• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Siwen, Ai Yebo, Liu Yanhong. Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain[J]. Journal of Beijing Forestry University, 2021, 43(4): 47-55. DOI: 10.12171/j.1000-1522.20200292
Citation: Liu Siwen, Ai Yebo, Liu Yanhong. Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain[J]. Journal of Beijing Forestry University, 2021, 43(4): 47-55. DOI: 10.12171/j.1000-1522.20200292

Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain

More Information
  • Received Date: September 24, 2020
  • Revised Date: November 26, 2020
  • Available Online: March 08, 2021
  • Published Date: April 29, 2021
  •   Objective  In this study, we explored the responses of leaf functional traits of Pinus tabuliformis to altitude gradients and quantified the contribution of topography and soil to intraspecific trait variation. This work aims to provide a basis for predicting the spatial-temporal variations and its mechanism of leaf functional trait caused by climate change in the future.
      Method  Leaves of Pinus tabuliformis on the southern slope of Songshan Mountain area in Beijing at an altitude of 789−1106 m were collected to measure 8 leaf functional traits, including leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), nitrogen concentration per unit mass (MN), phosphorous concentration per unit mass (MP), nitrogen concentration per unit of area (AN), phosphorous concentration per unit of area (AP) and leaf nitrogen to phosphorus ratio (LN:P). Correlation between these traits and its response to altitude gradients were analyzed. The responses of these traits to topography and soil were also examined in this study.
      Result  (1) LA, SLA and MP showed a decreasing trend with the altitude gradient, while LDMC, MN, AN and LN:P showed an increasing trend along the altitude gradient. AP did not respond to the altitude. The leaf functional traits of Pinus tabuliformis showed significant intraspecific variations and the variation coefficient was between 10.33% and 27.59%. The order of variation was LA > AN > AP > SLA > LN:P > MN > MP > LDMC. (2) A significant synergy or trade-off was observed among some functional traits as the altitude changed, where SLA of Pinus tabuliformis was negatively correlated with LDMC (P < 0.05) and it was extremely negatively correlated with AN and AP (P < 0.001). (3) The variation of leaf functional traits was affected by various environmental factors. We found that LA, SLA and LN:P of Pinus tabuliformis were mainly affected by altitude and soil phosphorus content (TP), while LDMC was mainly affected by soil nitrogen to phosphorus ratio and soil water content. Both MN and AN were mainly affected by soil pH and TP, and MP was mainly affected by altitude and slope. (4) Altitude and soil could only explain 6.28%−41.1% of the variation in leaf functional traits of Pinus tabuliformis.
      Conclusion  In the study area, leaf functional traits of Pinus tabuliformis adapt to altitude gradient change by certain character variation and combination, among which the dominant factors and extent of the character variation were different.
  • [1]
    何念鹏, 刘聪聪, 张佳慧, 等. 植物性状研究的机遇与挑战: 从器官到群落[J]. 生态学报, 2018, 38(19):6787−6796.

    He N P, Liu C C, Zhang J H, et al. Perspectives and challenges in plant traits: from organs to communities[J]. Acta Ecologica Sinica, 2018, 38(19): 6787−6796.
    [2]
    Hölscher D, Schmitt S, Kupfer K. Growth and leaf traits of four broad-leaved tree species along a hillside gradient[J]. European Journal of Forest Research, 2002, 121(5): 229−239. doi: 10.1046/j.1439-0337.2002.02031.x
    [3]
    Wright I J, Reich P B, Westoby M, et al. The world-wide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403
    [4]
    王文娟, 吕慧, 钟悦鸣, 等. 胡杨异形叶性状与其个体发育的关系[J]. 北京林业大学学报, 2019, 41(2):62−69.

    Wang W J, Lü H, Zhong Y M, et al. Relationship between heteromorphic leaf traits of Populus euphratica and its individual development[J]. Journal of Beijing Forestry University, 2019, 41(2): 62−69.
    [5]
    Graae B J, Frenne P D, Kolb A, et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients[J]. Oikos, 2012, 121(1): 3−19. doi: 10.1111/j.1600-0706.2011.19694.x
    [6]
    Midolo G, de Frenne P, Hölzel N, et al. Global patterns of intraspecific leaf trait responses to elevation[J]. Global Change Biology, 2019, 25(7): 2485−2498. doi: 10.1111/gcb.14646
    [7]
    Read Q D, Moorhead L C, Swenson N G, et al. Convergent effects of elevation on functional leaf traits within and among species[J]. Functional Ecology, 2014, 28(1): 37−45. doi: 10.1111/1365-2435.12162
    [8]
    Umaña M N, Swenson N G. Intraspecific variation in traits and tree growth along an elevational gradient in a subtropical forest[J]. Oecologia, 2019, 191(1): 153−164. doi: 10.1007/s00442-019-04453-6
    [9]
    李宗杰, 田青, 宋玲玲. 甘肃省摩天岭北坡木本植物叶性状变异及关联[J]. 中国沙漠, 2018, 38(1):149−156. doi: 10.7522/j.issn.1000-694X.2016.00129

    Li Z J, Tian Q, Song L L. Variation and correlation of leaf traits in woody plants in the north-facing slope of Motialing, Gansu, China[J]. Journal of Desert Research, 2018, 38(1): 149−156. doi: 10.7522/j.issn.1000-694X.2016.00129
    [10]
    徐化成, 孙肇凤, 郭广荣, 等. 油松天然林的地理分布和种源区的划分[J]. 林业科学, 1981, 17(3):258−270.

    Xu H C, Sun Z F, Guo G R, et al. Geographic distribution of Pinus tabulaeformis Carr. and classification of provenance regions[J]. Scientia Silvae Sinicae, 1981, 17(3): 258−270.
    [11]
    Messier J, Mcgill B, Lechowicz M. How do traits vary across ecological scales? A case for trait-based ecology[J]. Ecology Letters, 2010, 13(7): 838−848. doi: 10.1111/j.1461-0248.2010.01476.x
    [12]
    张凯, 侯继华, 何念鹏. 油松叶功能性状分布特征及其控制因素[J]. 生态学报, 2017, 37(3):736−749.

    Zhang K, Hou J H, He N P. Leaf functional trait distribution and controlling factors of Pinus tabuliformis[J]. Acta Ecoloica Sinica, 2017, 37(3): 736−749.
    [13]
    欧晓岚, 刘艳红. 北京松山不同坡向和径级油松异龄叶功能性状特征[J]. 南京林业大学学报(自然科学版), 2017, 41(4):80−88.

    Ou X L, Liu Y H. Age, slope aspectsand diameter classes affect the leaf functional traits of Pinus tabulaeformis in Songshan, Beijing[J]. Journal of Nanjing Forestry University (Natural Sciences Editions), 2017, 41(4): 80−88.
    [14]
    Lajoie G, Vellend M. Characterizing the contribution of plasticity and genetic differentiation to community-level trait responses to environmental change[J]. Ecology and Evolution, 2018, 8(8): 3895−3907. doi: 10.1002/ece3.3947
    [15]
    Luo T, Luo J, Pan Y. Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, eastern Tibetan Plateau[J]. Oecologia, 2005, 142(2): 261−273. doi: 10.1007/s00442-004-1729-6
    [16]
    Poorter H, Niinemets U, Poorter L, et al. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis[J]. New Phytologist, 2009, 182(3): 565−588. doi: 10.1111/j.1469-8137.2009.02830.x
    [17]
    Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 1999, 143(1): 155−162. doi: 10.1046/j.1469-8137.1999.00427.x
    [18]
    Hetherington A M, Woodward F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424: 901−908. doi: 10.1038/nature01843
    [19]
    Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423−434. doi: 10.1046/j.0269-8463.2001.00542.x
    [20]
    陈晨, 刘丹辉, 吴键军, 等. 东灵山地区辽东栎叶性状与地形因子关系[J]. 生态学杂志, 2015, 34(8):2131−2139.

    Chen C, Liu D H, Wu J J, et al. Leaf traits of Quercus wutaishanica and their relationship with topographic factors in Mount Dongling[J]. Chinese Journal of Ecology, 2015, 34(8): 2131−2139.
    [21]
    祁建, 马克明, 张育新. 辽东栎(Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释[J]. 生态学报, 2007, 27(3):930−937. doi: 10.3321/j.issn:1000-0933.2007.03.013

    Qi J, Ma K M, Zhang Y X. The altitudinal variation of leaf traits of Quercus liaotungensis and associated environmental explanations[J]. Acta Ecoloica Sinica, 2007, 27(3): 930−937. doi: 10.3321/j.issn:1000-0933.2007.03.013
    [22]
    Reich P B, Oleksyn J, Tilman G D. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101
    [23]
    Körner C. The use of ‘altitude’ in ecological research[J]. Trends in Ecology & Evolution, 2007, 22(11): 569−574.
    [24]
    张小芳, 刘贤德, 敬文茂, 等. 祁连山不同海拔火绒草叶片生态化学计量特征及其与土壤养分的关系[J]. 应用生态学报, 2019, 30(12):4012−4020.

    Zhang X F, Liu X D, Jing W M, et al. Characteristics of Leontopodium leontopodioides leaf stochiometry with altitude and their relationship with soil nutrients in Qilian Mountains, Northwest China[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4012−4020.
    [25]
    Körner C. Alpine plant life: functional plant ecology of high mountain ecosystems[M]. Berlin:Springer, 2003.
    [26]
    Güsewell S. N:P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243−266. doi: 10.1111/j.1469-8137.2004.01192.x
    [27]
    Koerselman W, Arthur F M M. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441−1450. doi: 10.2307/2404783
    [28]
    Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. The New Phytologist, 2005, 168(2): 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
    [29]
    Olsen J K, Bell L C. A glasshouse evaluation of ‘critical’ N and P concentrations and N:P ratios in various plant parts of six Eucalypt species[J]. Australian Journal of Botany, 1990, 38(3): 669−678.
    [30]
    刘超, 武娴, 王襄平, 等. 内蒙古灌木叶性状关系及不同尺度的比较[J]. 北京林业大学学报, 2012, 34(6):23−29.

    Liu C, Wu X, Wang X P, et al. Relationships among shrub leaf traits in Inner Mongolia and comparison in different spatial scales[J]. Journal of Beijing Forestry University, 2012, 34(6): 23−29.
    [31]
    Wright I J, Cannon K. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora[J]. Functional Ecology, 2001, 15(3): 351−359. doi: 10.1046/j.1365-2435.2001.00522.x
    [32]
    任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12):2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001

    Ren S J, Yu G R, Tao B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environmental Science, 2007, 28(12): 2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001
    [33]
    Messier J, Mcgill B J, Enquist B J, et al. Trait variation and integration across scales: is the leaf economic spectrum present at local scales?[J]. Ecography, 2017, 40(6): 685−697. doi: 10.1111/ecog.02006
    [34]
    Richardson B A, Chaney L, Shaw N L, et al. Will phenotypic plasticity affecting flowering phenology keep pace with climate change?[J]. Global Change Biology, 2017, 23(6): 2499−2508. doi: 10.1111/gcb.13532
    [35]
    Pescador D S, Francesco D B, Fernando V, et al. Plant trait variation along an altitudinal gradient in mediterranean high mountain grasslands: controlling the species turnover effect[J/OL]. Plos ONE, 2015, 10(3): e0118876 (2015−03−16)[2020−01−26]. https://doi.org/10.1371/journal.pone.0118876.
    [36]
    Liu C, Wang X, Wu X, et al. Relative effects of phylogeny, biological characters and environments on leaf traits in shrub biomes across central Inner Mongolia, China[J]. Journal of Plant Ecology, 2013, 6(3): 220−231. doi: 10.1093/jpe/rts028
  • Related Articles

    [1]Yan Jiahui, Zhou Chengcheng, Niu Shihui, Li Wei. Identification of SAUR gene family in Pinus tabuliformis and analysis on its expression patterns under drought stress[J]. Journal of Beijing Forestry University, 2024, 46(8): 57-67. DOI: 10.12171/j.1000-1522.20230333
    [2]Sun Fan, Ma Yanguang, Liu Zhanmin, Yang Boning, Wang Huili, Li Wei. Parental selection strategies of high generation seed orchard of Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2024, 46(4): 28-39. DOI: 10.12171/j.1000-1522.20230138
    [3]Liu Hongmei, Zheng Yongtao, Guo Yingtian, Zhang Jingxing, Li Wei. Identification of PtNF-YC1 of Pinus tabuliformis and its molecular mechanism involved in regulation of cone development[J]. Journal of Beijing Forestry University, 2023, 45(9): 1-8. DOI: 10.12171/j.1000-1522.20220250
    [4]Liu Fengchen, Tian Na, Cheng Xiaoqin. Releasing variation and bacteriostatic effects of botanic volatile organic compounds from Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2022, 44(9): 72-82. DOI: 10.12171/j.1000-1522.20210125
    [5]Li Xiarong, Chen Yixin, Chen Jingfei, Zhu Jiyou, Sun Guangpeng, Wei Liuduan, Zhang Xinna, Xu Chengyang. Comparative study on the effects of climate change on radial growth of Pinus tabuliformis in near and outer suburbs of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(1): 19-28. DOI: 10.12171/j.1000-1522.20200329
    [6]Li Yixuan, Zhao Jian, Fu Shuangbin, Dong Mingliang, Yang Shuo, Li Shanshan, Kong Lisheng, Zhang Jinfeng. Enhancement of embryogenic callus proliferation in Chinese pine (Pinus tabuliformis) by airlift bioreactor[J]. Journal of Beijing Forestry University, 2019, 41(11): 37-43. DOI: 10.13332/j.1000-1522.20190221
    [7]Liu Yang, Li Bangtong, Du Guihua, Huang Dongxu, Zhou Xianqing, Niu Shihui, Li Wei. Expression profiles and regulation of FT/TFL1-like genes in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2018, 40(10): 60-66. DOI: 10.13332/j.1000-1522.20180040
    [8]SONG Jie, ZHU Min, LIU Xiao-dong, REN Yun-mao, WANG Qi-feng, JIN Ying-shan. Effects of thinning on fuel characteristics and potential fire behaviors of Pinus tabuliformis forest in Beijing West Mountain[J]. Journal of Beijing Forestry University, 2017, 39(5): 41-47. DOI: 10.13332/j.1000-1522.20160353
    [9]GAO Qiong, WANG Wei-you, LIANG Dong, LI Yue.. Comparison of growth traits and photosynthetic physiology in Pinus tabuliformis from eight provenances of China.[J]. Journal of Beijing Forestry University, 2014, 36(2): 87-93.
    [10]LI Wei, ZHU Song-lin, LI Yue. Comparative study on plant traits between sexual and asexual reproduction for Pinus tabuliformis.[J]. Journal of Beijing Forestry University, 2012, 34(1): 46-50.
  • Cited by

    Periodical cited type(6)

    1. 何福英,何冠润,马道承,王凌晖. 珍贵树种刨花润楠研究综述. 广西林业科学. 2024(04): 544-550 .
    2. 张妹,何正权,马江,桑子阳,朱仲龙,张德春,马履一,陈发菊. 基于SSR和SRAP标记的红花玉兰品种遗传关系分析及分子鉴定. 北京林业大学学报. 2019(09): 69-80 . 本站查看
    3. 李振芳,马林江,张新叶. 湖北省刨花润楠发展现状. 湖北林业科技. 2019(06): 52-55 .
    4. 唐健民,范进顺,柴胜丰,邹蓉,周运鸿,韦记青. 刨花润楠扦插繁殖技术研究. 林业调查规划. 2018(03): 158-162 .
    5. 阳树松. 刨花润楠的优良特性及栽培技术. 绿色科技. 2018(07): 90-91 .
    6. 周鹏,林玮,周祥斌,陈晓阳. 刨花润楠SRAP-PCR体系建立与优化. 林业与环境科学. 2017(04): 29-33 .

    Other cited types(3)

Catalog

    Article views (1914) PDF downloads (133) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return