• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xia Guangda, Xiao Sichen, Su Junjie, Li Lei, Fang Mengdi, Liu Yu. Photocatalytic performance of BiVO4-CdS based on wood templates[J]. Journal of Beijing Forestry University, 2023, 45(1): 132-139. DOI: 10.12171/j.1000-1522.20220421
Citation: Xia Guangda, Xiao Sichen, Su Junjie, Li Lei, Fang Mengdi, Liu Yu. Photocatalytic performance of BiVO4-CdS based on wood templates[J]. Journal of Beijing Forestry University, 2023, 45(1): 132-139. DOI: 10.12171/j.1000-1522.20220421

Photocatalytic performance of BiVO4-CdS based on wood templates

More Information
  • Received Date: October 20, 2022
  • Revised Date: November 09, 2022
  • Available Online: November 20, 2022
  • Published Date: January 24, 2023
  •   Objective  BiVO4-CdS composite photocatalysts with the wood biomimetic micro-nanopore structure were prepared from wood processing residues. The wood template was used to form more heterojunction structures, improve the catalytic performance of the photocatalytic material and expand the application of BiVO4 in the treatment of wood dye wastewater.
      Method  BiVO4-CdS composite photocatalysts were prepared by impregnation-calcination and chemical deposition using wood processing residues from three species of wood (fir, poplar, and balsa).
      Result  All three BiVO4-CdS composite photocatalysts with wood biomimetic structures exhibited good adsorption-photocatalytic degradation of RhB. The lower-density balsa-wood BiVO4-CdS showed a high removal rate of RhB (29.26%) after reaching adsorption equilibrium; the degradation rate of RhB under visible light was 96.01% in 120 min, and its reaction rate was 6.69 and 3.37 times higher than that of BiVO4 and BiVO4-CdS without a template. After ten adsorption-photocatalytic degradation cycles, the balsa-wood BiVO4-CdS still achieved a degradation efficiency of over 85%.
      Conclusion  The biomimetic structure of wood gives the composite photocatalyst a rich pore structure. The cavity wall structure in the low-density wood facilitates the catalyst to obtain a large specific surface area and stable pore structure after impregnation and calcination treatment. At the same time, it also promotes the formation of the BiVO4-CdS heterojunction structure, which accelerates the rapid adsorption and degradation of pollutant molecules during the photocatalytic reaction.
  • [1]
    何盛, 吴再兴, 陈玉和, 等. 木(竹)材染色废水处理研究进展[J]. 竹子学报, 2016, 35(2): 58−62. doi: 10.3969/j.issn.1000-6567.2016.02.013

    He S, Wu Z X, Chen Y H, et al. Progresses of waste water treatement for wood and bamboo dyeing[J]. Journal of Bamboo Research, 2016, 35(2): 58−62. doi: 10.3969/j.issn.1000-6567.2016.02.013
    [2]
    Vlyssides A, Barampouti E M, Mai S, et al. Application of Fenton’s reagent on wastewater from a wood processing industry[J]. Environmental Engineering Science, 2008, 25(3): 327−332. doi: 10.1089/ees.2006.0283
    [3]
    Doan T H Y, Chu T P M, Dinh T D, et al. Adsorptive removal of rhodamine B using novel adsorbent-based surfactant-modified alpha alumina nanoparticles[J]. Journal of Analytical Methods in Chemistry, 2020: 6676320.
    [4]
    李庆, 陈灵辉, 李丹, 等. 金属−有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12): 188−195.

    Li Q, Chen L H, Li D, et al. Research progress in photocatalytic degradation of dyes using metal-organic frameworks[J]. Journal of Textile Research, 2021, 42(12): 188−195.
    [5]
    Chandrabose G, Dey A, Gaur S S, et al. Removal and degradation of mixed dye pollutants by integrated adsorption-photocatalysis technique using 2-D MoS2/TiO2 nanocomposite[J]. Chemosphere, 2021, 279: 130467. doi: 10.1016/j.chemosphere.2021.130467
    [6]
    张雯, 张晗, 王觅堂. 钒酸铋光催化剂的制备及改性[J]. 材料科学与工程学报, 2022, 40(5): 1−12. doi: 10.14136/j.cnki.issn1673-2812.2022.05.027

    Zhang W, Zhang H, Wang M T. Preparation and modification of bismuth vanadate photocatalyst[J]. Journal of Materials Science and Engineering, 2022, 40(5): 1−12. doi: 10.14136/j.cnki.issn1673-2812.2022.05.027
    [7]
    Guo M N, Wang Y, He Q L, et al. Enhanced photocatalytic activity of S-doped BiVO4 photocatalysts[J]. RSC Advances, 2015, 72(5): 58633−58639.
    [8]
    Wu Z S, Xue Y T, He X F, et al. Surfactants-assisted preparation of BiVO4 with novel morphologies via microwave method and CdS decoration for enhanced photocatalytic properties[J]. Journal of Hazardous Materials, 2020, 387: 122019. doi: 10.1016/j.jhazmat.2020.122019
    [9]
    Xue Y T, Chen Z Y, Wu Z S, et al. Hierarchical construction of a new Z-scheme Bi/BiVO4-CdS heterojunction for enhanced visible-light photocatalytic degradation of tetracycline hydrochloride[J]. Separation and Purification Technology, 2021, 275: 119152. doi: 10.1016/j.seppur.2021.119152
    [10]
    李奕萱. 硫化镉改性材料最新光催化研究进展[J]. 黑龙江环境通报, 2019, 43(2): 86−89. doi: 10.3969/j.issn.1674-263X.2019.02.028

    Li Y X. Recent progress in photocatalytic research of cadmium sulfide modified materials[J]. Heilongjiang Environmental Journal, 2019, 43(2): 86−89. doi: 10.3969/j.issn.1674-263X.2019.02.028
    [11]
    Yang R J, Zhu R S, Fan Y Y, et al. In situ synthesis of C-doped BiVO4 with natural leaf as a template under different calcination temperatures[J]. RSC Advances, 2019, 9(25): 14004−14010. doi: 10.1039/C9RA01875A
    [12]
    Wang M, Zheng H Y, Liu J, et al. Enhanced visible-light-driven photocatalytic activity of B-doped BiVO4 synthesized using a corn stem template[J]. Materials Science in Semiconductor Processing, 2015, 30: 307−313. doi: 10.1016/j.mssp.2014.09.031
    [13]
    Liu Z T, Fan T X, Gu J J, et al. Preparation of porous Fe from biomorphic Fe2O3 precursors with wood templates[J]. Materials Transactions, 2007, 48(4): 878−881. doi: 10.2320/matertrans.48.878
    [14]
    Liu Z T, Fan T X, Zhang W, et al. The synthesis of hierarchical porous iron oxide with wood templates[J]. Microporous and Mesoporous Materials, 2005, 85(1−2): 82−88. doi: 10.1016/j.micromeso.2005.06.021
    [15]
    Fan H M, Wang D J, Liu Z P, et al. Self-assembled BiVO4/Bi2WO6 microspheres: synthesis, photoinduced charge transfer properties and photocatalytic activities[J]. Dalton Transactions, 2015, 44(26): 11725−11731. doi: 10.1039/C5DT01222H
    [16]
    Wang D J, Shen H D, Guo L, et al. Design and construction of the sandwich-like Z-scheme multicomponent CdS/Ag/Bi2MoO6 heterostructure with enhanced photocatalytic performance in RhB photodegradation[J]. New Journal of Chemistry, 2016, 40(10): 8614−8624. doi: 10.1039/C6NJ01893A
    [17]
    Cui L, Chang M Q, Chen J, et al. Judd-Ofelt analysis, photoluminescence and photocatalytic properties of core-shell SiO2@TiO2:Eu3+ nanospheres with different diameters[J]. Journal of Physics and Chemistry of Solids, 2018, 123: 162−171. doi: 10.1016/j.jpcs.2018.07.020
    [18]
    Cao Q H, Xiao L, Li J, et al. Morphology-controlled fabrication of Ag3PO4/chitosan nanocomposites with enhanced visible-light photocatalytic performance using different molecular weight chitosan[J]. Powder Technology, 2016, 292: 186−194. doi: 10.1016/j.powtec.2016.02.003
    [19]
    郭宇, 李超, 李英洁, 等. 木材细胞壁与木材力学性能及水分特性之间关系研究进展[J]. 2019, 46(8): 14−18.

    Guo Y, Li C, Li Y J, et al. Research progress on the ralationship between wood cell wall and wood mechanical properties and moisture properties[J]. 2019, 46(8): 14−18.
    [20]
    Zhou W J, Yin Z Y, Du Y P, et al. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities[J]. Small, 2013, 9(1): 140−147. doi: 10.1002/smll.201201161
    [21]
    Yang G, Chen D M, Ding H, et al. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency[J]. Applied Catalysis B-Environmental, 2017, 219: 611−618. doi: 10.1016/j.apcatb.2017.08.016
    [22]
    李洁. 多孔富缺陷半导体应用于光催化降解废水有机污染物[J/OL]. 材料导报, 2023 [2022−11−08]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220727.1616.004.html.

    Li J. Porous defective semiconductor for photocatalytic degradation of organic pollution in wastewater[J/OL]. Materials Reports, 2023 [2022−11−08]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220727.1616.004.html.
    [23]
    da Silva A, Kyriakides S. Compressive response and failure of balsa wood[J]. International Journal of Solids and Structures, 2007, 44(25−26): 8685−8717.
  • Related Articles

    [1]Li Yuting, Ma Aiyun, Miao Zheng, Hao Yuanshuo, Dong Lihu. Effects of neighborhood competition on biomass and its allocation of Larix olgensis[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20230322
    [2]Yin Luqin, Wang Cheng, Liu Ruzhi. Characteristics and influencing factors of bird community in residential areas of Beijing[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240062
    [3]Wei Zhaoyang, Zhang Jianjun, Lai Zongrui, Hu Yawei, Zhao Jiongchang, Tang Peng, Wang Siqi. Influence of density and site on fine root characteristics of Pinus tabuliformis plantations in loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2024, 46(10): 22-32. DOI: 10.12171/j.1000-1522.20230282
    [4]Wu Yan, Li Xinyu, Zhang Yiting, Ding Bo, Zhang Yunlin, Fu Yuhong, Liu Xun. Litter carbon, nitrogen, and phosphorus stoichiometric characteristics and their influencing factors of Pinus massoniana plantation with different age groups in karst region of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(2): 87-94. DOI: 10.12171/j.1000-1522.20220052
    [5]Xu Chao, Long Ting, Wu Xinlei, Chen Jie, Liang Yanjun, Li Jingwen. Reintroducing effects and influencing factors of Taxus cuspidata population[J]. Journal of Beijing Forestry University, 2020, 42(8): 34-42. DOI: 10.12171/j.1000-1522.20190423
    [6]Gao Yan, Zhang Yuqing, Qin Shugao, Zhang Jutao, Liu Zhen. Landscape pattern change and its influencing factors of sand-binding vegetation[J]. Journal of Beijing Forestry University, 2020, 42(4): 102-112. DOI: 10.12171/j.1000-1522.20190061
    [7]Ye Zi-qi, Deng Ru-jun, Wang Yu-chen, Wang Jian-ming, Li Jing-wen, Zhang Fan-bing, Chen Jie. Branching patterns of clonal root of Populus euphratica and its associations with soil factors[J]. Journal of Beijing Forestry University, 2018, 40(2): 31-39. DOI: 10.13332/j.1000-1522.20170426
    [8]SONG Zhao-peng, LIANG Dong, HOU Ji-hua. Effects of nitrogen addition on the seedling biomass and its allocation of three Pinus tabuliformis provenances[J]. Journal of Beijing Forestry University, 2017, 39(8): 50-59. DOI: 10.13332/j.1000-1522.20160243
    [9]LI Ning, CHEN Li-hua, YANG Yuan-jun.. Factors influencing root tensile properties of Pinus tabuliformis and Larix principis-rupprechtii.[J]. Journal of Beijing Forestry University, 2015, 37(12): 77-84. DOI: 10.13332/j.1000-1522.20150131
    [10]GUO Hong-wu, WANG Jin-lin, LI Chun-sheng, YAN Hao-Peng. Light-induced discoloration and influencing factors of dyed veneer after painted.[J]. Journal of Beijing Forestry University, 2008, 30(4): 22-27.
  • Cited by

    Periodical cited type(3)

    1. 黄康庭,周娟,陈晓龙,艾辉辉,梁明伟,王荣洁,余平福. 广西珍贵乡土树种人工林林下植物的多样性. 桉树科技. 2025(01): 49-56 .
    2. 符航,谭国华,刘玮,蔡奇良,王琼,潘峰. 基于CiteSpace和VOSviewer软件的城市土壤食物网研究趋势分析. 生物灾害科学. 2025(01): 51-65 .
    3. 江姗,魏天兴,范德卉,于欢,叶小曼,谢宇,李世杰. 晋西黄土区沟谷不同部位植物多样性. 北京林业大学学报. 2024(06): 20-27 . 本站查看

    Other cited types(4)

Catalog

    Article views (564) PDF downloads (70) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return