• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zheng Jie, Yu Ying, He Zhuoxi, Lu Mingyuan, Sun Yu, Yin Tianlong, Wang Chao. Transcriptome analysis of regeneration process of primary cell wall in xylem protoplast of Betula platyphylla[J]. Journal of Beijing Forestry University, 2022, 44(8): 12-22. DOI: 10.12171/j.1000-1522.20200376
Citation: Zheng Jie, Yu Ying, He Zhuoxi, Lu Mingyuan, Sun Yu, Yin Tianlong, Wang Chao. Transcriptome analysis of regeneration process of primary cell wall in xylem protoplast of Betula platyphylla[J]. Journal of Beijing Forestry University, 2022, 44(8): 12-22. DOI: 10.12171/j.1000-1522.20200376

Transcriptome analysis of regeneration process of primary cell wall in xylem protoplast of Betula platyphylla

More Information
  • Received Date: November 28, 2020
  • Revised Date: February 07, 2021
  • Accepted Date: May 08, 2022
  • Available Online: May 12, 2022
  • Published Date: August 24, 2022
  •   Objective  The properties of wood are determined by the composition and characteristics of xylem cell wall. It is important for wood improvement to study the molecular regulation mechanism of xylem cell wall formation. In this study, the molecular regulatory mechanisms in the process of regeneration of primary wall in the protoplast of birch (Betula platyphylla) xylem were analyzed and the important regulatory genes were identified, aiming to provide data and materials for the study of wood properties.
      Method  The protoplasts of birch xylem cultured for 0 h and 2 h were used as materials, respectively, and the regeneration process of primary cell wall was observed by staining with calcofluor white. The differentially expressed genes (DEGs) and differential metabolic pathways participating before and after the regeneration of the primary wall were compared by transcriptomic analysis. The detected DEGs were aligned with GO, KEGG and PlantTFDB.
      Result  Observation by fluorescence microscopy showed that protoplasts had no cell walls after enzymatic digestion and the primary cell walls had been regenerated after 2 h culture. The DEGs were screened using |log2(FC)| ≥ 1(fold change, FC) and q < 0.05 as the parameters. The results showed that compared with the protoplasts without cell wall, 4396 up-regulated genes and 4056 down-regulated genes were detected in the protoplasts cultured for 2 h, with a total number of 8452 DEGs. In the GO database, there were 10 significantly up-regulated terms. KEGG analysis noted 10 significantly different metabolic pathways. Total of 360 differentially expressed transcription factors from 16 families was annotated in PlantTFDB database. The GO database annotation results showed that DNA replication and cell cycle related genes were up-regulated in the cell wall regeneration lines compared with that in control. The results of KEGG database annotation showed that genes involved in glutathione, α-linolenic acid and other stress-related metabolism genes were down-regulated, and pectinester related genes were up-regulated. PlantTFDB annotation results showed that bHLH, NAC, MYB, bZIP and other transcription factors closely related to cell wall biosynthesis were differentially expressed.
      Conclusion  Above results show that xylem protoplasts are in a state of cell wall regeneration and division preparation at 2 h culture. DNA replication, cell cycle, polysaccharide biosynthesis and other related genes play a regulatory role in xylem protoplast culture and primary cell wall formation of B. platyphylla.
  • [1]
    Hong Z M, Xing Y J, Yan G Y, et al. Response of fine root morphology and anatomical structure of Betula platyphylla and Populus davidiana natural secondary forest to nitrogen deposition in Changbai Mountains[J]. Acta Ecologica Sinica, 2020, 40(2): 608−620.
    [2]
    张毅, 牟长城, 郑曈, 等. 小兴安岭天然白桦林生态系统碳储量[J]. 北京林业大学学报, 2015, 37(4): 38−47.

    Zhang Y, Mou C C, Zheng T, et al. Ecosystem carbon storage of natural secondary birch forests in Xiaoxing’an Mountains of China[J]. Journal of Beijing Forestry University, 2015, 37(4): 38−47.
    [3]
    Rastogi S, Pandey M M, Rawat A K S. Medicinal plants of the genus Betula: traditional uses and a phytochemical-pharmacological review[J]. Journal of Ethnopharmacology, 2015, 159: 62−83. doi: 10.1016/j.jep.2014.11.010
    [4]
    李艳霞, 张含国, 邓继峰, 等. 长白落叶松木芯基本密度与材性指标相关及建筑材优良家系选择研究[J]. 北京林业大学学报, 2012, 34(5): 6−14.

    Li Y X, Zhang H G, Deng J F, et al. Correlations among wood density, wood physical mechanics index and growth trait, and selection of elite families for production of building products in Larix olgensis[J]. Journal of Beijing Forestry University, 2012, 34(5): 6−14.
    [5]
    张冬梅, 鲍甫成, 张志毅. 杨树木材性状遗传学研究进展[J]. 世界林业研究, 2002, 15(6): 21−25. doi: 10.3969/j.issn.1001-4241.2002.06.004

    Zhang D M, Bao F C, Zhang Z Y. Advances in wood trait genetics of poplar[J]. World Forestry Research, 2002, 15(6): 21−25. doi: 10.3969/j.issn.1001-4241.2002.06.004
    [6]
    王传贵, 江泽慧, 费本华, 等. 化学成分对木材细胞壁纵向弹性模量和硬度的影响[J]. 北京林业大学学报, 2012, 34(3): 107−110.

    Wang C G, Jiang Z H, Fei B H, et al. Effects of chemical components on longitudinal MOE and hardness of wood cell wall[J]. Journal of Beijing Forestry University, 2012, 34(3): 107−110.
    [7]
    张雨, 赵明洁, 张蔚. 植物次生细胞壁生物合成的转录调控网络[J]. 植物学报, 2020, 55(3): 351−368. doi: 10.11983/CBB19135

    Zhang Y, Zhao M J, Zhang W. Transcriptional regulation of plant secondary cell wall biosynthesis[J]. Chinese Bulletin of Botany, 2020, 55(3): 351−368. doi: 10.11983/CBB19135
    [8]
    Cocking E C. A method for the isolation of plant protoplasts and vacuole[J]. Nature, 1960(187): 927−929.
    [9]
    彭邵锋, 陆佳, 陈永忠, 等. 木本植物原生质体培养体系研究进展[J]. 中国农学通报, 2013, 29(1): 1−6. doi: 10.3969/j.issn.1000-6850.2013.01.001

    Peng S F, Lu J, Chen Y Z, et al. Progress in the protoplast culture system of woody plants[J]. Chinese Agricultural Science Bulletin, 2013, 29(1): 1−6. doi: 10.3969/j.issn.1000-6850.2013.01.001
    [10]
    Eeckhaut T, Lakshmanan P S, Deryckere D, et al. Progress in plant protoplast research[J]. Planta, 2013, 238(6): 991−1003. doi: 10.1007/s00425-013-1936-7
    [11]
    Claudio L G, Graziano P, Ernesto P. High-throughput sequencing to detect DNA-RNA changes.[J]. Methods in Molecular Biology, 2021, 2181: 193−212.
    [12]
    Xue J L, Shi K, Chen C, et al. Evaluation of response of dynamics change in bioaugmentation process in diesel-polluted seawater via high-throughput sequencing: degradation characteristic, community structure, functional genes[J]. Journal of Hazardous Materials, 2021, 403: 123579.
    [13]
    Inaba T, Aoyagi T, Hori T, et al. Clarifying prokaryotic and eukaryotic biofilm microbiomes in anaerobic membrane bioreactor by non-destructive microscopy and high-throughput sequencing[J]. Chemosphere, 2020, 254: 126810. doi: 10.1016/j.chemosphere.2020.126810
    [14]
    Chang Y M, Liu W Y, Arthur C, et al. Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis[J]. Plant Physiology, 2012, 160(1): 165−177. doi: 10.1104/pp.112.203810
    [15]
    Tian K, Li Y, Wang B, et al. The genome and transcriptome of Lactococcus lactis ssp. lactis F44 and G423: insights into adaptation to the acidic environment[J]. Journal of Dairy Science, 2019, 102(2): 1044−1058. doi: 10.3168/jds.2018-14882
    [16]
    Sharma R, Tan F, Jung K H, et al. Transcriptional dynamics during cell wall removal and regeneration reveals key genes involved in cell wall development in rice[J]. Plant Molecular Biology, 2011, 77(4−5): 391−406. doi: 10.1007/s11103-011-9819-4
    [17]
    Trapnell C, Pachter L, Salzberg S L. TopHat: discovering splice junctions with RNA-Seq[J]. Bioinformatics, 2009, 25(9): 1105−1111. doi: 10.1093/bioinformatics/btp120
    [18]
    Wang L, Feng Z, Wang X, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 2009, 26(1): 136−138.
    [19]
    Lin Y C, Li W, Chen H, et al. Simple improved-throughput xylem protoplast system for studying wood formation[J]. Nature protocols, 2014, 9(9): 2194−2205. doi: 10.1038/nprot.2014.147
    [20]
    刘杏芍, 宋斯雨, 高贤贤, 等. 亚硝基谷胱甘肽还原酶GSNOR1正调控植物对疫霉菌的抗性[J]. 西北农业学报, 2020, 29(10): 1−15.

    Liu X S, Song S Y, Gao X X, et al. Nitroso glutathione reductase GSNOR1 for positive regulation of plant resistance against phytophthora[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(10): 1−15.
    [21]
    宋文, 单春会, 宁明, 等. 谷胱甘肽-S-转移酶在植物响应冷胁迫方面的研究进展[J]. 食品工业, 2020, 41(7): 239−244.

    Song W, Shan C H, Ning M, et al. Advances in research of glutathione-S-transferase in response to cold stress in plants[J]. The Food Industry, 2020, 41(7): 239−244.
    [22]
    毕艳, 郑伟, 周涛, 等. 太子参谷胱甘肽-S-转移酶基因家族生物信息学及表达分析[J]. 广西植物, 2020, 11(3): 1−11.

    Bi Y, Zheng W, Zhou T, et al. Bioinformatics and expression analysis of glutathione-S-transferase gene family in Pseudostellaria[J]. Guihaia, 2020, 11(3): 1−11.
    [23]
    于蕊. 紫斑牡丹种子α-亚麻酸合成相关基因克隆与功能验证[D]. 杨凌: 西北农林科技大学, 2018.

    Yu R. Cloning and functional verification of genes related to α-linolenic acid synthesis of Paeonia rockii seed[D]. Yangling: Northwest A&F University, 2018.
    [24]
    覃楠楠. 外源水杨酸对干旱胁迫下分枝结薯期甘薯植株生理指标的影响[D]. 杭州: 浙江大学, 2020.

    Qin N N. Effects of exogenous salicvlic acid on physiological indexes of sweet patato plants at branching-tubering under drought stress[D]. Hangzhou: Zhejiang University, 2020.
    [25]
    周苹, 柴颖, 黄祥辉, 等. 元麦叶肉原生质体细胞壁再生过程中的扫描电镜观察及过氧化物酶活性[J]. 实验生物学报, 1986, 19(2): 12−20.

    Zhou P, Chai Y, Huang X H, et al. Scanning electron microscope observation and peroxidase activity in protoplast cell wall regeneration of rice wheat mesophyte[J]. Journal of Experimental Biology, 1986, 19(2): 12−20.
    [26]
    刘梅, 李祖然, 张光群, 等. 野生小花南芥体内AsA-GSH循环对土壤Cd、Pb胁迫的响应[J]. 农业资源与环境学报, 2020, 11(3): 1−13.

    Liu M, Li Z R, Zhang G Q, et al. Response of ascorbate-glutathione cycle in wild Arabis alpina L. to soil Cd and Pb stress[J]. Journal of Agricultural Resources and Environment, 2020, 11(3): 1−13.
    [27]
    邵青. 裸藻光响应下叶绿体发育相关的初步研究[D]. 深圳: 深圳大学, 2018.

    Shao Q. A preliminary study on chloroplast development in euglenophyta under light response [D]. Shenzhen: Shenzhen University, 2018.
    [28]
    王成孜. 光照强度对超级稻和常规稻苗期光合特性影响的研究[D]. 南京: 南京农业大学, 2018.

    Wang C Z. Effects of light intensity on photosynthetic characteristics of super rice and conventional rice at seedling stage [D]. Nanjing: Nanjing Agricultural University, 2018.
    [29]
    Marcus F, Rittenhouse J, Gontero B, et al. Function, structure and evolution of fructose-1,6-bisphosphatase[J]. Archivos de biologia y medicina experimentales, 1987, 20(3−4): 371−378.
    [30]
    Kornberg A, Horecker B L. Glucose-6-phosphate dehydrogenase [J]. Method Enzymol, 1956, 1: 323.
    [31]
    Rajaonarison J F, Lacarelle B, De S G, et al. In vitro glucuronidation of 3′-azido-3′-deoxythymidine by human liver: role of UDP-glucuronosyltransferase 2 form[J]. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 1991, 19(4): 809−815.
    [32]
    林河通, 赵云峰, 席芳. 龙眼果实采后果肉自溶过程中细胞壁组分及其降解酶活性的变化[J]. 植物生理与分子生物学学报, 2007, 33(2): 137−145.

    Lin H T, Zhao Y F, Xi F. Changes in cell wall components and cell wall-degrading enzyme activities of postharvest longan fruit during aril breakdown[J]. Physiology and Molecular Biology of Plants, 2007, 33(2): 137−145.
    [33]
    Boerjan W, Ralph J, Baucher M. Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54(1): 519−546. doi: 10.1146/annurev.arplant.54.031902.134938
    [34]
    李欣, 李影, 曲子越, 等. bHLH转录因子在茉莉酸信号诱导植物次生产物合成中的作用及分子机制[J]. 植物生理学报, 2017, 53(1): 1−8.

    Li X, Li Y, Qu Z Y, et al. The molecular mechanism and the function of bHLH regulating jasmonic acidmediated secondary metabolic synthesis[J]. Plant Physiology Journal, 2017, 53(1): 1−8.
    [35]
    刘佳欣. BpNAC012基因调控木质部发育基因表达谱分析[D]. 哈尔滨: 东北林业大学, 2018.

    Liu J X. Expression profile analysis of BpNAC012 gene regulating xylem development [D]. Hrabin: Northeast Forestry University, 2018.
    [36]
    Ohnsson C, Jin X, Xue W, et al. The plant hormone auxin directs timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors[J]. Physiologia Plantarum, 2019, 165(4): 673−689. doi: 10.1111/ppl.12766
    [37]
    Laubscher M, Brown K, Tonfack L B, et al. Temporal analysis of Arabidopsis genes activated by Eucalyptus grandis NAC transcription factors associated with xylem fibre and vessel development[J]. Scientific Report, 2018, 8(1): 10983. doi: 10.1038/s41598-018-29278-w
    [38]
    Yamaguchi M, Ohtani M, Mitsuda N, et al. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis[J]. Plant Cell, 2010, 22(4): 1249−63. doi: 10.1105/tpc.108.064048
    [39]
    张明亮. 水稻MYB转录因子调控细胞壁合成分子机理及秸秆酶解产糖因子研究[D]. 武汉: 华中农业大学, 2016.

    Zhang M L. Molecular mechanism of MYB transcription factor regulating cell wall synthesis in rice and study on enzymatic hydrolysis of straw to produce sugar factor [D]. Wuhan: Huazhong Agricultural University, 2016.
    [40]
    Jiao B, Zhao X, Liu W X, et al. The R2R3 MYB transcription factor MYB189 negatively regulates secondary cell wall biosynthesis in Populus[J]. Tree Physiology, 2019, 39(7): 1187−1200. doi: 10.1093/treephys/tpz040
    [41]
    Morse A M, Whetten R W, Dubos C, et al. Post-translational modification of an R2R3-MYB transcription factor by a MAP kinase during xylem development[J]. New Phytologist, 2009, 183(4): 1001−1013. doi: 10.1111/j.1469-8137.2009.02900.x
    [42]
    Patzlaff A, McInnis S, Courtenay A, et al. Characterisation of a pine MYB that regulates lignification[J]. Plant Journal, 2003, 36(6): 743−754. doi: 10.1046/j.1365-313X.2003.01916.x
    [43]
    王莲萍, 王博, 王瑞, 等. 白桦2个bZIP基因的克隆及表达分析[J]. 分子植物育种, 2018, 16(9): 2811−2817.

    Wang L P, Wang B, Wang R, et al. Cloning and expression analyses of two bZIP genes from Betula platyphylla[J]. Molecular Plant Breeding, 2018, 16(9): 2811−2817.
    [44]
    Wang H, Yang J H, Chen F, et al. Transcriptome analysis of secondary cell wall development in Medicago truncatula[J]. BMC Genomics, 2016, 17(1): 23. doi: 10.1186/s12864-015-2330-6
    [45]
    Li W Y, Yu D, Yu J J, et al. Functional analysis of maize silk-specific ZmbZIP25 promoter[J]. International Journal of Molecular Sciences, 2018, 19(3): 822. doi: 10.3390/ijms19030822
    [46]
    Schumann S T, Ringli C, Heierli D, et al. In vitro binding of the tomato bZIP transcriptional activator VSF-1 to a regulatory element that controls xylem-specific gene expression[J]. Plant Journal, 1996, 9(3): 283−296. doi: 10.1046/j.1365-313X.1996.09030283.x
  • Related Articles

    [1]Hu Yaofang, Li Ao, Yin Jiahui, Wang Yuancheng, Zou Junzhu, Ju Guansheng, Liu Junxiang, Sun Zhenyuan. Transcriptome based ABA mediated dehydration response of Salix matsudana branches[J]. Journal of Beijing Forestry University, 2025, 47(3): 19-27. DOI: 10.12171/j.1000-1522.20240103
    [2]Li Xian, Chen Sisi, Xie Jianbo. Transcriptome analysis of poplar leaves infected with Colletotrichum gloeosporioides[J]. Journal of Beijing Forestry University, 2024, 46(4): 91-102. DOI: 10.12171/j.1000-1522.20210481
    [3]Yang Xiaohui, Zhu Zhengcai, Xu Fang, Wang Haihua, Li Wenye, Yang Zhenyi, Chen Xiaojin, Zhu Baozhu. Functional annotation and analysis of transcriptome of Bombax ceiba with different flower colors[J]. Journal of Beijing Forestry University, 2022, 44(3): 1-11. DOI: 10.12171/j.1000-1522.20210250
    [4]Xu Jiahong, Zeng Qing, Ye Fuyu, Hu Yangyang, Shi Huanyu, Zhang Xuan, Chen Jinhui. Genetic relationship of Populus qiongdaoensis in Populus based on full-length transcriptome sequences, nuclear genes and chloroplast genes[J]. Journal of Beijing Forestry University, 2021, 43(10): 28-37. DOI: 10.12171/j.1000-1522.20200286
    [5]Song Runxian, Li Xiang, Mao Xiuhong, Wang Li, Chen Xiangli, Yao Junxiu, Zhao Xiyang, Li Shanwen. Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress[J]. Journal of Beijing Forestry University, 2021, 43(7): 12-21. DOI: 10.12171/j.1000-1522.20210037
    [6]Yin Bin, Lu Hai. Effects of oxidative stress on growth and development of suspension cells of Populus tomentosa by transcriptome analysis[J]. Journal of Beijing Forestry University, 2019, 41(9): 90-98. DOI: 10.13332/j.1000-1522.20190157
    [7]Pan Liqin, Li Jiyuan, Li Shaocui, Fan Zhengqi, Yin Hengfu, He Libo. Development of SSR markers based on transcriptome of Camellia japonica and analysis of genetic relationship[J]. Journal of Beijing Forestry University, 2019, 41(7): 111-120. DOI: 10.13332/j.1000-1522.20190101
    [8]Li Meng, Guo Ye, Liu Songshan, Pang Xiaoming, Li Yingyue. Physiological characteristics and transcriptomics analysis in diploid Ziziphus jujuba Mill. var. spinosa and its autotetraploid[J]. Journal of Beijing Forestry University, 2019, 41(7): 57-67. DOI: 10.13332/j.1000-1522.20190118
    [9]Zhang Yongzhuo, Liu Yalin, Lu Hai, Li Hui. Transcriptome analysis of gene expression profiling in the suspension cells of Populus tomentosa treated by histone deacetylase inhibitor TSA[J]. Journal of Beijing Forestry University, 2018, 40(9): 1-14. DOI: 10.13332/j.1000-1522.20180158
    [10]AN Jun, ZHENG Cai-xia, YAO Yang, CHEN Bin-li. Characterization of microsatellites of ovule transcriptome in Pinus tabulaeformis[J]. Journal of Beijing Forestry University, 2016, 38(5): 77-83. DOI: 10.13332/j.1000-1522.20150033
  • Cited by

    Periodical cited type(2)

    1. 赵阳,冯延芝,杨超伟,王保平,乔杰,殷世雨,周海江,李芳东. 基于全基因组重测序的泡桐属植物遗传关系分析. 中南林业科技大学学报. 2023(06): 1-10 .
    2. 邓长贺. 大兴安岭的白桦树资源开发与利用. 林业科技情报. 2023(03): 52-54 .

    Other cited types(3)

Catalog

    Article views (967) PDF downloads (97) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return