• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Siwen, Ai Yebo, Liu Yanhong. Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain[J]. Journal of Beijing Forestry University, 2021, 43(4): 47-55. DOI: 10.12171/j.1000-1522.20200292
Citation: Liu Siwen, Ai Yebo, Liu Yanhong. Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain[J]. Journal of Beijing Forestry University, 2021, 43(4): 47-55. DOI: 10.12171/j.1000-1522.20200292

Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain

More Information
  • Received Date: September 24, 2020
  • Revised Date: November 26, 2020
  • Available Online: March 08, 2021
  • Published Date: April 29, 2021
  •   Objective  In this study, we explored the responses of leaf functional traits of Pinus tabuliformis to altitude gradients and quantified the contribution of topography and soil to intraspecific trait variation. This work aims to provide a basis for predicting the spatial-temporal variations and its mechanism of leaf functional trait caused by climate change in the future.
      Method  Leaves of Pinus tabuliformis on the southern slope of Songshan Mountain area in Beijing at an altitude of 789−1106 m were collected to measure 8 leaf functional traits, including leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), nitrogen concentration per unit mass (MN), phosphorous concentration per unit mass (MP), nitrogen concentration per unit of area (AN), phosphorous concentration per unit of area (AP) and leaf nitrogen to phosphorus ratio (LN:P). Correlation between these traits and its response to altitude gradients were analyzed. The responses of these traits to topography and soil were also examined in this study.
      Result  (1) LA, SLA and MP showed a decreasing trend with the altitude gradient, while LDMC, MN, AN and LN:P showed an increasing trend along the altitude gradient. AP did not respond to the altitude. The leaf functional traits of Pinus tabuliformis showed significant intraspecific variations and the variation coefficient was between 10.33% and 27.59%. The order of variation was LA > AN > AP > SLA > LN:P > MN > MP > LDMC. (2) A significant synergy or trade-off was observed among some functional traits as the altitude changed, where SLA of Pinus tabuliformis was negatively correlated with LDMC (P < 0.05) and it was extremely negatively correlated with AN and AP (P < 0.001). (3) The variation of leaf functional traits was affected by various environmental factors. We found that LA, SLA and LN:P of Pinus tabuliformis were mainly affected by altitude and soil phosphorus content (TP), while LDMC was mainly affected by soil nitrogen to phosphorus ratio and soil water content. Both MN and AN were mainly affected by soil pH and TP, and MP was mainly affected by altitude and slope. (4) Altitude and soil could only explain 6.28%−41.1% of the variation in leaf functional traits of Pinus tabuliformis.
      Conclusion  In the study area, leaf functional traits of Pinus tabuliformis adapt to altitude gradient change by certain character variation and combination, among which the dominant factors and extent of the character variation were different.
  • [1]
    何念鹏, 刘聪聪, 张佳慧, 等. 植物性状研究的机遇与挑战: 从器官到群落[J]. 生态学报, 2018, 38(19):6787−6796.

    He N P, Liu C C, Zhang J H, et al. Perspectives and challenges in plant traits: from organs to communities[J]. Acta Ecologica Sinica, 2018, 38(19): 6787−6796.
    [2]
    Hölscher D, Schmitt S, Kupfer K. Growth and leaf traits of four broad-leaved tree species along a hillside gradient[J]. European Journal of Forest Research, 2002, 121(5): 229−239. doi: 10.1046/j.1439-0337.2002.02031.x
    [3]
    Wright I J, Reich P B, Westoby M, et al. The world-wide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403
    [4]
    王文娟, 吕慧, 钟悦鸣, 等. 胡杨异形叶性状与其个体发育的关系[J]. 北京林业大学学报, 2019, 41(2):62−69.

    Wang W J, Lü H, Zhong Y M, et al. Relationship between heteromorphic leaf traits of Populus euphratica and its individual development[J]. Journal of Beijing Forestry University, 2019, 41(2): 62−69.
    [5]
    Graae B J, Frenne P D, Kolb A, et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients[J]. Oikos, 2012, 121(1): 3−19. doi: 10.1111/j.1600-0706.2011.19694.x
    [6]
    Midolo G, de Frenne P, Hölzel N, et al. Global patterns of intraspecific leaf trait responses to elevation[J]. Global Change Biology, 2019, 25(7): 2485−2498. doi: 10.1111/gcb.14646
    [7]
    Read Q D, Moorhead L C, Swenson N G, et al. Convergent effects of elevation on functional leaf traits within and among species[J]. Functional Ecology, 2014, 28(1): 37−45. doi: 10.1111/1365-2435.12162
    [8]
    Umaña M N, Swenson N G. Intraspecific variation in traits and tree growth along an elevational gradient in a subtropical forest[J]. Oecologia, 2019, 191(1): 153−164. doi: 10.1007/s00442-019-04453-6
    [9]
    李宗杰, 田青, 宋玲玲. 甘肃省摩天岭北坡木本植物叶性状变异及关联[J]. 中国沙漠, 2018, 38(1):149−156. doi: 10.7522/j.issn.1000-694X.2016.00129

    Li Z J, Tian Q, Song L L. Variation and correlation of leaf traits in woody plants in the north-facing slope of Motialing, Gansu, China[J]. Journal of Desert Research, 2018, 38(1): 149−156. doi: 10.7522/j.issn.1000-694X.2016.00129
    [10]
    徐化成, 孙肇凤, 郭广荣, 等. 油松天然林的地理分布和种源区的划分[J]. 林业科学, 1981, 17(3):258−270.

    Xu H C, Sun Z F, Guo G R, et al. Geographic distribution of Pinus tabulaeformis Carr. and classification of provenance regions[J]. Scientia Silvae Sinicae, 1981, 17(3): 258−270.
    [11]
    Messier J, Mcgill B, Lechowicz M. How do traits vary across ecological scales? A case for trait-based ecology[J]. Ecology Letters, 2010, 13(7): 838−848. doi: 10.1111/j.1461-0248.2010.01476.x
    [12]
    张凯, 侯继华, 何念鹏. 油松叶功能性状分布特征及其控制因素[J]. 生态学报, 2017, 37(3):736−749.

    Zhang K, Hou J H, He N P. Leaf functional trait distribution and controlling factors of Pinus tabuliformis[J]. Acta Ecoloica Sinica, 2017, 37(3): 736−749.
    [13]
    欧晓岚, 刘艳红. 北京松山不同坡向和径级油松异龄叶功能性状特征[J]. 南京林业大学学报(自然科学版), 2017, 41(4):80−88.

    Ou X L, Liu Y H. Age, slope aspectsand diameter classes affect the leaf functional traits of Pinus tabulaeformis in Songshan, Beijing[J]. Journal of Nanjing Forestry University (Natural Sciences Editions), 2017, 41(4): 80−88.
    [14]
    Lajoie G, Vellend M. Characterizing the contribution of plasticity and genetic differentiation to community-level trait responses to environmental change[J]. Ecology and Evolution, 2018, 8(8): 3895−3907. doi: 10.1002/ece3.3947
    [15]
    Luo T, Luo J, Pan Y. Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, eastern Tibetan Plateau[J]. Oecologia, 2005, 142(2): 261−273. doi: 10.1007/s00442-004-1729-6
    [16]
    Poorter H, Niinemets U, Poorter L, et al. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis[J]. New Phytologist, 2009, 182(3): 565−588. doi: 10.1111/j.1469-8137.2009.02830.x
    [17]
    Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 1999, 143(1): 155−162. doi: 10.1046/j.1469-8137.1999.00427.x
    [18]
    Hetherington A M, Woodward F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424: 901−908. doi: 10.1038/nature01843
    [19]
    Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423−434. doi: 10.1046/j.0269-8463.2001.00542.x
    [20]
    陈晨, 刘丹辉, 吴键军, 等. 东灵山地区辽东栎叶性状与地形因子关系[J]. 生态学杂志, 2015, 34(8):2131−2139.

    Chen C, Liu D H, Wu J J, et al. Leaf traits of Quercus wutaishanica and their relationship with topographic factors in Mount Dongling[J]. Chinese Journal of Ecology, 2015, 34(8): 2131−2139.
    [21]
    祁建, 马克明, 张育新. 辽东栎(Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释[J]. 生态学报, 2007, 27(3):930−937. doi: 10.3321/j.issn:1000-0933.2007.03.013

    Qi J, Ma K M, Zhang Y X. The altitudinal variation of leaf traits of Quercus liaotungensis and associated environmental explanations[J]. Acta Ecoloica Sinica, 2007, 27(3): 930−937. doi: 10.3321/j.issn:1000-0933.2007.03.013
    [22]
    Reich P B, Oleksyn J, Tilman G D. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101
    [23]
    Körner C. The use of ‘altitude’ in ecological research[J]. Trends in Ecology & Evolution, 2007, 22(11): 569−574.
    [24]
    张小芳, 刘贤德, 敬文茂, 等. 祁连山不同海拔火绒草叶片生态化学计量特征及其与土壤养分的关系[J]. 应用生态学报, 2019, 30(12):4012−4020.

    Zhang X F, Liu X D, Jing W M, et al. Characteristics of Leontopodium leontopodioides leaf stochiometry with altitude and their relationship with soil nutrients in Qilian Mountains, Northwest China[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4012−4020.
    [25]
    Körner C. Alpine plant life: functional plant ecology of high mountain ecosystems[M]. Berlin:Springer, 2003.
    [26]
    Güsewell S. N:P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243−266. doi: 10.1111/j.1469-8137.2004.01192.x
    [27]
    Koerselman W, Arthur F M M. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441−1450. doi: 10.2307/2404783
    [28]
    Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. The New Phytologist, 2005, 168(2): 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
    [29]
    Olsen J K, Bell L C. A glasshouse evaluation of ‘critical’ N and P concentrations and N:P ratios in various plant parts of six Eucalypt species[J]. Australian Journal of Botany, 1990, 38(3): 669−678.
    [30]
    刘超, 武娴, 王襄平, 等. 内蒙古灌木叶性状关系及不同尺度的比较[J]. 北京林业大学学报, 2012, 34(6):23−29.

    Liu C, Wu X, Wang X P, et al. Relationships among shrub leaf traits in Inner Mongolia and comparison in different spatial scales[J]. Journal of Beijing Forestry University, 2012, 34(6): 23−29.
    [31]
    Wright I J, Cannon K. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora[J]. Functional Ecology, 2001, 15(3): 351−359. doi: 10.1046/j.1365-2435.2001.00522.x
    [32]
    任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12):2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001

    Ren S J, Yu G R, Tao B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environmental Science, 2007, 28(12): 2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001
    [33]
    Messier J, Mcgill B J, Enquist B J, et al. Trait variation and integration across scales: is the leaf economic spectrum present at local scales?[J]. Ecography, 2017, 40(6): 685−697. doi: 10.1111/ecog.02006
    [34]
    Richardson B A, Chaney L, Shaw N L, et al. Will phenotypic plasticity affecting flowering phenology keep pace with climate change?[J]. Global Change Biology, 2017, 23(6): 2499−2508. doi: 10.1111/gcb.13532
    [35]
    Pescador D S, Francesco D B, Fernando V, et al. Plant trait variation along an altitudinal gradient in mediterranean high mountain grasslands: controlling the species turnover effect[J/OL]. Plos ONE, 2015, 10(3): e0118876 (2015−03−16)[2020−01−26]. https://doi.org/10.1371/journal.pone.0118876.
    [36]
    Liu C, Wang X, Wu X, et al. Relative effects of phylogeny, biological characters and environments on leaf traits in shrub biomes across central Inner Mongolia, China[J]. Journal of Plant Ecology, 2013, 6(3): 220−231. doi: 10.1093/jpe/rts028
  • Cited by

    Periodical cited type(15)

    1. 冯旭环,周璐,熊伟,宗桦. 大渡河干热河谷区本土优势灌草植物根系的抗拉力学特性及其影响因素研究. 干旱区资源与环境. 2023(07): 159-169 .
    2. 李宏斌,张旭,姚晨,杜峰. 陕北黄土区不同植物根系抗拉力学特性研究. 水土保持研究. 2023(04): 122-129 .
    3. 李金波,伍红燕,赵斌,陈济丁,宋桂龙. 模拟边坡条件下常见护坡植物苗期根系构型特征. 生态学报. 2023(24): 10131-10141 .
    4. 赵佳愉,伍红燕,史蔚林,宋桂龙. 聚丙烯酰胺添加浓度对种基盘特性的影响. 草原与草坪. 2021(05): 16-21 .
    5. 黄炎和,李思诗,岳辉,彭绍云,谢炎敏,林根根,周曼,吴俣,蔡学智. 崩岗区四种草本植物根系抗拉特性及其与化学成分的关系. 亚热带水土保持. 2021(04): 9-15 .
    6. 李义强,伍红燕,宋桂龙,赵斌,李一为,夏宇,孙盛年,梁燕宁. 岩石边坡坡度对胡枝子和紫穗槐根系形态特征影响. 草原与草坪. 2020(02): 23-29 .
    7. 曹磊,马海天才. 不同草本植物根系力动力学及抗压力特征研究. 干旱区资源与环境. 2019(01): 164-170 .
    8. 李淑霞,刘亚斌,余冬梅,胡夏嵩,祁兆鑫. 寒旱环境盐胁迫条件下两种草本植物的根系力学特性研究. 盐湖研究. 2019(01): 116-131 .
    9. 李瑞燊,刘静,王博,张欣,胡晶华,苏慧敏,白潞翼,王多民. 反复施加拉剪组合力对小叶锦鸡儿直根材料力学特性的影响. 水土保持学报. 2019(05): 121-125 .
    10. 马海天才. 不同草本植物根系的抗压动力学特征. 北方园艺. 2018(19): 71-77 .
    11. 王博,刘静,王晨嘉,张欣,刘嘉伟,李强,张强. 半干旱矿区3种灌木侧根分支处折力损伤后的自修复特性. 应用生态学报. 2018(11): 3541-3549 .
    12. 韦杰,李进林,史炳林. 紫色土耕地埂坎2种典型根——土复合体抗剪强度特征. 应用基础与工程科学学报. 2018(03): 483-492 .
    13. 刘昌义,胡夏嵩,赵玉娇,窦增宁. 寒旱环境草本与灌木植物单根拉伸试验强度特征研究. 工程地质学报. 2017(01): 1-10 .
    14. 谷利茶,王国梁. 氮添加对油松幼苗不同径级细根碳水化合物含量的影响. 生态学杂志. 2017(08): 2184-2190 .
    15. 杨闻达,王桂尧,常婧美,张永杰. 主直根系拉拔力的室内试验研究. 中国水土保持科学. 2017(04): 111-116 .

    Other cited types(25)

Catalog

    Article views (1914) PDF downloads (133) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return