• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Lin Qinyu, Wen Chengsheng, Diao Yue, Yan Lirong, Gao Ying. Mechanical properties of CLT shear connections between self-tapping screws and mortise tenons[J]. Journal of Beijing Forestry University, 2019, 41(11): 146-154. DOI: 10.13332/j.1000-1522.20190209
Citation: Lin Qinyu, Wen Chengsheng, Diao Yue, Yan Lirong, Gao Ying. Mechanical properties of CLT shear connections between self-tapping screws and mortise tenons[J]. Journal of Beijing Forestry University, 2019, 41(11): 146-154. DOI: 10.13332/j.1000-1522.20190209

Mechanical properties of CLT shear connections between self-tapping screws and mortise tenons

More Information
  • Received Date: May 04, 2019
  • Revised Date: June 03, 2019
  • Available Online: September 11, 2019
  • Published Date: October 31, 2019
  • ObjectiveThe appearance of CLT (cross-laminated timber) enables wooden buildings to break through height limitation, yet the current use of metal connectors reduces the efficiencies of CLT and wastes the mechanical capacities of CLT. Thus, the study of CLT connections becomes a vital issue. In order to provide scientific basis for the engineering application of mortise-tenon connection in CLT building, this paper makes a study of the shear performance of the mortise-tenon connection, and compares it with self-tapping screws (STS) used for wall-to-wall joints.
    MethodH-type CLT specimens connected with STS and mortise tenons were subjected to monotonic and cyclic loading test. Load-displacement curve, hysteretic curve and skeleton curve under pure shear loads were obtained. Mechanical properties such as initial stiffness, peak load, energy dissipation, stiffness degradation and strength degradation were investigated combining failure mode.
    ResultIt was shown that STS connections failed before the damage of CLT material appeared, and the damages also occurred on the wood around connections. While mortise-tenon connections failed after the damage appeared of CLT. In monotonic loading tests, mortise-tenon connections presented lower ductility than STS connections, but maximum load, ultimate displacement, yield load, yield displacement and energy dissipation were higher than STS connections by 313.50%, 35.38%, 370.80%, 92.76%, 459.64%, respectively. In cyclic loading tests, the ductility of STS connections deteriorated, but that of mortise-tenon connections became better. Meanwhile, the maximum load of pushing and pulling phase of mortise-tenon connections were respectively 455.54% and 234.74% higher than STS connections, and its ability to maintain stiffness, strength and consume energy were all better than STS connections.
    ConclusionCompared with the STS connections, mortise-tenon connections can allow full use of the strengths of CLT material and promote engineering application of CLT building.
  • [1]
    加拿大木业. CLT(正交胶合木)简明介绍[J]. 国际木业, 2018(5):10−12. doi: 10.3969/j.issn.1671-4911.2018.05.005

    Canada Wood. A brief introduction of CLT (cross laminated timber)[J]. International Wood Industrial, 2018(5): 10−12. doi: 10.3969/j.issn.1671-4911.2018.05.005
    [2]
    Reynolds T, Casagrande D, Tomasi R. Comparison of multi-storey cross-laminated timber and timber frame buildings by in situ modal analysis[J]. Construction and Building Materials, 2016, 102: 1009−1017. doi: 10.1016/j.conbuildmat.2015.09.056
    [3]
    李静, 徐洪澎, 郭夏斌, 等. 正交胶合木高层建筑的技术优势与局限[J]. 城市建筑, 2017(14):28−31. doi: 10.3969/j.issn.1673-0232.2017.14.007

    Li J, Xu H P, Guo X B, et al. Technical advantages and limitations of cross-laminated timber high-rise buildings[J]. Urbanism and Architecture, 2017(14): 28−31. doi: 10.3969/j.issn.1673-0232.2017.14.007
    [4]
    Hossain A, Popovski M, Tannert T. Cross-laminated timber connections assembled with a combination of screws in withdrawal and screws in shear[J]. Engineering Structures, 2018, 168: 1−11. doi: 10.1016/j.engstruct.2018.04.052
    [5]
    Hossain A, Danzig I, Tannert T. Cross-laminated timber shear connections with double-angled self-tapping screw assemblies[J]. Journal of Structural Engineering, 2016, 142(11): 1−9.
    [6]
    董惟群, 姚悦, 宋焕, 等. 自攻螺钉连接正交胶合木抗剪承载力研究[J]. 木材工业, 2018, 32(5):1−5.

    Dong W Q, Yao Y, Song H, et al. Shear strength of cross-laminated timber connected with self-tapping screws[J]. China Wood Industry, 2018, 32(5): 1−5.
    [7]
    Gavric I, Fragiacomo M, Ceccotti A. Cyclic behavior of typical screwed connections for cross-laminated (CLT) structures[J]. European Journal of Wood and Wood Products, 2015, 73(2): 179−191. doi: 10.1007/s00107-014-0877-6
    [8]
    Loss C, Hossain A, Tannert T. Simple cross-laminated timber shear connections with spatially arranged screws[J]. Engineering Structures, 2018, 173: 340−356. doi: 10.1016/j.engstruct.2018.07.004
    [9]
    Silva C, Branco J M, Ringhofer A, et al. The influences of moisture content variation, number and width of gaps on the withdrawal resistance of self tapping screws inserted in cross laminated timber[J]. Construction and Building Materials, 2016, 125: 1205−1215. doi: 10.1016/j.conbuildmat.2016.09.008
    [10]
    高永林, 陶忠, 叶燎原, 等. 传统木结构典型榫卯节点基于摩擦机理特性的低周反复加载试验研究[J]. 建筑结构学报, 2015, 36(10):135−149.

    Gao Y L, Tao Z, Ye L Y, et al. Low-cycle reversed loading tests study on typical mortise-tenon connections of traditional timber building based on friction mechanism[J]. Journal of Building Structures, 2015, 36(10): 135−149.
    [11]
    孙国军, 赵益峰, 薛素铎, 等. 复合榫卯节点连接特性拟静力试验研究[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(增刊 1):20−26.

    Sun G J, Zhao Y F, Xue S D, et al. Pseudo-static experimental study on the properties of unitized mortise-tenon connections[J]. Journal of Tianjin University (Science and Technology), 2018, 51(Suppl. 1): 20−26.
    [12]
    Tannert T, Lam F, Vallée T. Structural performance of rounded dovetail connections: experimental and numerical investigations[J]. European Journal of Wood and Wood Products, 2011, 69(3): 471−482. doi: 10.1007/s00107-010-0459-1
    [13]
    Tannert T. Improved performance of reinforced rounded dovetail connections[J]. Construction and Building Materials, 2016, 118: 262−267. doi: 10.1016/j.conbuildmat.2016.05.038
    [14]
    Tannert T, Lam F, Vallée T. Strength prediction for rounded dovetail connections considering size effects[J]. Journal of Engineering Mechanics, 2010, 136(3): 358−366. doi: 10.1061/(ASCE)0733-9399(2010)136:3(358)
    [15]
    Tannert T, Prion H, Lam F. Structural performance of rounded dovetail connections under different loading conditions[J]. Canadia Journal of Civil Engineering, 2007, 34(12): 1600−1605. doi: 10.1139/L07-076
    [16]
    Tannert T, Lam F. Performance of laminated strand lumber for rounded dovetail connections[J]. Forest Products Journal, 2007, 57(9): 63−67.
    [17]
    Tannert T, Haukaas T. Probabilistic models for structural performance of rounded dovetail connections[J]. Journal of Structural Engineering, 2013, 139(9): 1478−1488. doi: 10.1061/(ASCE)ST.1943-541X.0000744
    [18]
    Tannert T, Lam F. Self-tapping screws as reinforcement for rounded dovetail connections[J]. Structural Control & Health Monitoring, 2009, 16(3): 374−384.
    [19]
    Anastas H, Tannert T, Lam F, et al. Effect of manufacturing on the quality of rounded dovetail connections[C]// Gard W F, Van De Kuilen J W G. End user ’s needs for wood material and products. Delft, Netherlands: Cost, 2008: 51−58.
    [20]
    Stefanescu M. Lateral resistance of traditional Japanese post-and-beam frames under monotonic and cyclic loading conditions[D]. Vancouver, Canada: University of British Columbia, 2000.
    [21]
    刘芳莲, 陶忠, 刘涛, 等. 榫头与卯口不同接触程度下大头榫节点的低周反复荷载试验[J]. 价值工程, 2018, 37(5):110−113.

    Liu F L, Tao Z, Liu T, et al. Low-cycle repetitive load test of damping capacity of big head and ditch under different tenon width[J]. Value Engineering, 2018, 37(5): 110−113.
    [22]
    Jeong G Y, Park M J, Park J S, et al. Predicting load-carrying capacity of dovetail connections using the stochastic finite element method[J]. Wood and Fiber Science, 2012, 44(4): 430−439.
    [23]
    Kunecký J, Arciszewska-Kędzior A, Sebera V, et al. Mechanical performance of dovetail connection related to the global stiffness of timber roof structures[J]. Materials and Structures, 2016, 49(6): 2315−2327. doi: 10.1617/s11527-015-0651-1
    [24]
    Pang S J, Oh J K, Park J S, et al. Moment-carrying capacity of dovetailed mortise and tenon connections with or without beam shoulder[J]. Journal of Structural Engineering, 2010, 137(7): 785−789.
    [25]
    ASTM. Standard test methods for cyclic (reversed) load test for shear resistance of vertical elements of the lateral force resisting systems for buildings: E2126-11[S]. West Conshohocken: ASTM International, 2011.
    [26]
    Japan 2 × 4 Home Builders Association. Structural design guidelines for wood frame construction[R]. Tokyo: Japan 2 × 4 HomeBuilders Association, 2002: 233−241.
  • Related Articles

    [1]Qi Chusheng, Zhan Zhibin, Dai Lu. Analysis methods and characteristic parameters of wood microstructure[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240287
    [2]Dong Zhijun, Gao Jianzhou, Yu Xiaonan. Effects of uniconazole on the physiological characteristics and microstructure of potted Paeonia lactiflora[J]. Journal of Beijing Forestry University, 2022, 44(7): 117-125. DOI: 10.12171/j.1000-1522.20210325
    [3]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [4]Wang Yujiao, Peng Yao, Cao Jinzhen. Analysis of microstructure and chemical components of southern pine during initial brown-rot decay[J]. Journal of Beijing Forestry University, 2021, 43(3): 138-144. DOI: 10.12171/j.1000-1522.20210024
    [5]Zhang Jing, Qi Chusheng, Mu Jun. Effects of thermal treatment temperature and duration on mass loss and rupture modulus of Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2020, 42(10): 137-144. DOI: 10.12171/j.1000-1522.20200257
    [6]GE Xiao-wen, WANG Li-hai, HOU Jie-jian, RONG Bin-bin, YUE Xiao-quan, ZHANG Sheng-ming. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay.[J]. Journal of Beijing Forestry University, 2016, 38(10): 112-122. DOI: 10.13332/j.1000-1522.20160098
    [7]ZHAO Guang-jie. The course of chemical reaction and microstructure evolution of wood-based carbon fibers during carbonization and graphitization[J]. Journal of Beijing Forestry University, 2010, 32(2): 201-204.
    [8]MA Xiao-jun, ZHAO Guang-jie. Effects of carbonized temperature on microstructure of carbon fiber precursors prepared from liquefied wood[J]. Journal of Beijing Forestry University, 2009, 31(5): 112-116.
    [9]SUN De-lin, LIU Wen-jin, YU Xian-chun. Effects of sintering temperature and PF resin content on phases and microstructure characteristics of woodceramics.[J]. Journal of Beijing Forestry University, 2009, 31(4): 112-117.
    [10]ZHOU Yong-dong, FU Feng, LI Xian-jun, JIANG Xiao-mei, CHEN Zhi-lin. Effects of microwave treatment on residue growth stress and microstructure of Eucalyptus urophylla[J]. Journal of Beijing Forestry University, 2009, 31(2): 146-150.
  • Cited by

    Periodical cited type(4)

    1. 李俊峰. 机械设备无损检测技术与安全分析. 造纸装备及材料. 2022(09): 16-18 .
    2. 李焕,管成,张厚江,刘晋浩,周建徽,辛振波. 足尺胶合板弹性模量的两对边简支振动检测研究. 北京林业大学学报. 2021(02): 138-149 . 本站查看
    3. 管成,辛振波,刘晋浩,张厚江,周建徽,李焕,柳苏洋. 3种边界条件下足尺定向刨花板的模态灵敏度和振动模态研究. 北京林业大学学报. 2021(12): 105-115 . 本站查看
    4. 李亦珂. 自动化计算机控制系统在相关人造板设备中的应用分析. 林产工业. 2020(04): 109-112 .

    Other cited types(4)

Catalog

    Article views (2400) PDF downloads (71) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return