. World Forestry Research, 2012, 25(1): 44-48. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201201009
    [2]
    刁钢, 麻坤, 赵荣, 等.基于中国林业产业预警模型的木材供需仿真研究[J].林业经济, 2018, 40(4): 33-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=NSSD201808080000018241

    Diao G, Ma K, Zhao R, et al. Simulation study on timber supply and demand based on forewarning model of forestry industry in China[J]. Forestry Economics, 2018, 40(4): 33-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=NSSD201808080000018241
    [3]
    Hossen M F, Hamdan S, Rahman M R. Investigation of the acoustic properties of chemically impregnated Kayu Malam wood used for musical instrument[J/OL]. Advances in Materials Science and Engineering, 2018: 7829613[2018-10-28]. https://doi.org/10.1155/2018/7829613.
    [4]
    沙汀鸥.高温/超声波预处理对水杉振动性能影响的研究[D].北京: 北京林业大学, 2015. http://d.wanfangdata.com.cn/Thesis/Y2850990

    Sha T O. Effects of thermal and ultrasound pre-treatments on vibrated properties of metasequoia[D]. Beijing: Beijing Forestry University, 2015. http://d.wanfangdata.com.cn/Thesis/Y2850990
    [5]
    Essien C, Via B K, Cheng Q Z, et al. Determining the predictive accuracy of whole tree modulus of elasticity (MOE) of 14-year-old loblolly pine using density and dynamic MOEs estimated by three different acoustic tools[J]. European Journal of Wood and Wood Products, 2018, 76(5): 1535-1546. doi: 10.1007/s00107-018-1317-9
    [6]
    秦丽丽, 苗媛媛, 刘镇波.泡桐木材主要物理特征及化学组分对其声学振动性能的影响[J].森林工程, 2017, 33(4): 34-39. doi: 10.3969/j.issn.1006-8023.2017.04.007

    Qin L L, Miao Y Y, Liu Z B. Influence of the main pysical characteristics and components content of P. elongata on acoustic vibration performance[J]. Forest Engineering, 2017, 33(4): 34-39. doi: 10.3969/j.issn.1006-8023.2017.04.007
    [7]
    Damodaran A, Mansour H, Lessard L, et al. Application of composite materials to the chenda, an Indian percussion instrument[J]. Applied Acoustics, 2015, 88: 1-5. doi: 10.1016/j.apacoust.2014.07.013
    [8]
    Bucur V. Composite materials for musical instruments[M]//Bucur V. Handbook of materials for string musical instruments. Switzerland: Springer, 2016: 845-875.
    [9]
    雷福娟, 黄腾华, 陈桂丹.音板声学品质的主要影响因子及其评测方法[J].陕西林业科技, 2017(5): 85-89, 94. doi: 10.3969/j.issn.1001-2117.2017.05.021

    Lei F J, Huang T H, Chen G D. The main factors affecting acoustic quality of soundboard and the methods to evaluate the acoustic quality of soundboard[J]. Shaanxi Forest Science and Technology, 2017(5): 85-89, 94. doi: 10.3969/j.issn.1001-2117.2017.05.021
    [10]
    Newton P F. Acoustic-based non-destructive estimation of wood quality attributes within standing red pine trees[J]. Forests, 2017, 8(10): 380. doi: 10.3390/f8100380
    [11]
    黄英来.几种典型民族乐器木质共鸣体的声学振动性能检测与分析[D].哈尔滨: 东北林业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10225-1013359257.htm

    Huang Y L. Acoustic vibration performance detection and analysis of several typical folk instruments wooden resonators[D]. Harbin: Northeast Forestry University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10225-1013359257.htm
    [12]
    李哲锋, 多化琼, 青龙.电声乐器中木材声学振动性能对音响特性的影响[J].林业工程学报, 2018, 3(3): 18-23. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201803003

    Li Z F, Duo H Q, Qing L. Effects of acoustic vibration properties of wood on acoustic characteristic in electronic musical instrument[J]. Journal of Forestry Engineering, 2018, 3(3): 18-23. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201803003
    [13]
    许震宇, 于洋.复合材料古琴的动态弹性性能研究[J].玻璃钢/复合材料, 2015(8): 10-13. doi: 10.3969/j.issn.1003-0999.2015.08.002

    Xu Z Y, Yu Y. The study of the specific dynamic elastic property of composite Guqin[J]. Fiber Reinforced Plastics/Composites, 2015(8): 10-13. doi: 10.3969/j.issn.1003-0999.2015.08.002
    [14]
    Ono T, Miyakoshi S, Watanabe U. Acoustic characteristics of unidirectionally fiber-reinforced polyurethane foam composites for musical instrument soundboards[J]. Acoustical Science and Technology, 2002, 23(3): 135-142. doi: 10.1250/ast.23.135
    [15]
    李焕强.一种碳纤维吉他及碳纤维吉他的制作方法: 106328102A[P]. 2017-01-11.

    Li H Q. Carbon fiber guitar and making method thereof: 106328102A[P]. 2017-01-11.
    [16]
    Phillips S, Lessard L. Application of natural fiber composites to musical instrument top plates[J]. Journal of Composite Materials, 2012, 46(2): 145-154. doi: 10.1177/0021998311410497
    [17]
    Jalili M M, Mousavi S Y, Pirayeshfar A S. Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites[J]. Polymer Composites, 2014, 35(11): 2103-2111. doi: 10.1002/pc.v35.11
    [18]
    吕晓东, 苗媛媛, 林斌, 等.层数与碳纤维方向对木质-碳纤维复合材料声学振动性能的影响[J].林业工程学报, 2018, 3(4): 96-101. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201804016

    LÜ X D, Miao Y Y, Lin B, et al. Study on acoustic vibration performance of wood-carbon fiber composite materials with different laying patterns[J]. Journal of Forestry Engineering, 2018, 3(4): 96-101. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201804016
    [19]
    Damodaran A, Lessard L, Babu A S. An overview of fibre-reinforced composites for musical instrument soundboards[J]. Acoustics Australia, 2015, 43(1): 117-122. doi: 10.1007/s40857-015-0008-5
    [20]
    刘镇波, 沈隽.共鸣板用材的振动特性与钢琴的声学品质[M].北京:科学出版社, 2009.

    Liu Z B, Shen J. Vibration characteristics of acoustics board and acoustic quality of piano[M]. Beijing: Science Press, 2009.
    [21]
    王晓男.综合评价中若干理论方法的适用性研究[D].长沙: 湖南大学, 2014. http://cdmd.cnki.com.cn/article/cdmd-10532-1014316038.htm

    Wang X N. The applicability research of several theoretical methods in comprehensive evaluation[D]. Changsha: Hunan University, 2014. http://cdmd.cnki.com.cn/article/cdmd-10532-1014316038.htm
    [22]
    刘镇波, 沈隽, 刘一星, 等.实际尺寸乐器音板用云杉属木材的声学振动特性[J].林业科学, 2007, 43(8): 100-105. http://d.old.wanfangdata.com.cn/Periodical/lykx200708017

    Liu Z B, Shen J, Liu Y L, et al. Acoustic vibration property of full-size spruce wood soundboard of musical instruments[J]. Scientia Silvae Sinicae, 2007, 43(8): 100-105. http://d.old.wanfangdata.com.cn/Periodical/lykx200708017
  • Related Articles

    [1]Zhan Ting, Ren Jinyuan, Peng Yao, Cao Jinzhen. Influence of bamboo fiber particle size and addition ratio on the properties of bamboo fiber/polypropylene/CaCO3 composite[J]. Journal of Beijing Forestry University, 2024, 46(1): 131-140. DOI: 10.12171/j.1000-1522.20230262
    [2]Hao Qian, Wang Yida, Ge Ying, Zhou Jing, Liu Zhenbo. Acoustic vibration performance of birch veneer-metal copper mesh composites[J]. Journal of Beijing Forestry University, 2023, 45(1): 148-158. DOI: 10.12171/j.1000-1522.20220378
    [3]Lin Bin, Zhai Xueyong, Li Rui, Sun Lipeng, Zhang Yuanting, Yin Yuxue, Liu Zhenbo. Optimization of preparation process of birch veneer/glass fiber composite[J]. Journal of Beijing Forestry University, 2019, 41(4): 127-135. DOI: 10.13332/j.1000-1522.20190049
    [4]WANG Dan-dan, CAO Yang, WANG Cui-cui, WEI Wen-bang, ZHANG Shuang-bao. Effect of silane coupling agent on mechanical properties of eucalyptus veneer/polyvinyl chloride (PVC) composites[J]. Journal of Beijing Forestry University, 2016, 38(2): 120-123. DOI: 10.13332/j.1000-1522.20150258
    [5]ZHAO Jun-shi, XU Zheng-dong, WANG Jin-lin, ZHANG Shuang-bao. Influence of fiber-glass on mechanical properties of composite laminates.[J]. Journal of Beijing Forestry University, 2014, 36(2): 129-132.
    [6]SUN Feng, ZHOU Yong-dong, LI Xiao-ling, LvJian-xiong, HAN Chen-jing, ZHAN Man-jun. Effects of species, diameter and processing equipment on veneer recovery of Eucalyptus spp.[J]. Journal of Beijing Forestry University, 2013, 35(4): 128-133.
    [7]ZHANG Ying, YU Zhi-ming, WANG Nan.. Quantitative evaluation of veneer gelatinize process and its effect[J]. Journal of Beijing Forestry University, 2010, 32(4): 251-255.
    [8]GUO Hong-wu, WANG Jin-lin, LI Chun-sheng, YAN Hao-Peng. Light-induced discoloration and influencing factors of dyed veneer after painted.[J]. Journal of Beijing Forestry University, 2008, 30(4): 22-27.
    [9]ZHANG De-rong, YU Zhi-ming, LI Jian-zhang, JIN Xiao-juan. Technical parameters of Laminated Veneer Lumber manufactured with dyeing and fire-retardant treated veneers[J]. Journal of Beijing Forestry University, 2005, 27(3): 83-86.
    [10]WANG Zheng, ZHAO Xing-zhi, GUO Wen-jing. Process factors and performances of recycled plastic-wood fiber composites.[J]. Journal of Beijing Forestry University, 2005, 27(1): 1-5.
  • Cited by

    Periodical cited type(15)

    1. 李潇潇. 古建筑木构件损伤及耐久性研究综述. 低温建筑技术. 2025(01): 16-19 .
    2. 麻胜兰,陈志宁,邵顺安,姜绍飞,许跃飞. 基于声发射多参数耦合的木材裂缝检测方法. 建筑结构. 2024(02): 136-144 .
    3. 赵东,马荣宇,于立川,赵健,刘嘉辉. 基于经验模态分解和小波包能量熵的杉木加载过程中细观损伤监测与识别. 北京林业大学学报. 2024(03): 123-131 . 本站查看
    4. 刘佳,于孟言,高珊,陈昱龙,冯蔓萱,杜鑫宇. 基于AE-BP模型的杨木胶合板应力损伤识别. 中南林业科技大学学报. 2024(04): 169-179 .
    5. 张萌,王灵芝,李守宇,张庆文,杨宇彤. 不同变量圆竹建筑填充组合节点轴压损伤声发射特性研究. 林产工业. 2024(07): 17-22 .
    6. 刘陈陈,黄奥,李昇昊,陈昕煜,顾华志. 基于机器视/听觉的耐火材料蚀损行为表征评价研究进展. 钢铁研究学报. 2024(10): 1247-1266 .
    7. 何佳明,李猛,蔡高洁,胡彬,佘艳华. 不同含水率雪松木的裂纹演化规律试验研究. 科学技术与工程. 2023(05): 1888-1894 .
    8. 李猛,佘艳华,何学杰,王俊辉,何佳明. 基于PZT和DIC对木构件榫卯松动监测试验研究. 林产工业. 2023(06): 20-26 .
    9. 李猛,佘艳华,贺才豪,何佳明,陈迪. 不同温度下的柏木构件顺纹压缩损伤规律研究. 西南林业大学学报(自然科学). 2023(05): 153-163 .
    10. 赖菲,王明华,肖洒,丁锐,罗蕊寒,邓婷婷,李明. 应用声发射技术和图像分形理论对樟子松木材裂纹演化特征的检测. 东北林业大学学报. 2022(07): 89-93 .
    11. 邢雪峰,李善明,金菊婉,林兰英,周永东,傅峰. 高能微波处理辐射松木材的抗弯力学性能与损伤演化特征. 北京林业大学学报. 2022(08): 107-116 . 本站查看
    12. 邢雪峰,李善明,周永东,林兰英,傅峰. 声发射技术在木质材料损伤监测中的应用研究进展. 世界林业研究. 2022(06): 63-68 .
    13. 杨丽华. 基于数字林业技术加强林业管理的研究. 造纸装备及材料. 2022(11): 96-98 .
    14. 陈泽华,杨小军,张璐,董浩然,赵琦. 防腐处理胶合木的层间界面断裂韧性研究. 森林与环境学报. 2021(02): 219-224 .
    15. 杜永刚,周伟,刘朔,刘亚萍,刘佳,马连华. 含夹渣缺陷Q245R钢的声发射特性和DIC研究. 电子测量技术. 2021(18): 1-6 .

    Other cited types(9)

Catalog

    Article views (1210) PDF downloads (38) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return