Citation: | Chen Yuheng, Lu Jiayi, Wu Pengfei, Mao Lingfeng. Response of invasive area of Ageratina adenophora to future climate change based on climate and species diffusion[J]. Journal of Beijing Forestry University, 2022, 44(1): 69-76. DOI: 10.12171/j.1000-1522.20210063 |
[1] |
李霞霞, 张钦弟, 朱珣之. 近十年入侵植物紫茎泽兰研究进展[J]. 草业科学, 2017, 11(2):283−292. doi: 10.11829/j.issn.1001-0629.2016-0194
Li X X, Zhang Q D, Zhu X Z. Progress of the research on invasive plant species Eupatorium adenophorum over the last decade[J]. Pratacultural Science, 2017, 11(2): 283−292. doi: 10.11829/j.issn.1001-0629.2016-0194
|
[2] |
王亚麒, 焦玉洁, 陈丹梅, 等. 紫茎泽兰浸提液对牧草种子发芽和幼苗生长的影响[J]. 草业学报, 2016, 25(2):150−159. doi: 10.11686/cyxb2015393
Wang Y Q, Jiao Y J, Chen D M, et al. Effects of Eupatorium adenophorum extracts on seed germination and seedling growth of pasture species[J]. Acta Prataculturae Sinica, 2016, 25(2): 150−159. doi: 10.11686/cyxb2015393
|
[3] |
万方浩, 刘万学, 郭建英, 等. 外来植物紫茎泽兰的入侵机理与控制策略研究进展[J]. 中国科学:生命科学, 2011, 41(1):13−21. doi: 10.1360/zc2011-41-1-13
Wan F H, Liu W X, Guo J Y, et al. Invasive mechanism and control strategy of Ageratina Adenophora (Sprengel)[J]. Scientia Sinica Vitae, 2011, 41(1): 13−21. doi: 10.1360/zc2011-41-1-13
|
[4] |
Guisan A, Tingley R, Baumgartner J B, et al. Predicting species distributions for conservation decisions[J]. Ecology Letters, 2013, 16(12): 1424−1435. doi: 10.1111/ele.12189
|
[5] |
Chen I C, Hill J K, Ohlemuller R, et al. Rapid range shifts of species associated with high levels of climate warming[J]. Science, 2011, 333: 1024−1026. doi: 10.1126/science.1206432
|
[6] |
Xu W B, Svenning J C, Chen G K, et al. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China[J]. Proceedings of the National Academy of Sciences, 2019, 116(52): 26674−26681. doi: 10.1073/pnas.1911851116
|
[7] |
范靖宇, 李汉芃, 杨琢, 等. 基于本土最优模型模拟入侵物种水盾草在中国的潜在分布[J]. 生物多样性, 2019, 27(2):140−148. doi: 10.17520/biods.2018232
Fan J Y, Li H P, Yang Z, et al. Selecting the best native individual model to predict potential distribution of Cabomba caroliniana in China[J]. Biodiversity Science, 2019, 27(2): 140−148. doi: 10.17520/biods.2018232
|
[8] |
Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models[J]. Ecology Letters, 2005, 8(9): 993−1009. doi: 10.1111/j.1461-0248.2005.00792.x
|
[9] |
Moran-Ordonez A, Lahoz-Monfort J J, Elith J, et al. Evaluating 318 continental-scale species distribution models over a 60-year prediction horizon: what factors influence the reliability of predictions?[J]. Global Ecology & Biogeography, 2017, 26(3): 371−384.
|
[10] |
Elith J, Phillips S J, Hastie T, et al. A statistical explanation of MaxEnt for ecologists[J]. Diversity & Distributions, 2015, 17(1): 43−57.
|
[11] |
Alexander J M, Chalmandrier L, Lenoir J, et al. Lags in the response of mountain plant communities to climate change[J]. Global Change Biology, 2018, 24(2): 563−579. doi: 10.1111/gcb.13976
|
[12] |
王翀, 林慧龙, 何兰, 等. 紫茎泽兰潜在分布对气候变化响应的研究[J]. 草业学报, 2014, 23(4):20−30. doi: 10.11686/cyxb20140403
Wang C, Lin H L, He L, et al. Research on responses of Eupatorium adenophorum’s potential distribution to climate change[J]. Acta Prataculturae Sinica, 2014, 23(4): 20−30. doi: 10.11686/cyxb20140403
|
[13] |
贾桂康, 薛跃规. 紫茎泽兰和飞机草在广西的入侵生境植物多样性分析[J]. 生态环境学报, 2011, 20(5):819−823. doi: 10.3969/j.issn.1674-5906.2011.05.005
Jia G K, Xue Y G. The invasive inhabit diversity of Eupatorium adenophorum and Eupatorium odoratum in Guangxi[J]. Ecology and Environmental Science, 2011, 20(5): 819−823. doi: 10.3969/j.issn.1674-5906.2011.05.005
|
[14] |
黄吉勇, 万艳, 刘正忠. 紫茎泽兰在贵州的危害状况与防控对策[J]. 贵州林业科技, 2007(3):52−56.
Huang J Y, Wan Y, Liu Z Z. The damage situation and control countermeasure for Eupatorium adenophorum Spreng in Guizhou Province[J]. Guizhou Forestry Science and Technology, 2007(3): 52−56.
|
[15] |
尹芳, 黄梅, 徐锐, 等. 紫茎泽兰的危害及其综合利用进展分析[J]. 灾害学, 2009, 24(4):63−67.
Yin F, Huang M, Xu R, et al. Analysis on Eupatorium hazards and development in its comprehensive utilization[J]. Journal of Catastrophology, 2009, 24(4): 63−67.
|
[16] |
杨佐忠, 张顺谦, 崔晓亮, 等. 气候变暖下四川气候响应及对紫茎泽兰入侵之影响[J]. 高原山地气象研究, 2012, 32(2):51−56. doi: 10.3969/j.issn.1674-2184.2012.02.009
Yang Z Z, Zhang S Q, Cui X L, et al. Response of Sichuan climate to the global warming and its influence on invasion of Eupatorium adenophorum[J]. Plateau and Mountain Meteorology Research, 2012, 32(2): 51−56. doi: 10.3969/j.issn.1674-2184.2012.02.009
|
[17] |
徐洁, 邓洪平, 宋琴芝, 等. 紫茎泽兰对重庆市农林业危害的风险分析[J]. 西南农业大学学报(自然科学版), 2006, 28(5):794−797.
Xu J, Deng H P, Song Q Z, et al. Pest risk analysis of Eupatorium Adenophorum to agriculture and forestry in Chongqing[J]. Journal of Southwest Agricultural University (Natural Science), 2006, 28(5): 794−797.
|
[18] |
Senay S D, Worner S P, Takayoshi I, et al. Novel three-step pseudo-absence selection technique for improved species distribution modelling[J/OL]. PLoS One, 2013, 8(8): e71218 [2021−01−16]. https://doi.org/10.1371/journal.pone.0071218.
|
[19] |
Fick S E, Hijmans R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4302−4315. doi: 10.1002/joc.5086
|
[20] |
Zurell D, Franklin J, Konig C, et al. A standard protocol for reporting species distribution models[J]. Ecography, 2020, 43(9): 1261−1277. doi: 10.1111/ecog.04960
|
[21] |
陈禹衡, 陆双飞, 毛岭峰. 黄檀属珍稀树种未来适宜区变化预测[J]. 浙江农林大学学报, 2021, 38(4):837−845. doi: 10.11833/j.issn.2095-0756.20200522
Chen Y H, Lu S F, Mao L F, et al. Prediction of future changes in suitable distribution area for rare tree species of Dalbergia[J]. Journal of Zhejiang A&F University, 2021, 38(4): 837−845. doi: 10.11833/j.issn.2095-0756.20200522
|
[22] |
周天军, 邹立维, 陈晓龙. 第6次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5):445−456.
Zhou T J, Zou L W, Chen X L. Overview of the coupled model intercomparison project phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445−456.
|
[23] |
Meinshausen M, Smith S J, Calvin K, et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300[J]. Climatic Change, 2011, 109(1−2): 213. doi: 10.1007/s10584-011-0156-z
|
[24] |
Merow C, Smith M J, Edwards T C, et al. What do we gain from simplicity versus complexity in species distribution models?[J]. Ecography, 2014, 37(12): 1267−1281. doi: 10.1111/ecog.00845
|
[25] |
Rana S K, Rana H K, Ranjitkar S, et al. Climate-change threats to distribution, habitats, sustainability and conservation of highly traded medicinal and aromatic plants in Nepal[J/OL]. Ecological Indicators, 115: 106435 [2021−01−18]. https://doi.org/10.1016/j.ecolind.2020.106435.
|
[26] |
王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005
Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodiversity Science, 2007, 15(4): 365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005
|
[27] |
陈禹衡, 吕一维, 殷晓洁. 气候变化下西南地区12种常见针叶树种适宜分布区预测[J]. 南京林业大学学报(自然科学版), 2019, 43(6):113−120.
Chen Y H, Lü Y W, Yin X J. Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change[J]. Journal of Nanjing Forestry University (Nature Science Edition), 2019, 43(6): 113−120.
|
[28] |
Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecology Modelling, 2006, 190(3): 231−259.
|
[29] |
张春华, 和菊, 孙永玉, 等. 基于MaxEnt模型的紫椿适生区预测[J]. 北京林业大学学报, 2017, 39(8):33−41.
Zhang C H, He J, Sun Y Y, et al. Distributional change in suitable areas for Toona sureni based on MaxEnt model[J]. Journal of Beijing Forestry University, 2017, 39(8): 33−41.
|
[30] |
孙颖, 秦大河, 刘洪滨. IPCC第5次评估报告不确定性处理方法的介绍[J]. 气候变化研究进展, 2012, 8(2):150−153.
Sun Y, Qin D H, Liu H B. Introduction to treatment of uncertainties for IPCC Fifth Assessment Report[J]. Climate Change Research, 2012, 8(2): 150−153.
|
[31] |
叶永昌, 周广胜, 殷晓洁. 1961—2010年内蒙古草原植被分布和生产力变化: 基于MaxEnt模型和综合模型的模拟分析[J]. 生态学报, 2016, 36(15):4718−4728.
Ye Y C, Zhou G S, Yin X J. Changes in distribution and productivity of steppe vegetation in Inner Mongolia during 1961 to 2010: analysis based on MaxEnt model and synthetic model[J]. Acta Ecologica Sinica, 2016, 36(15): 4718−4728.
|
[32] |
Nobis M P, Normand S. KISSMig: a simple model for R to account for limited migration in analyses of species distributions[J]. Ecography, 2014, 37(12): 1282−1287. doi: 10.1111/ecog.00930
|
[33] |
Subba B, Sen S, Ravikanth G, et al. Direct modelling of limited migration improves projected distributions of Himalayan amphibians under climate change[J]. Biological Conservation, 2018, 227: 352−360. doi: 10.1016/j.biocon.2018.09.035
|
[34] |
Horvitz N, Wang R, Zhu M, et al. A simple modeling approach to elucidate the main transport processes and predict invasive spread: river-mediated invasion of Ageratina adenophora in China[J]. Water Resources Research, 2015, 50(12): 9738−9747.
|
[35] |
Wang Y Z. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China[J]. Diversity and Distributions, 2006, 12(4): 397−408. doi: 10.1111/j.1366-9516.2006.00250.x
|
[36] |
Alegria C, Natalia R, Albuquerque T, et al. Species ecological envelopes under climate change scenarios: a case study for the main two wood-production forest species in Portugal[J]. Forests, 2020, 11(8): 880. doi: 10.3390/f11080880
|
[37] |
Toledo M, Pena-Claros M, Bongers F, et al. Distribution patterns of tropical woody species in response to climatic and edaphic gradients[J]. Journal of Ecology, 2015, 100(1): 253−263.
|
[38] |
Kelly A E, Goulden M L. Rapid shifts in plant distribution with recent climate change[J]. Proceedings of the National Academy of Sciences, 2008, 105(33): 11823−11826. doi: 10.1073/pnas.0802891105
|
[39] |
张丽坤, 王朔, 冯玉龙. 紫茎泽兰种子形态特征和萌发特性与其入侵性的关系[J]. 生态学报, 2014, 34(13):3584−3591.
Zhang L K, Wang S, Feng Y L. Effects of seed characteristics and germination on invasiveness of Ageratina adenophora[J]. Acta Ecologica Sinica, 2014, 34(13): 3584−3591.
|
[40] |
Niu Y F, Feng Y L, Xie J L, et al. Noxious invasive Eupatorium adenophorum maybe a moving target: implications of the finding of a native natural enemy, Dorylus orientalis[J]. Chinese Science Bulletin, 2010(33): 3743−3745.
|
[41] |
王瑞, 周忠实, 张国良, 等. 重大外来入侵杂草在我国的分布危害格局与可持续治理[J]. 生物安全学报, 2018, 27(4):317−320. doi: 10.3969/j.issn.2095-1787.2018.04.017
Wang R, Zhou Z S, Zhang G L, et al. The distributional pattern and sustainable control of major invasive alien weed in China[J]. Journal of Biosafety, 2018, 27(4): 317−320. doi: 10.3969/j.issn.2095-1787.2018.04.017
|
[42] |
贺萍, 路文如, 骆有庆. 生物入侵文献计量分析[J]. 北京林业大学学报, 2009, 31(3):77−83. doi: 10.3321/j.issn:1000-1522.2009.03.014
He P, Lu W R, Luo Y Q. A bibliometric analysis on literatures of biological invasion[J]. Journal of Beijing Forestry University, 2009, 31(3): 77−83. doi: 10.3321/j.issn:1000-1522.2009.03.014
|
[43] |
郭彦龙, 赵泽芳, 乔慧捷, 等. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12):1292−1305.
Guo Y L, Zhao Z F, Qiao H J, et al. Challenges and development trend od species distribution model[J]. Advances in Earth Science, 2020, 35(12): 1292−1305.
|
[44] |
邱浩杰, 孙杰杰, 徐达, 等. 基于MaxEnt模型预测鹅掌楸在中国的潜在分布区[J]. 浙江农林大学学报, 2020, 37(1):1−8. doi: 10.11833/j.issn.2095-0756.2020.01.001
Qiu H J, Sun J J, Xu D, et al. MaxEnt model-based prediction of potential distribution of Liriodendron chinense in China[J]. Journal of Zhejiang A&F University, 2020, 37(1): 1−8. doi: 10.11833/j.issn.2095-0756.2020.01.001
|