• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Hongmei, Zheng Yongtao, Guo Yingtian, Zhang Jingxing, Li Wei. Identification of PtNF-YC1 of Pinus tabuliformis and its molecular mechanism involved in regulation of cone development[J]. Journal of Beijing Forestry University, 2023, 45(9): 1-8. DOI: 10.12171/j.1000-1522.20220250
Citation: Liu Hongmei, Zheng Yongtao, Guo Yingtian, Zhang Jingxing, Li Wei. Identification of PtNF-YC1 of Pinus tabuliformis and its molecular mechanism involved in regulation of cone development[J]. Journal of Beijing Forestry University, 2023, 45(9): 1-8. DOI: 10.12171/j.1000-1522.20220250

Identification of PtNF-YC1 of Pinus tabuliformis and its molecular mechanism involved in regulation of cone development

More Information
  • Received Date: June 20, 2022
  • Revised Date: August 15, 2022
  • Available Online: June 29, 2023
  • Published Date: September 24, 2023
  •   Objective  The research on the regulation of NF-Y nuclear factor on cone development in conifers has not been reported yet. Through the cloning, expression characteristics and functional analysis of PtNF-YC1 gene of Pinus tabuliformis, it provides a basis for the functional study of conifer NF-Y gene family in the reproductive development of conifers.
      Method  (1) The relationship between PtNF-YC1 and Arabidopsis thaliana NF-YC subfamily proteins was analyzed by phylogenetic tree. (2) Tobacco was transiently transformed to detect the subcellular localization of PtNF-YC1. (3) The expression characteristics of PtNF-YC1 in different tissues of P. tabuliformis were analyzed based on transcriptome data. (4) PtNF-YC1 was heterologously transformed into Arabidopsis thaliana , and the flowering time of different transgenic Arabidopsis thaliana lines under long-day and short-day was compared. The transcriptome sequencing of each transgenic line under long-day was performed to screen the genes related to PtNF-YC1 regulating flowering. (5) The protein interaction between PtNF-YC1 and candidate proteins was verified by Y2H and BiFC.
      Result  The open reading frame of PtNF-YC1 was 897 bp, which encoded 299 amino acids, had a typical NF-YC conserved domain, and a close relationship with the homologous genes of AtNF-YC3/4/9. The subcellular localization showed that PtNF-YC1 was localized in the nucleus and cytoplasm. The analysis of expression patterns in different tissues showed that PtNF-YC1 could be expressed in needles, vegetative buds, male and female cones and roots, but the expression abundance was the highest in male cones and stems. PtNF-YC1 heterologous transformation of Arabidopsis thaliana delayed flowering under short day. It was proved that PtNF-YC1 interacted with PtCOL5 through Y2H and BiFC.
      Conclusion  PtNF-YC1 has the function of regulating flowering time and is a candidate gene for inducing cone development through photoperiodic pathway of P. tabuliformis.
  • [1]
    Maity S N, de Crombrugghe B. Role of the CCAAT-binding protein CBF/NF-Y in transcription[J]. Trends in Biochemical Sciences, 1998, 23(5): 174−178. doi: 10.1016/S0968-0004(98)01201-8
    [2]
    Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y[J]. Gene, 1999, 239(1): 15−27. doi: 10.1016/S0378-1119(99)00368-6
    [3]
    Mcnabb D S, Tseng K A, Guarente L. The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor[J]. Molecular and Cellular Biology, 1997, 17(12): 7008−7018. doi: 10.1128/MCB.17.12.7008
    [4]
    Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290: 2105−2110. doi: 10.1126/science.290.5499.2105
    [5]
    Potkar R, Recla J, Busov V. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees[J]. Biochemical and Biophysical Research Communications, 2013, 431(3): 512−518. doi: 10.1016/j.bbrc.2013.01.027
    [6]
    Zhang F, Han M, Lv Q, et al. Identification and expression profile analysis of NUCLEAR FACTOR-Y families in Physcomitrella patens[J]. Frontiers in Plant Science, 2015, 6: 642.
    [7]
    Liu Z, Li Y, Zhu J, et al. Genome-wide identification and analysis of the NF-Y gene family in potato (Solanum tuberosum L.)[J]. Frontiers in Genetics, 2021, 12: 739989. doi: 10.3389/fgene.2021.739989
    [8]
    黄俊文, 南建宗, 阳成伟. NF-Y转录因子调控植物生长发育及胁迫响应的研究进展[J]. 植物生理学报, 2020, 56(12): 2595−2605.

    Huang J W, Nan J Z, Yang C W. Research progress on NF-Y transcription factors regulating plant growth, development, and stress response[J]. Journal of Plant Physiology, 2020, 56(12): 2595−2605.
    [9]
    李敏, 于太飞, 徐兆师, 等. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(8): 1161−1169.

    Li M, Yu T F, Xu Z S, et al. Soybean transcription factor gene GmNF-YCa enhances osmotic stress tolerance of transgenic Arabidopsis[J]. Journal of Crops, 2017, 43(8): 1161−1169.
    [10]
    Warpeha K M, Upadhyay S, Yeh J, et al. The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis[J]. Plant Physiology, 2007, 143(4): 1590−1600. doi: 10.1104/pp.106.089904
    [11]
    Kumimoto R W, Siriwardana C L, Gayler K K, et al. NUCLEAR FACTOR Y transcription factors have both opposing and additive roles in ABA-mediated seed germination[J]. PLoS ONE, 2013, 8(3): e59481. doi: 10.1371/journal.pone.0059481
    [12]
    Myers Z A, Kumimoto R W, Siriwardana C L, et al. NUCLEAR FACTOR Y, subunit C (NF-YC) transcription factors are positive regulators of photomorphogenesis in Arabidopsis thaliana[J]. PLoS Genetics, 2016, 12(9): e1006333. doi: 10.1371/journal.pgen.1006333
    [13]
    Tang Y, Liu X, Liu X, et al. Arabidopsis NF-YCs mediate the light-controlled hypocotyl elongation via modulating histone acetylation[J]. Molecular Plant, 2017, 10(2): 260−273. doi: 10.1016/j.molp.2016.11.007
    [14]
    Shi H, Ye T, Zhong B, et al. AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21[J]. New Phytologist, 2014, 203(2): 554−567. doi: 10.1111/nph.12812
    [15]
    Wei Q, Ma C, Xu Y, et al. Control of chrysanthemum flowering through integration with an aging pathway[J]. Nature Communications, 2017, 8(1): 829. doi: 10.1038/s41467-017-00812-0
    [16]
    Cao S, Kumimoto R W, Gnesutta N, et al. A distal CCAAT/NUCLEAR FACTOR Y complex promotes chromatin looping at the FLOWERING LOCUS T promoter and regulates the timing of flowering in Arabidopsis[J]. The Plant Cell, 2014, 26(3): 1009−1017. doi: 10.1105/tpc.113.120352
    [17]
    Hou X, Zhou J, Liu C, et al. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis[J]. Nature Communications, 2014, 5(1): 4601. doi: 10.1038/ncomms5601
    [18]
    Xu F, Li T, Xu P B, et al. DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis[J]. FEBS Journal, 2016, 590(4): 541−549. doi: 10.1002/1873-3468.12076
    [19]
    Hwang K, Susila H, Nasim Z, et al. Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering[J]. Molecular Plant, 2019, 12(4): 489−505. doi: 10.1016/j.molp.2019.01.002
    [20]
    Kumimoto R W, Zhang Y, Siefers N, et al. NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana[J]. The Plant Journal, 2010, 63(3): 379−391. doi: 10.1111/j.1365-313X.2010.04247.x
    [21]
    Palmeros-Suárez P A, Massange-Sánchez J A, Martínez-Gallardo N A, et al. The overexpression of an Amaranthus hypochondriacus NF-YC gene modifies growth and confers water deficit stress resistance in Arabidopsis[J]. Plant Science, 2015, 240: 25−40. doi: 10.1016/j.plantsci.2015.08.010
    [22]
    Yu Y, Li Y, Huang G, et al. PwHAP5, a CCAAT-binding transcription factor, interacts with PwFKBP12 and plays a role in pollen tube growth orientation in Picea wilsonii[J]. Journal of Experimental Botany, 2011, 62(14): 4805−4817. doi: 10.1093/jxb/err120
    [23]
    苗雅慧, 鞠丹, 梁珂豪, 等. 青杄转录因子基因PwNF-YB8的克隆与功能分析[J]. 林业科学, 2021, 57(5): 77−92.

    Miao Y H, Ju D, Liang K H, et al. Cloning and functional analysis of transcription factor gene PwNF-YB8 from Picea wilsonii[J]. Scientia Silvae Sinicae, 2021, 57(5): 77−92.
    [24]
    张晶星, 马彦广, 王辉丽, 等. 油松JAZ基因家族特征及其与DELLA蛋白互作的功能域鉴定[J]. 北京林业大学学报, 2022, 44(12): 12−22.

    Zhang J X, Ma Y G, Wang H L, et al. Characteristics of JAZ gene family of Pinus tabuliformis and identification of functional domain of its interaction with DELLA protein[J]. Journal of Beijing Forestry University, 2022, 44(12): 12−22.
    [25]
    Guo Y, Niu S, El-Kassaby Y A, et al. Transcriptome-wide isolation and expression of NF-Y gene family in male cone development and hormonal treatment of Pinus tabuliformis[J]. Physiologia Plantarum, 2021, 171(1): 34−47. doi: 10.1111/ppl.13183
    [26]
    Niu S, Li J, Bo W, et al. The Chinese pine genome and methylome unveil key features of conifer evolution[J]. Cell, 2022, 185(1): 204−217. doi: 10.1016/j.cell.2021.12.006
    [27]
    Siefers N, Dang K K, Kumimoto R W, et al. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity[J]. Plant Physiology, 2009, 149(2): 625−641. doi: 10.1104/pp.108.130591
    [28]
    Li J, Gao K, Yang X, et al. Comprehensive analyses of four PtoNF-YC genes from Populus tomentosa and impacts on flowering timing[J]. International Journal of Molecular Sciences, 2022, 23(6): 3116. doi: 10.3390/ijms23063116
    [29]
    Kim S, Park H, Jang Y H, et al. OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice[J]. Planta, 2016, 243(3): 563−576. doi: 10.1007/s00425-015-2426-x
    [30]
    Stephenson T J, Mcintyre C L, Collet C, et al. TaNF-YC11, one of the light-upregulated NF-YC members in Triticum aestivum, is co-regulated with photosynthesis-related genes[J]. Functional & Integrative Genomics, 2010, 10(2): 265−276.
    [31]
    Klintenaes M, Pin P A, Benlloch R, et al. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage[J]. New Phytologist, 2012, 196(4): 1260−1273. doi: 10.1111/j.1469-8137.2012.04332.x
  • Related Articles

    [1]Li Bingyi, Liu Guanhong, Gu Ze, Li Weike, Tian Ye, Wang Bo, Liu Xiaodong, Shu Lifu. Characteristics of soil nitrogen change in the burned area of Pinus tabuliformis forest in Pingquan County, Hebei Province of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 1-10. DOI: 10.12171/j.1000-1522.20220007
    [2]Zhou Zhiyong, Xu Mengyao, Wang Yongqiang, Gao Yu, Jia Kuangdi. Evolutionary characteristics of soil quality and organic carbon stability with forest stand age for Pinus tabuliformis forests in the Taiyue Mountain of Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(10): 112-119. DOI: 10.12171/j.1000-1522.20220320
    [3]Shen Ying, Qin Tao, Guo Yinhua, Zhang Huan, Zhou Zhiyong. Short-term effects of forest fire on soil microorganism and enzyme activities of Pinus tabuliformis forest in Taiyue Mountain, Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2022, 44(4): 76-85. DOI: 10.12171/j.1000-1522.20210042
    [4]Zhang Yun, Yu Yue, Cui Xiaoyang, Wang Haiqi. Spatiotemporal variations of soil moisture content in the Larix gmelinii forest under interference of experimental forest fire in northern Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 94-101. DOI: 10.12171/j.1000-1522.20190182
    [5]LI Wei-ke, LIU Xiao-dong, NIU Shu-kui, LI Bing-yi, LIU Guan-hong, CHU Yan-qin. Impact of fire on soil microbial biomass of Pinus tabuliformis forest in Pingquan County, Hebei of northern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 70-77. DOI: 10.13332/j.1000-1522.20160420
    [6]WANG Shu-li, LIANG Xiao-jiao, MA Chao, ZHOU Jian-ping. Coupling relationship between Hedysarum mongdicum shrub plantation and sand soil based on structural equation model[J]. Journal of Beijing Forestry University, 2017, 39(1): 1-8. DOI: 10.13332/j.1000-1522.20160101
    [7]GU Hui-yan, JIN Yu-song, ZHANG Yun-hui, CHEN Xiang-wei. Effects of forest fire on soil nutrients of Ass. Pinus pumila-Larix gmelinii forest in Great Xing’an Mountains.[J]. Journal of Beijing Forestry University, 2016, 38(7): 48-54. DOI: 10.13332/j.1000-1522.20150510
    [8]SUN Tian-yong, WANG Li-hai, XU Hua-dong, BAO Zhen-yu. Effects of soil chemical properties on trunk decay of Korean pine standing trees in Xiao Xing'an Mountains,northeastern China.[J]. Journal of Beijing Forestry University, 2014, 36(2): 30-37.
    [9]WANG Xu-qin, DAI Wei, XIA Liang-fang, DENG Zong-fu, YU Hai-xia, NIE Li-shui. Effects of different subtropical plantations on physical and chemical properties of soil[J]. Journal of Beijing Forestry University, 2006, 28(6): 56-59.
    [10]NIE Li-shui, WANG Deng-zhi, WANG Bao-guo. Relationship between soil conditions and declining growth rate of aged Pinus tabulaeformis at Jietai Temple of Beijing[J]. Journal of Beijing Forestry University, 2005, 27(5): 32-36.
  • Cited by

    Periodical cited type(15)

    1. 李雪,朱宾宾,满秀玲. 温度和水分对寒温带典型森林类型土壤有机碳矿化的影响. 东北林业大学学报. 2025(02): 127-136 .
    2. 王军,满秀玲. 去除凋落物和草毡层对寒温带典型森林土壤活性有机碳的短期影响. 水土保持研究. 2024(01): 168-177 .
    3. 刘巧娟,张之松,满秀玲,高明磊,赵佳龙. 寒温带多年冻土区不同林龄白桦林土壤酶活性动态特征. 东北林业大学学报. 2024(03): 125-131 .
    4. 祝顺万,刘利霞,胡雪凡,代伟,王月容,李芳. 华北落叶松混交林林下植物群落特征对间伐的响应. 森林工程. 2024(03): 47-55 .
    5. 刘贝贝,蔡体久. 大兴安岭北部主要森林类型土壤活性碳组分及碳库稳定性变化特征. 水土保持学报. 2024(06): 203-213 .
    6. 沈健,何宗明,董强,林宇,郜士垒. 滨海防护林土壤CO_2排放和土壤因子对计划火烧的响应. 水土保持学报. 2023(01): 254-261 .
    7. 沈健,何宗明,董强,郜士垒,曹光球,林宇,黄政. 滨海沙地两种防护林土壤呼吸月际动态及影响因素. 应用与环境生物学报. 2023(02): 432-439 .
    8. 王军,满秀玲. 去除凋落物和草毡层对寒温带典型森林土壤氮素的短期影响. 森林工程. 2023(04): 1-9 .
    9. 刘思琪,满秀玲,张頔,徐志鹏. 寒温带4种乔木树种不同径级根系分解及碳氮释放动态. 北京林业大学学报. 2023(07): 36-46 . 本站查看
    10. 沈健,何宗明,董强,林宇,郜士垒. 尾巨桉人工林火烧迹地土壤呼吸组分特征及其与土壤因子的关系. 生态学杂志. 2023(07): 1537-1547 .
    11. 沈健,何宗明,董强,郜士垒,林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响. 植物生态学报. 2023(07): 1032-1042 .
    12. 沈健,何宗明,董强,郜士垒,林宇,石焱. 不同处理方式下湿地松人工林土壤呼吸及温度敏感性变化. 西北林学院学报. 2023(05): 10-18 .
    13. 田慧敏,刘彦春,刘世荣. 暖温带麻栎林凋落物调节土壤碳排放通量对降雨脉冲的响应. 生态学报. 2022(10): 3889-3896 .
    14. 张茹,马秀枝,杜金玲,李长生,梁芝,吴天龙. 模拟增温对大兴安岭兴安落叶松林土壤CO_2通量的影响. 东北林业大学学报. 2022(08): 83-88 .
    15. 张扬,张秋良,李小梅,代海燕,王飞. 兴安落叶松林生长季碳交换对气候变化的响应. 西部林业科学. 2021(05): 73-80+89 .

    Other cited types(4)

Catalog

    Article views (644) PDF downloads (90) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return