Citation: | Lin Qinyu, Wen Chengsheng, Diao Yue, Yan Lirong, Gao Ying. Mechanical properties of CLT shear connections between self-tapping screws and mortise tenons[J]. Journal of Beijing Forestry University, 2019, 41(11): 146-154. DOI: 10.13332/j.1000-1522.20190209 |
[1] |
加拿大木业. CLT(正交胶合木)简明介绍[J]. 国际木业, 2018(5):10−12. doi: 10.3969/j.issn.1671-4911.2018.05.005
Canada Wood. A brief introduction of CLT (cross laminated timber)[J]. International Wood Industrial, 2018(5): 10−12. doi: 10.3969/j.issn.1671-4911.2018.05.005
|
[2] |
Reynolds T, Casagrande D, Tomasi R. Comparison of multi-storey cross-laminated timber and timber frame buildings by in situ modal analysis[J]. Construction and Building Materials, 2016, 102: 1009−1017. doi: 10.1016/j.conbuildmat.2015.09.056
|
[3] |
李静, 徐洪澎, 郭夏斌, 等. 正交胶合木高层建筑的技术优势与局限[J]. 城市建筑, 2017(14):28−31. doi: 10.3969/j.issn.1673-0232.2017.14.007
Li J, Xu H P, Guo X B, et al. Technical advantages and limitations of cross-laminated timber high-rise buildings[J]. Urbanism and Architecture, 2017(14): 28−31. doi: 10.3969/j.issn.1673-0232.2017.14.007
|
[4] |
Hossain A, Popovski M, Tannert T. Cross-laminated timber connections assembled with a combination of screws in withdrawal and screws in shear[J]. Engineering Structures, 2018, 168: 1−11. doi: 10.1016/j.engstruct.2018.04.052
|
[5] |
Hossain A, Danzig I, Tannert T. Cross-laminated timber shear connections with double-angled self-tapping screw assemblies[J]. Journal of Structural Engineering, 2016, 142(11): 1−9.
|
[6] |
董惟群, 姚悦, 宋焕, 等. 自攻螺钉连接正交胶合木抗剪承载力研究[J]. 木材工业, 2018, 32(5):1−5.
Dong W Q, Yao Y, Song H, et al. Shear strength of cross-laminated timber connected with self-tapping screws[J]. China Wood Industry, 2018, 32(5): 1−5.
|
[7] |
Gavric I, Fragiacomo M, Ceccotti A. Cyclic behavior of typical screwed connections for cross-laminated (CLT) structures[J]. European Journal of Wood and Wood Products, 2015, 73(2): 179−191. doi: 10.1007/s00107-014-0877-6
|
[8] |
Loss C, Hossain A, Tannert T. Simple cross-laminated timber shear connections with spatially arranged screws[J]. Engineering Structures, 2018, 173: 340−356. doi: 10.1016/j.engstruct.2018.07.004
|
[9] |
Silva C, Branco J M, Ringhofer A, et al. The influences of moisture content variation, number and width of gaps on the withdrawal resistance of self tapping screws inserted in cross laminated timber[J]. Construction and Building Materials, 2016, 125: 1205−1215. doi: 10.1016/j.conbuildmat.2016.09.008
|
[10] |
高永林, 陶忠, 叶燎原, 等. 传统木结构典型榫卯节点基于摩擦机理特性的低周反复加载试验研究[J]. 建筑结构学报, 2015, 36(10):135−149.
Gao Y L, Tao Z, Ye L Y, et al. Low-cycle reversed loading tests study on typical mortise-tenon connections of traditional timber building based on friction mechanism[J]. Journal of Building Structures, 2015, 36(10): 135−149.
|
[11] |
孙国军, 赵益峰, 薛素铎, 等. 复合榫卯节点连接特性拟静力试验研究[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(增刊 1):20−26.
Sun G J, Zhao Y F, Xue S D, et al. Pseudo-static experimental study on the properties of unitized mortise-tenon connections[J]. Journal of Tianjin University (Science and Technology), 2018, 51(Suppl. 1): 20−26.
|
[12] |
Tannert T, Lam F, Vallée T. Structural performance of rounded dovetail connections: experimental and numerical investigations[J]. European Journal of Wood and Wood Products, 2011, 69(3): 471−482. doi: 10.1007/s00107-010-0459-1
|
[13] |
Tannert T. Improved performance of reinforced rounded dovetail connections[J]. Construction and Building Materials, 2016, 118: 262−267. doi: 10.1016/j.conbuildmat.2016.05.038
|
[14] |
Tannert T, Lam F, Vallée T. Strength prediction for rounded dovetail connections considering size effects[J]. Journal of Engineering Mechanics, 2010, 136(3): 358−366. doi: 10.1061/(ASCE)0733-9399(2010)136:3(358)
|
[15] |
Tannert T, Prion H, Lam F. Structural performance of rounded dovetail connections under different loading conditions[J]. Canadia Journal of Civil Engineering, 2007, 34(12): 1600−1605. doi: 10.1139/L07-076
|
[16] |
Tannert T, Lam F. Performance of laminated strand lumber for rounded dovetail connections[J]. Forest Products Journal, 2007, 57(9): 63−67.
|
[17] |
Tannert T, Haukaas T. Probabilistic models for structural performance of rounded dovetail connections[J]. Journal of Structural Engineering, 2013, 139(9): 1478−1488. doi: 10.1061/(ASCE)ST.1943-541X.0000744
|
[18] |
Tannert T, Lam F. Self-tapping screws as reinforcement for rounded dovetail connections[J]. Structural Control & Health Monitoring, 2009, 16(3): 374−384.
|
[19] |
Anastas H, Tannert T, Lam F, et al. Effect of manufacturing on the quality of rounded dovetail connections[C]// Gard W F, Van De Kuilen J W G. End user ’s needs for wood material and products. Delft, Netherlands: Cost, 2008: 51−58.
|
[20] |
Stefanescu M. Lateral resistance of traditional Japanese post-and-beam frames under monotonic and cyclic loading conditions[D]. Vancouver, Canada: University of British Columbia, 2000.
|
[21] |
刘芳莲, 陶忠, 刘涛, 等. 榫头与卯口不同接触程度下大头榫节点的低周反复荷载试验[J]. 价值工程, 2018, 37(5):110−113.
Liu F L, Tao Z, Liu T, et al. Low-cycle repetitive load test of damping capacity of big head and ditch under different tenon width[J]. Value Engineering, 2018, 37(5): 110−113.
|
[22] |
Jeong G Y, Park M J, Park J S, et al. Predicting load-carrying capacity of dovetail connections using the stochastic finite element method[J]. Wood and Fiber Science, 2012, 44(4): 430−439.
|
[23] |
Kunecký J, Arciszewska-Kędzior A, Sebera V, et al. Mechanical performance of dovetail connection related to the global stiffness of timber roof structures[J]. Materials and Structures, 2016, 49(6): 2315−2327. doi: 10.1617/s11527-015-0651-1
|
[24] |
Pang S J, Oh J K, Park J S, et al. Moment-carrying capacity of dovetailed mortise and tenon connections with or without beam shoulder[J]. Journal of Structural Engineering, 2010, 137(7): 785−789.
|
[25] |
ASTM. Standard test methods for cyclic (reversed) load test for shear resistance of vertical elements of the lateral force resisting systems for buildings: E2126-11[S]. West Conshohocken: ASTM International, 2011.
|
[26] |
Japan 2 × 4 Home Builders Association. Structural design guidelines for wood frame construction[R]. Tokyo: Japan 2 × 4 HomeBuilders Association, 2002: 233−241.
|
1. |
李俊峰. 机械设备无损检测技术与安全分析. 造纸装备及材料. 2022(09): 16-18 .
![]() | |
2. |
李焕,管成,张厚江,刘晋浩,周建徽,辛振波. 足尺胶合板弹性模量的两对边简支振动检测研究. 北京林业大学学报. 2021(02): 138-149 .
![]() | |
3. |
管成,辛振波,刘晋浩,张厚江,周建徽,李焕,柳苏洋. 3种边界条件下足尺定向刨花板的模态灵敏度和振动模态研究. 北京林业大学学报. 2021(12): 105-115 .
![]() | |
4. |
李亦珂. 自动化计算机控制系统在相关人造板设备中的应用分析. 林产工业. 2020(04): 109-112 .
![]() |