• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Chen Yuheng, Lu Jiayi, Wu Pengfei, Mao Lingfeng. Response of invasive area of Ageratina adenophora to future climate change based on climate and species diffusion[J]. Journal of Beijing Forestry University, 2022, 44(1): 69-76. DOI: 10.12171/j.1000-1522.20210063
Citation: Chen Yuheng, Lu Jiayi, Wu Pengfei, Mao Lingfeng. Response of invasive area of Ageratina adenophora to future climate change based on climate and species diffusion[J]. Journal of Beijing Forestry University, 2022, 44(1): 69-76. DOI: 10.12171/j.1000-1522.20210063

Response of invasive area of Ageratina adenophora to future climate change based on climate and species diffusion

More Information
  • Received Date: February 22, 2021
  • Revised Date: March 15, 2021
  • Accepted Date: November 28, 2021
  • Available Online: November 30, 2021
  • Published Date: January 24, 2022
  •   Objective  Ageratina adenophora is one of the most serious invasive species in southwestern China, causing huge economic losses every year. The diffusion ability is related to the harmfulness of invasive species, and it is also an important factor to determine their distribution area, and is often ignored in the study of potential distribution and potential invasive area.
      Method  To quantify the potential invasive area of A. adenophora under the background of climate change based on species diffusion, the maximum entropy (MaxEnt) algorithm was used to predict the potential suitable area of A. adenophora. After obtaining the suitable distribution area under the general climate emission scenarios in 2050 and 2070, based on the current distribution, cellular automata was used to simulate the diffusion of A. adenophora in the suitable area, and the potential invasive area of A. adenophora under the general greenhouse gases emission scenarios in 2050 and 2070 was predicted.
      Result  The temperature seasonality, minimum temperature of the coldest month, precipitation in the driest season, annual precipitation and the precipitation of the coldest season are important climatic factors affecting the distribution of A. adenophora. The suitable distribution area of A. adenophora will increase from 79.68 × 104 km2 to 120.26 × 104 km2 in 2050, and then decrease to 111.97 × 104 km2 in 2070. Compared with the current distribution area of A. adenophora, its potential invasive area will increase to 88.27 × 104 km2 in 2050 SSPs45 scenario and 95.35 × 104 km2 in 2070.
      Conclusion  The potential invasive area of A. adenophora is limited by the diffusion rate, which is always smaller than its suitable distribution area, but it gradually increases with climate change. Due to the impact of global climate change, Sichuan, Guizhou of southwestern China, Guangxi of southern China and other provinces should take further measures to control the spread of A. adenophora in the future. The prediction results reflect the spatial-temporal pattern of invasive species to a certain extent, and can provide a scientific basis for the prevention and control of invasive species.
  • [1]
    李霞霞, 张钦弟, 朱珣之. 近十年入侵植物紫茎泽兰研究进展[J]. 草业科学, 2017, 11(2):283−292. doi: 10.11829/j.issn.1001-0629.2016-0194

    Li X X, Zhang Q D, Zhu X Z. Progress of the research on invasive plant species Eupatorium adenophorum over the last decade[J]. Pratacultural Science, 2017, 11(2): 283−292. doi: 10.11829/j.issn.1001-0629.2016-0194
    [2]
    王亚麒, 焦玉洁, 陈丹梅, 等. 紫茎泽兰浸提液对牧草种子发芽和幼苗生长的影响[J]. 草业学报, 2016, 25(2):150−159. doi: 10.11686/cyxb2015393

    Wang Y Q, Jiao Y J, Chen D M, et al. Effects of Eupatorium adenophorum extracts on seed germination and seedling growth of pasture species[J]. Acta Prataculturae Sinica, 2016, 25(2): 150−159. doi: 10.11686/cyxb2015393
    [3]
    万方浩, 刘万学, 郭建英, 等. 外来植物紫茎泽兰的入侵机理与控制策略研究进展[J]. 中国科学:生命科学, 2011, 41(1):13−21. doi: 10.1360/zc2011-41-1-13

    Wan F H, Liu W X, Guo J Y, et al. Invasive mechanism and control strategy of Ageratina Adenophora (Sprengel)[J]. Scientia Sinica Vitae, 2011, 41(1): 13−21. doi: 10.1360/zc2011-41-1-13
    [4]
    Guisan A, Tingley R, Baumgartner J B, et al. Predicting species distributions for conservation decisions[J]. Ecology Letters, 2013, 16(12): 1424−1435. doi: 10.1111/ele.12189
    [5]
    Chen I C, Hill J K, Ohlemuller R, et al. Rapid range shifts of species associated with high levels of climate warming[J]. Science, 2011, 333: 1024−1026. doi: 10.1126/science.1206432
    [6]
    Xu W B, Svenning J C, Chen G K, et al. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China[J]. Proceedings of the National Academy of Sciences, 2019, 116(52): 26674−26681. doi: 10.1073/pnas.1911851116
    [7]
    范靖宇, 李汉芃, 杨琢, 等. 基于本土最优模型模拟入侵物种水盾草在中国的潜在分布[J]. 生物多样性, 2019, 27(2):140−148. doi: 10.17520/biods.2018232

    Fan J Y, Li H P, Yang Z, et al. Selecting the best native individual model to predict potential distribution of Cabomba caroliniana in China[J]. Biodiversity Science, 2019, 27(2): 140−148. doi: 10.17520/biods.2018232
    [8]
    Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models[J]. Ecology Letters, 2005, 8(9): 993−1009. doi: 10.1111/j.1461-0248.2005.00792.x
    [9]
    Moran-Ordonez A, Lahoz-Monfort J J, Elith J, et al. Evaluating 318 continental-scale species distribution models over a 60-year prediction horizon: what factors influence the reliability of predictions?[J]. Global Ecology & Biogeography, 2017, 26(3): 371−384.
    [10]
    Elith J, Phillips S J, Hastie T, et al. A statistical explanation of MaxEnt for ecologists[J]. Diversity & Distributions, 2015, 17(1): 43−57.
    [11]
    Alexander J M, Chalmandrier L, Lenoir J, et al. Lags in the response of mountain plant communities to climate change[J]. Global Change Biology, 2018, 24(2): 563−579. doi: 10.1111/gcb.13976
    [12]
    王翀, 林慧龙, 何兰, 等. 紫茎泽兰潜在分布对气候变化响应的研究[J]. 草业学报, 2014, 23(4):20−30. doi: 10.11686/cyxb20140403

    Wang C, Lin H L, He L, et al. Research on responses of Eupatorium adenophorum’s potential distribution to climate change[J]. Acta Prataculturae Sinica, 2014, 23(4): 20−30. doi: 10.11686/cyxb20140403
    [13]
    贾桂康, 薛跃规. 紫茎泽兰和飞机草在广西的入侵生境植物多样性分析[J]. 生态环境学报, 2011, 20(5):819−823. doi: 10.3969/j.issn.1674-5906.2011.05.005

    Jia G K, Xue Y G. The invasive inhabit diversity of Eupatorium adenophorum and Eupatorium odoratum in Guangxi[J]. Ecology and Environmental Science, 2011, 20(5): 819−823. doi: 10.3969/j.issn.1674-5906.2011.05.005
    [14]
    黄吉勇, 万艳, 刘正忠. 紫茎泽兰在贵州的危害状况与防控对策[J]. 贵州林业科技, 2007(3):52−56.

    Huang J Y, Wan Y, Liu Z Z. The damage situation and control countermeasure for Eupatorium adenophorum Spreng in Guizhou Province[J]. Guizhou Forestry Science and Technology, 2007(3): 52−56.
    [15]
    尹芳, 黄梅, 徐锐, 等. 紫茎泽兰的危害及其综合利用进展分析[J]. 灾害学, 2009, 24(4):63−67.

    Yin F, Huang M, Xu R, et al. Analysis on Eupatorium hazards and development in its comprehensive utilization[J]. Journal of Catastrophology, 2009, 24(4): 63−67.
    [16]
    杨佐忠, 张顺谦, 崔晓亮, 等. 气候变暖下四川气候响应及对紫茎泽兰入侵之影响[J]. 高原山地气象研究, 2012, 32(2):51−56. doi: 10.3969/j.issn.1674-2184.2012.02.009

    Yang Z Z, Zhang S Q, Cui X L, et al. Response of Sichuan climate to the global warming and its influence on invasion of Eupatorium adenophorum[J]. Plateau and Mountain Meteorology Research, 2012, 32(2): 51−56. doi: 10.3969/j.issn.1674-2184.2012.02.009
    [17]
    徐洁, 邓洪平, 宋琴芝, 等. 紫茎泽兰对重庆市农林业危害的风险分析[J]. 西南农业大学学报(自然科学版), 2006, 28(5):794−797.

    Xu J, Deng H P, Song Q Z, et al. Pest risk analysis of Eupatorium Adenophorum to agriculture and forestry in Chongqing[J]. Journal of Southwest Agricultural University (Natural Science), 2006, 28(5): 794−797.
    [18]
    Senay S D, Worner S P, Takayoshi I, et al. Novel three-step pseudo-absence selection technique for improved species distribution modelling[J/OL]. PLoS One, 2013, 8(8): e71218 [2021−01−16]. https://doi.org/10.1371/journal.pone.0071218.
    [19]
    Fick S E, Hijmans R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4302−4315. doi: 10.1002/joc.5086
    [20]
    Zurell D, Franklin J, Konig C, et al. A standard protocol for reporting species distribution models[J]. Ecography, 2020, 43(9): 1261−1277. doi: 10.1111/ecog.04960
    [21]
    陈禹衡, 陆双飞, 毛岭峰. 黄檀属珍稀树种未来适宜区变化预测[J]. 浙江农林大学学报, 2021, 38(4):837−845. doi: 10.11833/j.issn.2095-0756.20200522

    Chen Y H, Lu S F, Mao L F, et al. Prediction of future changes in suitable distribution area for rare tree species of Dalbergia[J]. Journal of Zhejiang A&F University, 2021, 38(4): 837−845. doi: 10.11833/j.issn.2095-0756.20200522
    [22]
    周天军, 邹立维, 陈晓龙. 第6次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5):445−456.

    Zhou T J, Zou L W, Chen X L. Overview of the coupled model intercomparison project phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445−456.
    [23]
    Meinshausen M, Smith S J, Calvin K, et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300[J]. Climatic Change, 2011, 109(1−2): 213. doi: 10.1007/s10584-011-0156-z
    [24]
    Merow C, Smith M J, Edwards T C, et al. What do we gain from simplicity versus complexity in species distribution models?[J]. Ecography, 2014, 37(12): 1267−1281. doi: 10.1111/ecog.00845
    [25]
    Rana S K, Rana H K, Ranjitkar S, et al. Climate-change threats to distribution, habitats, sustainability and conservation of highly traded medicinal and aromatic plants in Nepal[J/OL]. Ecological Indicators, 115: 106435 [2021−01−18]. https://doi.org/10.1016/j.ecolind.2020.106435.
    [26]
    王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005

    Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodiversity Science, 2007, 15(4): 365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005
    [27]
    陈禹衡, 吕一维, 殷晓洁. 气候变化下西南地区12种常见针叶树种适宜分布区预测[J]. 南京林业大学学报(自然科学版), 2019, 43(6):113−120.

    Chen Y H, Lü Y W, Yin X J. Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change[J]. Journal of Nanjing Forestry University (Nature Science Edition), 2019, 43(6): 113−120.
    [28]
    Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecology Modelling, 2006, 190(3): 231−259.
    [29]
    张春华, 和菊, 孙永玉, 等. 基于MaxEnt模型的紫椿适生区预测[J]. 北京林业大学学报, 2017, 39(8):33−41.

    Zhang C H, He J, Sun Y Y, et al. Distributional change in suitable areas for Toona sureni based on MaxEnt model[J]. Journal of Beijing Forestry University, 2017, 39(8): 33−41.
    [30]
    孙颖, 秦大河, 刘洪滨. IPCC第5次评估报告不确定性处理方法的介绍[J]. 气候变化研究进展, 2012, 8(2):150−153.

    Sun Y, Qin D H, Liu H B. Introduction to treatment of uncertainties for IPCC Fifth Assessment Report[J]. Climate Change Research, 2012, 8(2): 150−153.
    [31]
    叶永昌, 周广胜, 殷晓洁. 1961—2010年内蒙古草原植被分布和生产力变化: 基于MaxEnt模型和综合模型的模拟分析[J]. 生态学报, 2016, 36(15):4718−4728.

    Ye Y C, Zhou G S, Yin X J. Changes in distribution and productivity of steppe vegetation in Inner Mongolia during 1961 to 2010: analysis based on MaxEnt model and synthetic model[J]. Acta Ecologica Sinica, 2016, 36(15): 4718−4728.
    [32]
    Nobis M P, Normand S. KISSMig: a simple model for R to account for limited migration in analyses of species distributions[J]. Ecography, 2014, 37(12): 1282−1287. doi: 10.1111/ecog.00930
    [33]
    Subba B, Sen S, Ravikanth G, et al. Direct modelling of limited migration improves projected distributions of Himalayan amphibians under climate change[J]. Biological Conservation, 2018, 227: 352−360. doi: 10.1016/j.biocon.2018.09.035
    [34]
    Horvitz N, Wang R, Zhu M, et al. A simple modeling approach to elucidate the main transport processes and predict invasive spread: river-mediated invasion of Ageratina adenophora in China[J]. Water Resources Research, 2015, 50(12): 9738−9747.
    [35]
    Wang Y Z. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China[J]. Diversity and Distributions, 2006, 12(4): 397−408. doi: 10.1111/j.1366-9516.2006.00250.x
    [36]
    Alegria C, Natalia R, Albuquerque T, et al. Species ecological envelopes under climate change scenarios: a case study for the main two wood-production forest species in Portugal[J]. Forests, 2020, 11(8): 880. doi: 10.3390/f11080880
    [37]
    Toledo M, Pena-Claros M, Bongers F, et al. Distribution patterns of tropical woody species in response to climatic and edaphic gradients[J]. Journal of Ecology, 2015, 100(1): 253−263.
    [38]
    Kelly A E, Goulden M L. Rapid shifts in plant distribution with recent climate change[J]. Proceedings of the National Academy of Sciences, 2008, 105(33): 11823−11826. doi: 10.1073/pnas.0802891105
    [39]
    张丽坤, 王朔, 冯玉龙. 紫茎泽兰种子形态特征和萌发特性与其入侵性的关系[J]. 生态学报, 2014, 34(13):3584−3591.

    Zhang L K, Wang S, Feng Y L. Effects of seed characteristics and germination on invasiveness of Ageratina adenophora[J]. Acta Ecologica Sinica, 2014, 34(13): 3584−3591.
    [40]
    Niu Y F, Feng Y L, Xie J L, et al. Noxious invasive Eupatorium adenophorum maybe a moving target: implications of the finding of a native natural enemy, Dorylus orientalis[J]. Chinese Science Bulletin, 2010(33): 3743−3745.
    [41]
    王瑞, 周忠实, 张国良, 等. 重大外来入侵杂草在我国的分布危害格局与可持续治理[J]. 生物安全学报, 2018, 27(4):317−320. doi: 10.3969/j.issn.2095-1787.2018.04.017

    Wang R, Zhou Z S, Zhang G L, et al. The distributional pattern and sustainable control of major invasive alien weed in China[J]. Journal of Biosafety, 2018, 27(4): 317−320. doi: 10.3969/j.issn.2095-1787.2018.04.017
    [42]
    贺萍, 路文如, 骆有庆. 生物入侵文献计量分析[J]. 北京林业大学学报, 2009, 31(3):77−83. doi: 10.3321/j.issn:1000-1522.2009.03.014

    He P, Lu W R, Luo Y Q. A bibliometric analysis on literatures of biological invasion[J]. Journal of Beijing Forestry University, 2009, 31(3): 77−83. doi: 10.3321/j.issn:1000-1522.2009.03.014
    [43]
    郭彦龙, 赵泽芳, 乔慧捷, 等. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12):1292−1305.

    Guo Y L, Zhao Z F, Qiao H J, et al. Challenges and development trend od species distribution model[J]. Advances in Earth Science, 2020, 35(12): 1292−1305.
    [44]
    邱浩杰, 孙杰杰, 徐达, 等. 基于MaxEnt模型预测鹅掌楸在中国的潜在分布区[J]. 浙江农林大学学报, 2020, 37(1):1−8. doi: 10.11833/j.issn.2095-0756.2020.01.001

    Qiu H J, Sun J J, Xu D, et al. MaxEnt model-based prediction of potential distribution of Liriodendron chinense in China[J]. Journal of Zhejiang A&F University, 2020, 37(1): 1−8. doi: 10.11833/j.issn.2095-0756.2020.01.001
  • Related Articles

    [1]Zhang Shuning, Bao Wenquan, Ao Dun, Zhao Guanghua, Wang Lin, Wuyun Tana, Bai Yu’e, Han Qimuge. Potential distribution area and niche change of Prunus mira under context of climate change[J]. Journal of Beijing Forestry University, 2024, 46(9): 45-56. DOI: 10.12171/j.1000-1522.20230014
    [2]Yang Liu, Liu Jun’ang, Zhou Guoying, He Yuanhao, Duan Xiang, Zhou Jiechen. Simulation and prediction of potential distribution area of Euproctis pseudoconspersa under climate change in China[J]. Journal of Beijing Forestry University, 2024, 46(6): 93-105. DOI: 10.12171/j.1000-1522.20230034
    [3]Liu Yang, Wang Hesong. Effects of climate change on distribution of suitable area of Pinus tabuliformis plantation in China[J]. Journal of Beijing Forestry University, 2024, 46(6): 82-92. DOI: 10.12171/j.1000-1522.20230072
    [4]He Xuegao, Liu Huan, Zhang Jing, Cheng Wei, Ding Peng, Jia Fengming, Li Qing, Liu Chao. Predicting potential suitable distribution areas for Juniperus przewalskii in Qinghai Province of northwestern China based on the optimized MaxEnt model[J]. Journal of Beijing Forestry University, 2023, 45(12): 19-31. DOI: 10.12171/j.1000-1522.20220515
    [5]Chen Meilin, Han Hairong. Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 21-33. DOI: 10.12171/j.1000-1522.20220138
    [6]Liu Jiaqi, Wei Guangkuo, Shi Changqing, Zhao Tingning, Qian Yunkai. Suitable distribution area of drought-resistant afforestation tree species in north China based on MaxEnt model[J]. Journal of Beijing Forestry University, 2022, 44(7): 63-77. DOI: 10.12171/j.1000-1522.20210527
    [7]Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360
    [8]Huang Ruizhi, Yu Tao, Zhao Hui, Zhang Shengkai, Jing Yang, Li Junqing. Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33-43. DOI: 10.12171/j.1000-1522.20200254
    [9]ZHANG Chun-hua, HE Ju, SUN Yong-yu, LI Kun. Distributional change in suitable areas for Toona sureni based on MaxEnt model[J]. Journal of Beijing Forestry University, 2017, 39(8): 33-41. DOI: 10.13332/j.1000-1522.20170002
    [10]ZANG Zen-hua, SHEN Guo-zhen, XU Wen-ting, LI Jun-qing, XIE Zong-qiang. Spatial distribution patterns of rare and endangered species richness and hotspot analysis in giant panda distribution areas[J]. Journal of Beijing Forestry University, 2015, 37(7): 1-10. DOI: 10.13332/j.1000-1522.20150004
  • Cited by

    Periodical cited type(3)

    1. 张彦勤. 加强森林培育技术实现林业可持续发展策略. 现代农业研究. 2024(02): 125-128 .
    2. 张秀娟,王彤新,杨妍希,张庭康,左婵,王军邦. CMIP6气候变化情景下青海三江源区雪灵芝潜在适宜分布预测. 草业科学. 2024(04): 790-801 .
    3. 陆康英,苏晨辉,邓成,林中大,陈月明,薛冬冬. 广东省杉木生长适宜性及分布预测. 东北林业大学学报. 2023(02): 62-69 .

    Other cited types(6)

Catalog

    Article views (1300) PDF downloads (99) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return