• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Jianwei, Luo Haifeng, Kan Jiangming, Li Wenbin, Tong Siyuan. Underground self-sealing pressure injection equipment for forest and fruit trees[J]. Journal of Beijing Forestry University, 2023, 45(6): 137-144. DOI: 10.12171/j.1000-1522.20220514
Citation: Xu Jianwei, Luo Haifeng, Kan Jiangming, Li Wenbin, Tong Siyuan. Underground self-sealing pressure injection equipment for forest and fruit trees[J]. Journal of Beijing Forestry University, 2023, 45(6): 137-144. DOI: 10.12171/j.1000-1522.20220514

Underground self-sealing pressure injection equipment for forest and fruit trees

More Information
  • Received Date: December 19, 2022
  • Revised Date: April 18, 2023
  • Available Online: May 30, 2023
  • Published Date: June 24, 2023
  •   Objective  In forest and fruit irrigation operations, the commonly used water-saving irrigation methods, such as dropper and sprinkler irrigation, are easy to produce evaporation loss and salinization because the water and fertilizer are poured on the surface. It is urgent to effectively and directly irrigate the underground roots of fruit trees and ensure the water and fertilizer not overflow to the surface.
      Method  According to the actual application scenario, the design requirements of the device were analyzed, and an underground self-sealing pressure irrigation device was designed, which can guarantee the pressure self-sealing structure to the surface. Single-factor and multi-factor test on this device was designed. Soil type, water supply pressure and injection depth were selected as the influencing factors, with the target of the injection amount. Origin software was used for single-factor test analysis. Design-Expert software was used for multi-factor test analysis, and a regression model was established. The actual appropriate parameters and the parameters of the influence of injection amount were explored. The reliability of the model was verified by comparing the actual trial with the obtained regression model formula.
      Result  The single-factor test results showed that the injection amount increased with the water supply pressure, and decreased with the water injection depth. In multi-factor test, the regression model was optimized, and the suitable water supply pressure of the common soil was 287 kPa, the suitable water injection depth was30 cm, and the deviation between predicted value and the actual value of the injection amount was less than 5%. The parameter optimization results were reliable.
      Conclusion  The device can meet the initial design requirements, realize the effective direct irrigation of fruit trees underground root, and ensure no overflow to the surface. The reliability of the model can support data for the subsequent device practical application, further development, and the development of underground pressure irrigation technology.
  • [1]
    王芳芳, 郭素娟, 廖逸宁, 等. 覆草–施肥模式对板栗叶片功能性状与果实产量品质的影响[J]. 北京林业大学学报, 2022, 44(4): 36−46.

    Wang F F, Guo S J, Liao Y N, et al. Effects of grass mulching-fertilization mode on leaf functional characters and fruit yield as well as quality of Castanea mollissima[J]. Journal of Beijing Forestry University, 2022, 44(4): 36−46.
    [2]
    张亮, 周薇, 李道西. 农业高效节水灌溉模式选择研究进展[J]. 排灌机械工程学报, 2019, 37(5): 447−453.

    Zhang L, Zhou W, Li D X. Research progress in irrigation mode selection of high-efficiency water-saving agriculture[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(5): 447−453.
    [3]
    袁小环, 武菊英, 孙璐, 等. 不同灌溉水平下石竹的水分蒸散研究[J]. 北京林业大学学报, 2008, 30(2): 77−81. doi: 10.3321/j.issn:1000-1522.2008.02.013

    Yuan X H, Wu J Y, Sun L, et al. Evapotranspiration of Dianthus chinensis at different irrigation levels[J]. Journal of Beijing Forestry University, 2008, 30(2): 77−81. doi: 10.3321/j.issn:1000-1522.2008.02.013
    [4]
    孙钦航, 成中余, 齐贺荣, 等. 枣树根蘖苗根系的分布与形态[J]. 陕西林业科技, 1996(2): 5.

    Sun Q H, Cheng Z Y, Qi H R, et al. Distribution and morphology of tiller seedling roots in jujube trees[J]. Shaanxi Forest Science and Technology, 1996(2): 5.
    [5]
    秦昌旭. 简析农业渗灌技术进展与应用[J]. 南方农机, 2021, 52(11): 78−79. doi: 10.3969/j.issn.1672-3872.2021.11.034

    Qin C X. Brief analysis of the progress and application of agricultural seepage irrigation technology[J]. Southern Agricultural Machinery, 2021, 52(11): 78−79. doi: 10.3969/j.issn.1672-3872.2021.11.034
    [6]
    何振嘉, 范王涛, 杜宜春, 等. 涌泉根灌节水灌溉技术特点、应用及展望[J]. 农业工程学报, 2020, 36(8): 287−298. doi: 10.11975/j.issn.1002-6819.2020.08.035

    He Z J, Fan W T, Du Y C, et al. Characteristics, application and prospects of bubbled-root irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(8): 287−298. doi: 10.11975/j.issn.1002-6819.2020.08.035
    [7]
    杜虎林, 冯起, 石新根, 等. 直插式根灌节水装置设计及应用示例[J]. 灌溉排水学报, 2021, 40(增刊 1): 65−71.

    Du H L, Feng Q, Shi X G, et al. Water-saving device design and application examples of straight-tube root irrigation[J]. Journal of Irrigation and Drainage, 2021, 40(Suppl. 1): 65−71.
    [8]
    盛国成, 王博炜, 袁明华. GZQ-A1L/A1N7系列节水注灌器[J]. 农业机械, 2009(8): 53. doi: 10.16167/j.cnki.1000-9868.2009.08.003

    Sheng G C, Wang B W, Yuan M H. GZQ-A1L/A1N7 series water-saving irrigation device[J]. Farm Machinery, 2009(8): 53. doi: 10.16167/j.cnki.1000-9868.2009.08.003
    [9]
    孙彦君, 周宙, 李芳花, 等. 8ZS-2型中耕作物注水机[J]. 农业机械, 2000(1): 29. doi: 10.16167/j.cnki.1000-9868.2000.01.012

    Sun Y J, Zhou Z, Li F H, et al. 8ZS-2 type tillage crop water injection machine[J]. Farm Machinery, 2000(1): 29. doi: 10.16167/j.cnki.1000-9868.2000.01.012
    [10]
    王伟, 唐传茵, 张宏. 果树根区补水注灌器设计[J]. 中国农机化, 2010, 227(1): 75−78.

    Wang W, Tang C Y, Zhang H. Design of variable-rate spraying system[J]. Journal of Chinese Agricultural Mechanization, 2010, 227(1): 75−78.
    [11]
    邓文君, 王蓉, 王磊, 等. 中国南方地区10 cm土壤湿度分析[J]. 广东气象, 2011, 33(6): 51−53. doi: 10.3969/j.issn.1007-6190.2011.06.015

    Deng W J, Wang R, Wang L, et al. Analysis of 10 cm soil moisture in southern China[J]. Guangdong Meteorology, 2011, 33(6): 51−53. doi: 10.3969/j.issn.1007-6190.2011.06.015
    [12]
    阎凌云. 农业气象[M]. 北京: 中国农业出版社, 2001: 854−855.

    Yan L Y. Agricultural forecast[M]. Beijing: China Agricultural Publishing House, 2001: 854−855.
    [13]
    孙三民, 安巧霞, 杨培岭, 等. 间接地下滴灌灌溉深度对枣树根系和水分的影响[J]. 农业机械学报, 2016, 47(8): 81−90. doi: 10.6041/j.issn.1000-1298.2016.08.012

    Sun S M, An Q X, Yang P L, et al. Effect of irrigation depth on root distribution and water use efficiency of jujube under indirect subsurface drip irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 81−90. doi: 10.6041/j.issn.1000-1298.2016.08.012
    [14]
    康峰, 仝思源, 张汉石, 等. 苹果枝条往复式切割剪枝参数分析与试验[J]. 农业工程学报, 2020, 36(16): 8.

    Kang F, Tong S Y, Zhang H S, et al. Analysis and experiments of reciprocating cutting parameters for apple tree branches[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 8.
  • Related Articles

    [1]Ye Qi, Guan Cheng, Zhang Houjiang, Gong Yingchun, Sui Yongfeng, Liu Lige. Optimization of finger joint parameters and nondestructive testing of bending properties of radiata pine laminates[J]. Journal of Beijing Forestry University, 2022, 44(3): 148-160. DOI: 10.12171/j.1000-1522.20210351
    [2]Li Yun, Zhang Wangfei, Cui Junbo, Li Chunmei, Ji Yongjie. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. Journal of Beijing Forestry University, 2020, 42(10): 11-19. DOI: 10.12171/j.1000-1522.20190389
    [3]Wang Anzheng, Guan Huiyuan. Connection characteristics and parameter optimization of plastic-wood insert joint[J]. Journal of Beijing Forestry University, 2019, 41(11): 137-145. DOI: 10.13332/j.1000-1522.20190226
    [4]Zhao Ke, Liu Jinhao, Huang Qingqing, Sun Hao, Wang Dian. Optimization design and obstacle-crossing performance analysis of forest parallel articulated chassis[J]. Journal of Beijing Forestry University, 2018, 40(10): 131-140. DOI: 10.13332/j.1000-1522.20180179
    [5]XU Mei-jun, LI Li, LUO Bin. Factors affecting sanding force and optimal sanding parameters of Populus.[J]. Journal of Beijing Forestry University, 2015, 37(1): 122-133. DOI: 10.13332/j.cnki.jbfu.2015.01.002
    [6]LIU Zheng-min, GUO Su-juan, XU Cheng, QIN Tian-tian, SUN Xiao-bing. Optimal fertilization for Castanea mollissima ‘Yanshanzaofeng’ based on the saturated D-optimal design.[J]. Journal of Beijing Forestry University, 2015, 37(1): 70-83. DOI: 10.13332/j.cnki.jbfu.2015.01.016
    [7]CAO Lin, DAI Jin-song, XU Jian-xin, XU Zi-qian, SHE Guang-hui. Optimized extraction of forest parameters in subtropical forests based on airborne small footprint LiDAR technology[J]. Journal of Beijing Forestry University, 2014, 36(5): 13-21. DOI: 10.13332/j.cnki.jbfu.2014.05.009
    [8]LIU Yi, WANG Ying-ying, WANG Tian-long. Design of a new microexplosion device for lumber.[J]. Journal of Beijing Forestry University, 2011, 33(3): 115-118.
    [9]GUO Li-qin, WEI Zun-zheng, ZHANG Jin-feng, WANG Huan, LI Xian, GUO Jun. Optimization of SRAP-PCR amplification system for Populus by uniform design[J]. Journal of Beijing Forestry University, 2010, 32(2): 34-38.
    [10]HUO Guang-qing, WANG Nai-kang, LI Wen-bin. Design method and main parameters of standing tree pruning robot[J]. Journal of Beijing Forestry University, 2007, 29(4): 27-32. DOI: 10.13332/j.1000-1522.2007.04.007
  • Cited by

    Periodical cited type(30)

    1. 马浩,陈科屹,徐干君,党禹杰,何友均,王建军. 青海省不同生境下青海云杉胸径生长模型研究. 林业科学研究. 2024(01): 119-129 .
    2. 王剑武,徐森,季碧勇,杜群. 地形和林分空间结构对浙江省天然阔叶混交林主要先锋树种胸径生长的影响. 应用生态学报. 2024(02): 298-306 .
    3. 张岚棋,杨华,张晓红. 天然云冷杉林树木生长与树木大小、竞争和树种多样性的关系. 北京林业大学学报. 2024(05): 64-72 . 本站查看
    4. 吕康宁,朱佳琪,付振杰,罗栩辉,祁海玉,杨航,殷咸云,马慧静,王得祥. 青海大通河流域青杄林空间结构特征. 西北林学院学报. 2024(05): 78-85 .
    5. 刘志宇,张忠辉,杨凯麟,张军,姜润华,吴则甫,王琦,李文华,夏富才. 不同经营方式的云冷杉针阔混交林土壤真菌群落结构1). 东北林业大学学报. 2023(03): 124-129 .
    6. 曾明宇,刘紫薇,杜志,王金池,曾伟生,邹泽林. 湖南省主要树种单木和林分生长率模型研建. 中南林业调查规划. 2023(01): 56-61+66 .
    7. 石荡,郭传超,蒋南林,唐莹莹,郑凤,王瑾,廖康,刘立强. 新疆野杏天然更新幼株的个体特征及空间分布格局. 植物生态学报. 2023(04): 515-529 .
    8. 李旭,岳永杰. 小叶杨与樟子松混交林结构特征分析. 西南林业大学学报(自然科学). 2023(04): 132-140 .
    9. 玉宝. 林分空间利用率量化方法的研究. 西南林业大学学报(自然科学). 2023(05): 199-204 .
    10. 尹再芳,孙洪刚,谭梓峰,刘威. 混交林生产力研究进展. 应用生态学报. 2023(11): 3135-3143 .
    11. 洪李斌,卿蕴贤,田佳赫,康洁敏,卢伟. 基于混合效应模型的塞罕坝华北落叶松人工林单木去皮胸径生长预测. 林业与生态科学. 2022(02): 127-133 .
    12. 谢伊,杨华. 长白山天然云冷杉针阔混交林主要树种胸径生长与林分空间结构的关系. 北京林业大学学报. 2022(09): 1-11 . 本站查看
    13. 张瀚月,冯仲科,黄国胜,杨雪清,冯泽民. 考虑环境因素的杨树生长率模型研究. 北京林业大学学报. 2022(11): 50-59 . 本站查看
    14. 刘月,董灵波,及利,许丽颖,张德鹏,杨立学. 择伐对紫椴次生林优势种群空间结构特征的影响. 中南林业科技大学学报. 2021(03): 72-82 .
    15. 赵衍征,李耀翔,李春旭,王子纯,刘燕. 间伐作业对天然次生林林分结构特征的影响. 中南林业科技大学学报. 2021(03): 83-95+110 .
    16. 吕沅杭,伊利启,王儒林,刘兆刚,董灵波. 基于空间结构参数的大兴安岭天然落叶松单木直径生长模型. 林业科学研究. 2021(02): 81-91 .
    17. 委霞,曹小玉,李际平,庞一凡. 福寿林场天然次生林空间结构分析与评价. 西北林学院学报. 2021(05): 146-151 .
    18. 何静,朱光玉,张学余,王忠诚,刘洪娜,屠维亚. 基于立地与密度效应的湖南栎类天然林平均木胸径生长模型. 中南林业科技大学学报. 2021(10): 75-82 .
    19. 徐美玲,王俊峰,胥辉,欧光龙. 思茅松天然林空间结构与单木地上生物量分配关系. 云南大学学报(自然科学版). 2020(02): 364-373 .
    20. 王伟平,王玉杰,李绍才,孙海龙,马瑞,张磊,杨皓,李桾溢,缪宁. 四川盆周山地5种典型林分的空间结构对比分析. 中南林业科技大学学报. 2020(02): 43-53 .
    21. 徐清乾,黄帆,张勰,王湘莹,梁贵明. 雪峰山区杉木大径材培育立地及密度控制研究. 湖南林业科技. 2020(03): 32-38 .
    22. 徐清乾,黄帆,徐少东,张勰,王湘莹,吴成田,熊卫兵. 杉木大径材培育施肥配方选择研究. 湖南林业科技. 2020(05): 31-35+48 .
    23. 吴晓永,杨华,吕延杰,王全军,孙权. 云杉-白桦混交林结构特征分析. 北京林业大学学报. 2019(01): 64-72 . 本站查看
    24. 周超凡,张会儒,徐奇刚,雷相东. 基于相邻木关系的林层间结构解析. 北京林业大学学报. 2019(05): 66-75 . 本站查看
    25. 尹惠妍,张志伟,苏卫静,杨光. 八一镇湿地公园林分空间结构分析. 西北林学院学报. 2019(03): 149-153+179 .
    26. 朱子卉,杨华,张恒,王全军,孙权,杨超. 择伐后落叶松云冷杉林直径结构及生长的动态变化. 北京林业大学学报. 2018(05): 55-62 . 本站查看
    27. 王智勇,董希斌,张甜,曲杭峰,马晓波,管惠文,阮加甫. 大兴安岭落叶松天然次生林林分结构特征. 东北林业大学学报. 2018(04): 6-11+28 .
    28. 马克西,曾伟生,侯晓巍. 青海省林木胸径生长量与生长率模型研究. 林业资源管理. 2018(04): 22-27 .
    29. 范慧涛,李杨,谷建才. 木兰围场油松、华北落叶松混交林空间结构对直径生长的影响. 林业与生态科学. 2018(04): 373-380 .
    30. 弓文艳,陈丽华,余新晓,郑学良,张雪琪. 辽东大伙房水库库区天然针阔次生林林分空间结构. 生态学杂志. 2018(11): 3255-3261 .

    Other cited types(18)

Catalog

    Article views (364) PDF downloads (56) Cited by(48)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return